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Onsager coefficients are calculated for the approach of a gas to equilibrium by effusion between two

chambers. Using kinetic gas theory, the Onsager symmetry relation is explicitly verified. The

approach to equilibrium is determined by two time scales that are explicitly calculated; this is

followed by example calculations for dynamics of the system approaching equilibrium in several

ways. Also, calculations for the cross-correlation functions for this system are presented, which are

used to calculate various noise spectral functions. This study provides students of statistical mechanics

and thermodynamics with a good example to aid in understanding some of the general concepts

encountered in studies of non-equilibrium systems. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4827829]

I. INTRODUCTION

In systems containing two or more irreversible transport
mechanisms, reciprocal relations among transport coefficients
can often be observed. Examples date back to Lord Kelvin’s
analysis of thermoelectric phenomena and Helmholtz’s inves-
tigations into the conductivity of electrolytes.1,2 In 1931, Lars
Onsager published his seminal studies concerning the
approach to thermodynamic equilibrium.3,4 This was specifi-
cally a linearized theory where it was assumed that the system
is not very far from equilibrium and assumptions of local equi-
librium apply. Such a linearized approach naturally involves
constant coefficients. Onsager showed that there exist general
symmetries among such coefficients. This work was further
developed theoretically over the next couple of decades,5–7

while from the experimental side many systems were studied
in detail, including systems exhibiting particle diffusion, ther-
mal conduction, electrical conduction, thermoelectricity, ther-
momagnetic, thermomechanical, and galvanomagnetic effects,
electrolytic transferance, liquid helium fountain effects,8 and
chemical reactions. The experimental tests for the validity of
the Onsager relations have been reviewed extensively by
Miller.9 The linear theory for approach to equilibrium was
developed further when Prigogine presented his studies on the
so-called stationary states and proved an important theorem on
entropy production rates, namely the minimum entropy pro-
duction principle.10–12

From the point of view of pedagogy, clear explanations of
the Onsager relations can be found in various textbooks (see
Refs. 10, 11, 13, and 14, for examples; also see Ref. 15, for
examples, dealing with thermal and electrical conduction in
crystals and Ref. 16 for an example of electrical transport
in solutions containing several electrolytes). For example, in
Ref. 13, a statistical mechanics textbook designed for upper-
level undergraduates and graduate students, Onsager
relations are discussed in the last chapter in the context of
fluctuations, correlation functions, and noise spectra.
Although the discussion is excellent we feel that more con-
crete examples are warranted. Textbook examples with mul-
tiple (and coupled) variables are in short supply, and such
coupled variables are necessary to illustrate the Onsager rela-
tions. Though the general thermodynamic proofs for the
Onsager symmetry relations are compelling, it would still be
instructive to show an explicit example in which the kinetic
coefficients are calculated inside of a very specific model.

Furthermore, it would be instructive to continue such an
example problem by providing some of the key statistical
functions such as the cross-correlation functions and the var-
ious spectral density functions that describe the fluctuations
in the basic variables of the system.

Here, we present a very specific problem that involves
transport of two variables—internal energy and particle
number—in an effusing system. There is only one Onsager
relation for this system and this is the relation we seek to
investigate thoroughly. The goal here is quite direct: after
reviewing the general thermodynamic approach and justifica-
tion for the Onsager symmetry, we present a specific kinetic
gas theory calculation that allows direct calculation of the
Onsager coefficients.

We begin by setting up the Onsager analysis for approach
to equilibrium, specific to the case of effusion of a single-
species monatomic classical ideal gas. In Sec. II, we set up
the basic equilibrium thermodynamics, which is used in
Sec. III to define the conjugate forces which play an impor-
tant role in restoring equilibrium. After defining, in Sec. IV,
the Onsager L matrix that describes the nonequilibrium dy-
namics, we proceed, in Secs. V and VI, to use kinetic gas
theory to explicitly calculate the matrix elements and verify
the single Onsager symmetry. The basic steps for this solu-
tion are sketched out in Ref. 10. Here, we fill in the details
and attempt to explain the physics carefully and avoid confu-
sion. We follow this with example calculations, in Secs. VII
and VIII, for dynamical approaches to equilibrium, which
includes a careful discussion of the stationary states defined
by Prigogine. Before concluding, we calculate the correla-
tion functions (Sec. IX) and spectral density functions
(Sec. X) for this system. The elementary level of treatment
presented here makes this interesting result pedagogically
useful for upper-level undergraduate level courses and grad-
uate level courses in statistical thermodynamics.

II. ENTROPY CHANGE AS A QUADRATIC FORM

Consider two identical chambers, each with fixed volume V
and containing a classical ideal gas of atoms of mass m (see
Fig. 1). The total number of atoms is fixed at 2N0 and the total
energy is fixed at 2U0. Before t¼ 0 the two chambers are iso-
lated, with the left chamber containing NL atoms and the right
chamber containing NR ¼ 2N0 � NL. We assume that the dif-
ference DN � NR � N0 is small (DN � N0), and likewise
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DU � UR � U0 � U0. After t¼ 0, a small aperture is opened
allowing atoms to move between the chambers. The equilib-
rium values for particle number and internal energy in each
chamber are N0 and U0, respectively.

