Use of performance indicators in evaluating chronic metal exposure in wild yellow perch (Perca flavescens)

Citation:

Taylor LN, McFarlane WJ, Pyle GG, Couture P, McDonald DG. Use of performance indicators in evaluating chronic metal exposure in wild yellow perch (Perca flavescens). Aquatic Toxicology. 2004;67:371-385.

Abstract:

The objective of this study was to evaluate the effects of copper exposure on swimming performance and gill-binding characteristics of wild yellow perch (Perca flavescens), a species endemic to metal-contaminated lakes of the Sudbury region in northern Ontario. Yellow perch were collected from lakes varying in the degree of metal contamination (Cu = 1-21 microg/l), on two separate occasions for the investigation of swim performance and the analysis of gill-binding characteristics. Swim performance tests indicated that yellow perch from the contaminated lake had slightly greater endurance in a fixed velocity sprint test than fish from reference lakes, although the analysis of critical swimming speeds (U(crit)) did not reveal this same distinction between the groups. Differential sprint performance was in part due to differences in fish size within contaminated and reference lakes. Yellow perch from the contaminated lake also had higher resting levels of muscle glycogen and greater lactate production during high intensity exercise compared to yellow perch from the reference site. Acclimation occurred in the metal-contaminated yellow perch, as seen by the significantly elevated time to death (LT50) during an acutely lethal challenge to 600 microg Cu/l. However, gills from perch from the contaminated lake accumulated about three times more copper at death. In contrast, at a lower exposure range of water-copper (10-400 microg/l), the gills of fish from the contaminated lake tended to saturate with copper at lower concentrations than gills of fish from the reference lake (approximately 8 microg versus 23 microg Cu/g of gill tissue). In addition, perch from the contaminated lake exhibited a lower rate of sodium loss during the acute exposure to copper at approximately 10 to 600 microg Cu/l. This study suggests that the amount of copper bound to (or accumulated within) the gills may not be diagnostic of acute toxicity for wild yellow perch from metal-contaminated lakes.

Notes:

Record Number: 2101Department of Biology, McMaster University, Stantec, 11B Nicholas Beaver Road, Guelph, Hamilton, Ont., Canada N1H 6H9. lntaylor@stantec.com0166-445X