The entropy of a classical ideal gas in equilibrium is given
by the Sackur-Tetrode equation17

S0 ¼ N0kB ln
V

N0

4pmU0

3h2N0

� �3=2
" #

þ 5

2

( )
; (1)

where h is Planck’s constant and kB is Boltzmann’s constant.
In our system the total system entropy is twice this, in equi-
librium. If DN � N0 particles and DU � U0 energy move
into the left side, then the total entropy should be smaller.
The expression for this total entropy is

ST

kB
¼ ðN0þDNÞ

� ln
V

ðN0þDNÞ5=2

4pmðU0þDUÞ
3h2
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þðN0�DNÞ

� ln
V

ðN0�DNÞ5=2
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:

(2)

Standard expansion techniques give ST ¼ 2S0 þ DST ,
where

DST

kB
¼ � 3N0DU2

2U2
0

� 5DN2

2N0

þ 3DNDU

U0

: (3)

We now adopt some conventions of Ref. 10 and define
DS � DST=2; a1 � DU=U0, and a2 � DN=N0. The entropy
change can then be written as a quadratic form

DS ¼ � 1

2
½g11a2

1 þ g22a2
2 þ 2g12a1a2�: (4)

Comparing to Eq. (3) gives g11 ¼ 3N0kB=2; g12 ¼ g21

¼ �3kBN0=2, and g22 ¼ 5kBN0=2. These coefficients can be
expressed as a matrix

G ¼ kBN0

2

3 �3

�3 5

� �
: (5)

The determinant of G, given by det G ¼ 3k2
BN2

0=2, is never
negative, as must be the case since the quadratic form in
Eq. (4) must be non-positive definite in order to give maxi-
mum total entropy in equilibrium. The inverse of G, given by

G�1 ¼ 1

3kBN0

5 3

3 3

� �
; (6)

will be useful below.

III. CONJUGATE FORCES

The expression in Eq. (4) for DS is useful for calculating
the thermodynamic conjugate forces, which play a key role
in restoring equilibrium. To understand the meaning of these
conjugate forces, it is helpful first to think in general of ther-
modynamic conjugate variable pairs such as (P, V), (l, N),
etc. For the discrete system considered here, we might con-
sider what variable would drive the system towards equilib-
rium if, for example, the particle number N is perturbed.
This variable can be loosely thought of as a “force,” though
of course it may not have dimensions of force. This “force”
would lead to a rate of change dN/dt, which we can think of
as a “flux.” Relating “fluxes” to “forces” is the essence of the
approach taken by Onsager, Prigogine, de Groot, etc., in their
descriptions of nonequilibrium dynamics.3,10,11

From our two variables ai then, we evaluate the thermody-
namic conjugate forces as X1 � @ðDSÞ=@a1 and X2 � @ðDSÞ=
@a2. We note that these are not direct derivatives of the en-
tropy as given by the Sackur-Tetrode equation (1). Rather,
they are derivatives of the entropy difference DS. These deriv-
atives work out to be

X1 ¼ �g11a1 � g12a2 ¼
3

2
kBN0½�DU=U0 þ DN=N0�;

(7)

X2 ¼ �g21a1 � g22a2 ¼
3

2
kBN0

�
DU=U0 �

5

3
DN=N0

�
:

(8)

Note that the conjugate forces are zero at equilibrium, analo-
gous to a drag force that depends on velocity in a linear fash-
ion. In vector format,

~X ¼ �G~a: (9)

One would expect the force X1 to be closely related to DT,
the temperature difference between the two chambers.
Similarly, X2 should be closely related to Dl, the difference
in chemical potential. To obtain these relations we proceed
backwards. For a monatomic classical ideal gas, we have
T ¼ 2U0=ð3N0kBÞ, so

DT ¼ @T

@U
DU þ @T

@N
DN; (10)

b1 �
DT

T
¼ a1 � a2: (11)

The chemical potential is given by

Fig. 1. Two identical chambers, each with volume V, labeled as left (L) and

right (R). Between the chambers is a small hole opened at t¼ 0 to allow for

gas effusion.
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l ¼ � 2U0

3N0

ln
V

N0

4pmU0

3N0h2

� �3=2
" #

; (12)

which implies

Dl ¼ @l
@U

DU þ @l
@N

DN; (13)

Dl ¼ l
U0

� 1

N0

� �
DU þ � l

N0

þ 5U0

3N2
0

� �
DN; (14)

b2 �
N0Dl

U0

¼ N0l
U0

� 1

� �
a1 �

N0l
U0

� 5

3

� �
a2: (15)

The bi variables are just as natural to use as the ai variables
and can be expressed in terms of the ai variables using a
transformation matrix T:

~b ¼ T~a ¼
1 �1

N0l=U0 � 1 �N0l=U0 � 5=3

� �
~a:

(16)

Using Eqs. (9) and (16), we note that ~X ¼ �GT�1~b.
At this point, one could decide to use the variables bi

instead of ai, or even combinations such as a1 and b2; this
could be a valuable exercise. We could even choose to use
DP as one of the two basic variables. Indeed, in his analysis
de Groot uses the variables DT and DP.10 Here, we elect to
proceed with the simpler and more direct ai variables and
explain all the steps carefully, for pedagogic reasons.

A. Fluctuations and equilibrium averaging

All of the variables discussed so far are statistical in na-
ture. One therefore proceeds to determine mean values for
these variables, calculated using some averaging procedure
from some probability distribution. One can also calculate
higher moments of the probability distribution. In particular,
the second moments are generally used to quantify the
amount of fluctuation in the given variables. Here, we will
use ensemble averaging, which will be denoted by angle
brackets h � � �i; for example, haii and hXii. Performing the
weighted ensemble averaging will involve considering states
having total entropy values smaller than the equilibrium
value. States with entropy values much smaller than the
equilibrium value would be improbable. The weighting fac-
tor used in equilibrium ensemble averages is expðDS=kBÞ,
which assumes the second law of thermodynamics.10,13,14

The probability of a state lying in the intervals a1 to a1 þ da1

and a2 to a2 þ da2 is then

P da1da2 ¼
expðDS=kBÞ da1da2ð ð

expðDS=kBÞ da1da2

: (17)

This expression is properly normalized so that integration
over all states gives unity. We can directly see that states
with very large values of a1 or a2 will contribute very little
to the sum. Given Eq. (4), we note that the moments of this
probability distribution can be evaluated as Gaussian inte-
grals. One readily verifies that haii0 ¼ 0 in equilibrium,
where the subscript 0 denotes equilibrium averaging. Note
that haii may not be zero when the system is out of

equilibrium. For the second moments, we note that
d ln P=dai ¼ Xi=kB, so

haiXji0 ¼
ð1
�1

ð1
�1

aiXjP da1da2

¼ kB

ð1
�1

ð1
�1

ai
d ln P

daj
P da1da2

¼ kB

ð1
�1

ð1
�1

ai
dP

daj
da1da2; (18)

and integration by parts yields

haiXji0 ¼ �kB

ð1
�1

ð1
�1

dijP da1da2 ¼ �kBdij: (19)

Specifically, ha1X1i0 ¼ ha2X2i0 ¼ �kB and ha1X2i0
¼ ha2X1i0 ¼ 0. Use of Eqs. (6), (9), and (19) allows quick
evaluation of the other second moments:

hXiXji0 ¼ �
X

k

gikakXj ¼ kBgij; (20)

haiaji0 ¼ �
X

k

g�1
ik Xkaj ¼ kBg�1

ij : (21)

Explicitly, then,

ha2
1i0 ¼

ðDUÞ2

U2
0

* +
0

¼ 5

3N0

; (22)

ha2
2i0 ¼

ðDNÞ2

N2
0

* +
0

¼ 1

N0

; (23)

ha1a2i0 ¼
DUDN

U0N0

� �
0

¼ 1

N0

: (24)

IV. APPROACH TO EQUILIBRIUM AND THE

ONSAGER RELATIONS

For systems approaching equilibrium, our goal is to obtain
a set of dynamical equations—differential equations involv-
ing time derivatives. When the deviations from equilibrium
are small enough to allow linear equations, we can use the
conjugate forces to write the desired equations in the follow-
ing form:

da1

dt
� _a1 ¼ L11X1 þ L12X2; (25)

da2

dt
� _a2 ¼ L21X1 þ L22X2: (26)

The linearity of these equations means that the coefficients
Lij are all constant. It is helpful to compare to the single-
variable example of ohmic conduction: _q ¼ GV, where the
potential difference V plays the role of conjugate force and
the conductance G plays the role of the L coefficient. In
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general, the coefficients Lij have interesting properties. One
such property is a consequence of the second law, which
guarantees that the total system entropy production is never
negative.10 The consequence is that the diagonal elements
L11 and L22 cannot be negative. The off-diagonal coefficients
also have interesting symmetry properties, first recognized
by Onsager. In the case of two variables, the Onsager sym-
metry relation is

L12 ¼ L21: (27)

Derivations of Eqs. (25) and (26) can be found in Refs. 10,
13, and 14. Though these discussions vary, they all have in
common the prominent use of the same Boltzmann weight-
ing factor expðDS=kBÞ, as used above.

We point out that the time derivative must be coarse-
grained. This means the time step Dt taken in the discrete
version of the time derivative must be much larger than the
characteristic time scale s* for the random force function
that drives the fluctuations in the system. This time scale is
generally a very fast microscopic quantity. In a gas, s* would
be the mean time between collisions. In order to evaluate a
meaningful derivative, we must smooth over time much lon-
ger than s*. The coarse-grained quantity will be denoted by
an overbar:

_aiðtÞ �
1

Dt

ðtþDt

t

h _aiðt0Þidt0 ¼ haiðtþ DtÞi � haiðtÞi
Dt

; (28)

where Dt� s	. Substituting in Eqs. (25) and (26) gives

aiðtþ DtÞ � aiðtÞ
Dt

¼ Li1X1 þ Li2X2: (29)

We can prove the Onsager relation, Eq. (27), by first mul-
tiplying both sides of Eq. (29) by aj(t) and then performing a
time average over a section of time much longer than s*,
which we denote by the braces {}:

fhajðtÞihaiðtþ DtÞig � fhajðtÞihaiðtÞig
Dt

¼ Li1 hajðtÞihX1ðtÞi
� 	

þ Li2 hhajðtÞiX2ðtÞi
� 	

: (30)

If, for the moment, we make all statistical averages equi-
librium averages, then application of the ergodic theorem
means that ensemble and time averages are the same so
that fajðtÞXkðtÞg ¼ hajðtÞXkðtÞi0 ¼ �kBdjk, using Eq. (19).
Setting i¼ 1, j¼ 2 in Eq. (29) gives

ha2ðtÞa1ðtþ DtÞi0 � ha2ðtÞa1ðtÞi0 ¼ �kBL12Dt; (31)

while setting i¼ 2, j¼ 1 gives

ha1ðtÞa2ðtþ DtÞi0 � ha1ðtÞa2ðtÞi0 ¼ �kBL21Dt: (32)

Invoking microscopic time-reversal symmetry, as we would
expect during collisions between gas atoms, gives
ha1ðtÞa2ðtþ DtÞi0 ¼ ha1ðtÞa2ðt� DtÞi0, which is the same as
ha1ðtþ DtÞa2ðtÞi0 after making the substitution t! tþ Dt.
Equation (32) then becomes

ha1ðtþ DtÞa2ðtÞi0 � ha2ðtÞa1ðtÞi0 ¼ �kBL21Dt: (33)

Comparing Eqs. (31) and (33), we see that both have the
same left-hand sides, so we conclude that L12¼L21. Thus,
we have a general proof for this symmetry relation. This is
the relation that we wish to verify explicitly in this work.

Such direct examples are not common. In fact, the only
other one known to the author is one involving gas flow
when the aperture is much larger than the mean free path. It
is natural for students to have some doubts in accepting very
general arguments. It is always preferable to follow these up
with a concrete example, especially one with an exact solu-
tion. Here, we have such an exact solution from kinetic gas
theory, and we do indeed confirm the Onsager symmetry
relation in Sec. VI.

In order to streamline the notation, from here on the en-
semble averaging brackets h � � �i will be dropped for single
moments and will be kept only for second moments and cor-
relation functions. In vector format, Eqs. (25) and (26) can
be written as

_~a ¼ L~X: (34)

The matrix L, like G, is symmetric. Our goal is to explicitly
determine the matrix L in a specific case and therefore verify
the Onsager symmetry relation.

A. Stationary states and the principle of minimum
entropy production

The conjugate force variables can be easily used to write
down an expression for the rate of total entropy production:

rT �
dST

dt
¼ X1 _a1 þ X2 _a2

¼ L11X2
1 þ L12X1X2 þ L21X1X2 þ L22X2

2: (35)

In order to not violate the second law, this quadratic form
must be non-negative definite. We note that even though the
rates r1 � X1 _a1 and r2 � X2 _a2 may be conceptually helpful
there is no guarantee that each is non-negative definite.
Indeed, one of these rates could be negative while the other
is positive (and the sum rT ¼ r1 þ r2 is non-negative).

Differentiating Eq. (35) with respect to X1 and setting to
zero gives 2L11X1 þ L12X2 þ L21X2 ¼ 0, which is the same
as setting _a1 ¼ 0, after using the Onsager symmetry. The
condition _a1 ¼ 0 defines what Prigogine referred to as a sta-
tionary state. Straightforward calculation shows that the total
rate of entropy production is minimized in such a state. The
basic idea is that for this stationary state, which we label as
Type 1, X2 is held fixed and X1 is varied until rT is mini-
mized. Substituting back into Eq. (35), we obtain rT ¼ r2

¼ L21X1X2 þ L22X2
2 ¼ ½1� L2

12=ðL11L22Þ�L22X2
2. We note

that this rate is indeed smaller than L22X2
2, which is the rate

that would be obtained if variable X1 was set to zero. In our
example, there will be two stationary states, with the other,
Type 2, defined by setting _a2 ¼ 0. For Type 2 states, r2 ¼ 0.

V. EFFUSION ANALYSIS

The Onsager coefficients Lij relate thermodynamic forces
Xi that are calculated using equilibrium thermodynamics, to
the thermodynamic fluxes _ai. We calculate these fluxes using
non-equilibrium effusion analysis, which will allow us to ex-
plicitly calculate the Lij coefficients. An excellent analysis of
the effusion process can be found in Ref. 13, Chapter 7.
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Essentially, the process of particle transfer is random diffu-
sion through the aperture, which is assumed to be much
smaller than the mean free path of the gas atoms. This pro-
cess is also known as Knudsen flow. We briefly review the
analysis that applies standard kinetic theory for a classical
ideal gas. The gas statistics are described by the Maxwell ve-
locity distribution,

f ðvÞ d3~v ¼ n
m

2pkBT

� �3=2

e�mv2=ð2kBTÞ d3~v: (36)

The flux UN of particles from the left side to the right side
is obtained by integrating the velocity distribution over a
hemisphere (solid angle of 2p steradians) with the z-axis
aligned perpendicular to the aperture:

UN ¼
ð

vz > 0

d3~v f ðvÞvz ¼
ð

vz > 0

dv dX v2f ðvÞv cos h:

(37)

In terms of the polar angle h and azimuthal angle /, we
have

UN ¼
ð1

0

dv
ðp=2

0

dh
ð2p

0

d/ v3sin h cos h f ðvÞ

¼ p
ð1

0

dv v3 f ðvÞ

¼ 1

4
n�v ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
N0U0

p

V
ffiffiffiffiffiffiffiffiffi
3pm
p ; (38)

where we have made use of the ideal gas equation
PV ¼ N0kBT ¼ 2U0=3, and �v is the mean particle speed. We
note that the

ffiffiffiffi
m
p

factor in the denominator implies
Graham’s law. For an aperture area of pr2, the time rate of
particle increase is

_N ¼ �pr2DUN ¼ �pr2 @UN

@U
DU þ @UN

@N
DN

� �

¼ � 1

2
pr2UN½a1 þ a2�: (39)

Note that the use of just first derivatives implies a purely lin-
ear result, which is fully consistent with the linear thermody-
namic approach summarized by Eq. (34).

A. Energy flux

Since each effusing particle carries along an energy mv2/2,
the energy flux from the left side to the right side is

UU ¼
ð

vz > 0

d3~v f ðvÞ 1
2

mv2vz ¼
pm

2

ð1
0

dv v5f ðvÞ

¼ 2kBTUN : (40)

We note that the ratio UU/UN is not the mean particle energy
3kBT=2. Each of the two spatial components parallel to the
aperture contributes kBT=2 of energy, but the perpendicular
component contributes twice as much, giving 2kBT. For effu-
sion, the perpendicular component is favored and has greater
weight in the flux integral. Using U0 ¼ 3N0kBT=2 and elimi-
nating UN, we have

UU ¼
4U0

3N0

UN ¼
4U

3=2
0 N

�1=2
0

3V
ffiffiffiffiffiffiffiffiffi
3pm
p : (41)

The rate of change of internal energy is given by

_U ¼ �pr2DUU ¼ �pr2 @UU

@U
DU þ @UU

@N
DN

� �

¼ � 1

2
pr2UU½3a1 � a2�: (42)

Dividing both sides by U0 gives

_a1 ¼ �
pr2UN

N0

� �
2

3
½3a1 � a2�: (43)

In matrix form, the effusion dynamics is described by

_~a ¼ A~a ; (44)

where

A ¼ � pr2UN

N0

� �
2 �2=3

1=2 1=2

� �
: (45)

At this point, we define the characteristic timescale for this
system as

s0 ¼
N0

pr2UN
¼ V

pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pmN0

U0

r
: (46)

We note that when comparing the diagonal matrix ele-
ments, A11 being greater in magnitude than A22, that the
energy transfer process is inherently faster than the particle
transfer. This will reveal itself below in the diagonalization
of this matrix.

VI. CONNECTING THERMODYNAMICS TO

KINETICS

Summarizing our results so far, we have one matrix G that
relates Xi to ai using an ideal gas statistical thermodynamic
model; another matrix L that relates _ai to Xi using general
thermodynamical arguments; and a final matrix A that relates
_ai to ai using the kinetic theory of gases. All of these
approaches produce results at linear order. Comparing Eqs.
(9), (34), and (44), we see that A¼�LG. This will allow us
to directly calculate the L matrix so we can verify the
Onsager relation L12¼ L21. Solving for L then given

L ¼ �AG�1; (47)

so that

L ¼ 1

3kBN0s0

� �
8 4

4 3

� �
: (48)

We do indeed recover the expected result:

L12 ¼ L21 ¼
4

3kBN0s0

: (49)

This is the main result we were aiming for. We also
readily verify that the diagonal elements of the L matrix are
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non-negative and that the determinant of L is positive, as
demanded to ensure thermodynamic stability. In particular,
L2

12=ðL11L22Þ ¼ 2=3 and 1� L2
12=ðL11L22Þ ¼ 1=3. In what

follows we strive to elucidate some of the general features of
nonequilibrium thermodynamics (i.e., not thermostatics)
using this specific effusion example.

VII. DIAGONALIZATION OF A: TWO TIMESCALES

Solving the eigenvalue equation for the matrix A will allow
us to solve Eq. (44) and obtain solutions for initial value prob-
lems, as well as for the various correlation functions. From
here on we express A in units of pr2UN=N0 ¼ 1=s0, L in units
of pr2UN=ð3kBN2

0Þ, and G in units of kBN0=2.
The characteristic polynomial is 4=3þ 5ks0=2þ ðks0Þ2,

which produces two real, negative eigenvalues. We note that
the dynamical equation can also be expressed as
_~X ¼ GAG�1~X, and that this produces the same eigenvalues.

The smaller-magnitude eigenvalue, labeled ks, results in
slower dynamics and is given by kss0 ¼ �5=4þ

ffiffiffiffiffi
33
p

=12

 �0:77129. Similarly, the fast eigenvalue is given by kf s0

¼ �5=4�
ffiffiffiffiffi
33
p

=12 
 �1:72871, approximately 2.241 times
larger.

Because the matrix A is not symmetric, the eigenvectors
are not orthogonal. Explicitly:

~vf ¼ ð9þ
ffiffiffiffiffi
33
p
Þ=6

1

� �

 2:45743

1

� �
; (50)

~vs ¼ ð9�
ffiffiffiffiffi
33
p
Þ=6

1

� �

 0:542573

1

� �
; (51)

~vf ðtÞ 

2:45743

1

� �
e�1:72871t=s0 ; (52)

~vsðtÞ 

0:542573

1

� �
e�0:77129t=s0 : (53)

The vectors~vf ðtÞ and~vsðtÞ are independent solutions to Eq.
(44). We note that~vf has more weight in the a1 variable than
in a2. Likewise, the slow eigenvector has more weight in a2

than in a1. Even though these vectors are both mixtures, we
conclude that for this system the energy transfer is a faster
process than straight particle transfer.

If the system is initially prepared in a state so that the ini-
tial values a1 and a2 form a vector ~a proportional to~vf , then
both DU and DN will decay with only one timescale (the fast
one). This is illustrated in Fig. 2 (solid curves), along with
the solutions where ~að0Þ is proportional to the slow eigen-
vector (dashed curves). In order to assist with solution of ini-
tial value problems, we define a fundamental matrix W using
the two eigenvectors as columns

WðtÞ ¼ ð~vf ðtÞ ~vsðtÞÞ

¼ 2:45743 ekf t 0:542573 ekst

ekf t ekst

� �
: (54)

The same eigenvectors can be used to write general solu-
tions to the initial value problem, given a1(0) and a2(0), so
that

~aðtÞ ¼ UðtÞ~að0Þ; (55)

where

UðtÞ � WðtÞW�1ð0Þ

¼
2:45743 ekf t 0:542573 ekst

ekf t ekst

 !

�
0:522233 �0:28335

�0:522233 1:28335

 !
(56)

is the special fundamental matrix, which equals the identity
matrix at t¼ 0.18 Explicitly, the elements of U are

U11ðtÞ ¼ 1:28335 ekf t � 0:28335 ekst; (57)

U12ðtÞ ¼ �0:69631 ekf t þ 0:69631 ekst; (58)

U21ðtÞ ¼ 0:522233 ekf t � 0:522233 ekst; (59)

U22ðtÞ ¼ �0:28335 ekf t þ 1:28335 ekst; (60)

and the components of Eq. (55) are

a1ðtÞ ¼ U11ðtÞ a1ð0Þ þU12ðtÞ a2ð0Þ
¼ ½1:28335 ekf t � 0:28335 ekst�a1ð0Þ
þ ½�0:69631 ekf t þ 0:69631 ekst�a2ð0Þ; (61)

a2ðtÞ ¼ U21ðtÞ a1ð0Þ þU22ðtÞ a2ð0Þ
¼ ½0:522233 ekf t � 0:522233 ekst�a1ð0Þ
þ ½�0:28335 ekf t þ 1:28335 ekst�a2ð0Þ: (62)

VIII. INITIAL VALUE EXAMPLE PROBLEMS

Below, we consider three interesting examples, all of
which involve time evolution involving the two time scales.
The predictions from these three examples could be tested
experimentally, using standard pressure gauges, pumps, and

Fig. 2. Semi-log plots of transient response functions for the effusing system

when initially prepared in either of the two eigenvectors. Solid (dashed)

curves correspond to the fast (slow) eigenstate, with thin curves plotting

a1(t) and thick curves plotting a2(t). The time scale is in units of s0 as given

in Eq. (46).
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vacuum fittings.19 Preferably, one would have two identical
vacuum chambers each filled to specified pressures with a
monatomic gas, such as argon, and equipped with valves to
isolate each chamber after filling. The aperture connecting
the two chambers would be constructed using a precision
variable leak valve, as commonly used in surface science
studies.20

A. Problem 1: DN 5 0 initially

With a2(0)¼ 0 we substitute ~að0Þ ¼ ð1; 0Þ into Eq. (55);
the solutions are plotted in Fig. 3. Physically this system
could be set up by making sure both chambers start with the
same number of atoms. Before t¼ 0 the right chamber is
warmed up relative to the left chamber (aperture closed).
When the aperture is opened at t¼ 0, there will be a net flow
of particles from right to left (so _a2 < 0) because the par-
ticles on the right have on average higher speeds. This takes
DN away from its equilibrium value of zero. These effusing
atoms carry energy, so a1 decreases (rapidly). At some point
DN gets large enough, and DU gets small enough, that we
reach a stationary state where _a2 becomes zero. From
Eqs. (44) and (45), we see that this stationary state occurs
when a1¼�a2. The stationary state lasts only momentarily,
after which a1, the energy variable, actually overshoots the
equilibrium value. This overshoot is consistent with our
assertion earlier that the energy transfer is fast compared to
pure particle transfer. Soon after the overshoot, the system
achieves a second stationary state, Type 1 this time, where
a2¼ 3a1. A negative value of a1¼�0.024 is achieved at
t¼ 2.40. Afterwards, both variables approach equilibrium
values (mostly at the slower timescale).

We see in Fig. 3 that the two conjugate forces are both
monotonic functions of time. In order to better understand
these forces, it helps to look at the entropy production, which
is plotted in Fig. 4. The rate r1 begins with positive values,
as one might expect, since the variable a1 was set away from
zero initially. The inter-variable coupling causes a2 to get

pushed away from zero. Focusing on variable 2 only, the par-
tial entropy decreases (see the thin solid curve). This would
seem to make sense: for a single-variable system entropy is
maximized at equilibrium, so pushing the system away from
equilibrium would leave it with less entropy. However, here
the two variables are coupled so we must be careful, as we
will see in the next problem. There is no violation of the sec-
ond law because the total entropy (dashed curve) continues
to increase. We note that each chamber contributes equally
to this total rate of entropy production. The rate r2 remains
negative until the Type 2 stationary state is attained; after
that r2> 0. At t 
 2.40 s, the Type 1 stationary state is
attained. Subsequently, the entropy associated with variable
1 decreases due to the overshoot of a1. Thus, we have the
interesting result that there are times during which each par-
tial entropy production rate (for each variable) is negative.

B. Problem 2: DU 5 0 initially

If we set the two chambers to initially contain the same
amount of energy and make the right side contain more par-
ticles than the left side, then this situation can be described by
the initial condition a1(0)¼ 0. The solutions for a1(t) and a2(t)
for this scenario are shown in Fig. 5. We see that the energy
and particle number variables are again coupled. The particle
number variable a2 responds by approaching equilibrium
monotonically. In order to satisfy our initial conditions, the
temperature of the left chamber must start off higher than the
right one. This results in energy flow towards the right cham-
ber. There are particles flowing in both directions with more
are moving from right to left, but the back-flowing particles
each carry more energy making the net energy flow in the
direction opposite to the net particle flow. This is the physical
understanding for the sign of the A12 matrix component in
Eq. (45). A Type-1 stationary state is achieved at t¼ 0.84s0.
Again, we see the presence of the two distinct time scales.
Variable a1 responds quickly at first, but subsequently, both

Fig. 3. Transient response functions with initial condition a2(0)¼ 0. Solid

curves represent the variables a1 (thick) and a2 (thin), while dashed curves

represent X1 (thick) and X2 (thin). In this case, the solutions exhibit two

stationary states: a Type-2 state at t¼ 0.84 where a2¼�a1, and a Type-1

state at t¼ 2.40 where a2¼ 3a1. The time scale is in units of s0 as given in

Eq. (46).

Fig. 4. Entropy production rates with initial condition a2(0)¼ 0. Thick (thin)

solid curves represent r1 (r2), while the total rate of entropy production is

plotted as a dashed curve. Though it is difficult to make out, the thick solid

curve for r1 does become negative after 
 2.40 s (SS1) and stays negative

after that. The time scale is in units of s0 as given in Eq. (46).
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variables decay to equilibrium at the slower timescale, remi-
niscent of a highly over-damped harmonic oscillator.

We point out some interesting physics pertaining to en-
tropy production in this problem. Even though in this case
variable a1 gets pushed away from equilibrium immediately
after t¼ 0, the entropy production r1 is actually positive (see
Fig. 6), in contrast to what happened to variable a2 in
Problem 1 above. One has to be careful and look at the signs
of X1 and _a1 before deciding whether r1 is positive or nega-
tive. One also has to always remember that the two variables
a1 and a2 are coupled. After passing t¼ 0.84s0, the rate r1

becomes negative and stays negative for all later times (with
rT> 0 throughout).

C. Problem 3: DT 5 0, DN 6¼ 0 initially

We consider one last case where before opening the aper-
ture, both chambers are held at the same temperature, but the
right chamber is held at higher pressure. This makes
DN(0)> 0 as well as DU(0)> 0. The precise initial ratio of
a1 to a2 is determined by differentiating U¼ 3NkBT/2:

dU ¼ 3

2
NkBdT þ 3

2
kBTdN: (63)

With dT set to zero, we obtain

a1ð0Þ ¼
DU

U
¼ DN

N
¼ a2ð0Þ: (64)

Figure 7 shows the results when the initial state vector ~að0Þ is
set to (1,1). We see the energy variable responding more
quickly at first, as expected from the above discussion. Though
both variables decay monotonically, we clearly see the pres-
ence of two timescales. We note that one might be tempted to
solve this initial value problem with just one time scale, using
an approach focused on particle transfer and ignoring energy
transfer. The time scale would be 2s0, obtained from the 2, 2
element of the matrix in Eq. (45). As we have shown, however,
the variables DN and DU are coupled, which means it is incor-
rect to ignore the effusion of energy. The actual approach to
equilibrium is substantially faster than for the incorrect solu-
tion (see the thin short-dash curve for the incorrect plot of
aINC). These problems are tricky! See Ref. 13, Problem 7.28,
and the solution in Ref. 21 for an example of precisely this
error. Even though the solutions for a1 and a2 seem straightfor-
ward, we see in Fig. 8 that the rate of entropy production for a1

is never positive for this solution.

D. Assessment of the stationary state concept

After analyzing three examples of stationary states, we
must question their usefulness in the context of this effusion
problem. These states are supposed to be helpful in regards
to Prigogine’s minimum entropy production principle. To

Fig. 5. Transient response functions with initial condition a1(0)¼ 0. Solid

curves represent the variables a1 (thick) and a2 (thin), while dashed curves rep-

resent X1 (thick) and X2 (thin). The solutions exhibit a Type-1 stationary state

at t 
 0.84 where a2¼ 3a1. The time scale is in units of s0 as given in Eq. (46).

Fig. 6. Entropy production rates with initial condition a1(0)¼ 0. Thick

(thin) solid curves represent r1 (r2), while the total rate of entropy produc-

tion is plotted as a dashed curve. The time scale is in units of s0 as given in

Eq. (46).

Fig. 7. Transient response functions with initial condition a1(0)¼ a2(0).

Solid curves represent the variables a1 (thick) and a2 (thin), while dashed

curves represent X1 (thick) and X2 (thin). No stationary states are found in

these solutions. The time scale is in units of s0 as given in Eq. (46).
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reiterate, one holds one X variable constant and varies the
other until rT is minimized. However, this does not apply
in these examples because both X variables vary with time.
One simply cannot hold X1 constant and allow X2 to vary
(or vice-versa). The precise condition for a stationary state
holds only momentarily, and in this sense the description
“stationary” does not seem apt. It is true that at these
moments in time, one of the partial rates of entropy produc-
tion ri is zero, and the slope of ai(t) vs. t is zero. However,
nothing else seems to be special about these stationary states.
Certainly, the total rate of entropy production rT(t) is not
minimized with respect to time at these points and does not
seem to display any interesting behavior (with respect to
time) at these points.

We don’t rule out the usefulness of the stationary state con-
cept in general. In particular, for a two-variable system, we
propose that the concept may be quite helpful in the case
where the two time scales (from the diagonalization of A) are
very disparate, i.e., one very slow and one very fast. If the ini-
tial conditions set the slow variable away from equilibrium
with the fast one initially having a value of zero, then the fast
variable would respond quickly at first and would (quickly)
attain an almost stationary nonzero value for a long time. As
far as the fast variable is concerned this quasi-stationary state
would be sustained for a long time. In this case, a sustained
condition of minimal entropy production should be interest-
ing, and identifying the quasi-stationary states would be useful
towards better understanding the system.

Returning to our effusing system, we note that the ratio
of the two time scales is not adjustable, having the fixed
value of 2.241. Thus, the stationary state concept is not
worth the trouble for this work, and quite frankly, may cre-
ate some confusion by having a misleading name. Before
moving on we note that Prigogine’s principle of minimum
entropy production remains controversial in the literature,
with maximum entropy production principles also vying for
prominence. For a recent account of this active area of
research, see the interview of Swenson in Ref. 22 and refer-
ences within.

IX. CORRELATION FUNCTIONS

We can also use the special fundamental matrix to deter-
mine correlation functions. These basic statistical functions
are useful in describing how a variable reacts to a stimulus
that pushes the system slightly away from equilibrium (such
as a significantly large, and rare, fluctuation). They can also
be used to quantify the amount of fluctuation in a variable.
For shorthand, we define

Kaiaj
ðsÞ � haiðtþ sÞajðtÞi0: (65)

That the correlation functions are independent of t is a result
of the ensemble averaging being over equilibrium states
only. Using the same arguments (invoking time reversal
symmetry) as we did above when proving L12¼L21, we can
show that Kaiaj

ð�sÞ ¼ Kaiaj
ðsÞ and Kaiaj

ðsÞ ¼ Kajai
ðsÞ. Thus,

the correlation functions Kaiai
ðsÞ are even in s and the

cross-correlation matrix is symmetric.
In order to calculate these correlation functions, we begin

by rewriting Eq. (44) as

_a1ðtÞ
_a2ðtÞ

� �
¼ � pr2UN

6N0

� �
12 �4

3 3

� �
a1ðtÞ
a2ðtÞ

� �
: (66)

Next, we follow a procedure similar to that found in Ref. 13,
p. 576, where a single-variable system is treated. We adapt
that procedure to the two-variable case here. We multiply
both sides of Eq. (66) by a1(0) and then perform equilibrium
ensemble averaging. We find that Eq. (66) holds for the cor-
relation functions ha1ðtÞa1ð0Þi0 and ha2ðtÞa1ð0Þi0 as well.
Recalling that the special fundamental matrix is used to
solve initial value problems, Eq. (55) gets modified to
become

ha1ðsÞa1ð0Þi0
ha2ðsÞa1ð0Þi0

� �
¼ UðsÞ

ha1ð0Þa1ð0Þi0
ha1ð0Þa2ð0Þi0

� �

¼ UðsÞ
5=ð3N0Þ

1=N0

� �
; (67)

valid for s� 0. Using Eqs. (22) and (24) then gives

Ka1a1
ðsÞ

Ka2a1
ðsÞ

� �
¼ UðsÞ

5=ð3N0Þ
1=N0

� �
; (68)

and similarly

Ka1a2
ðsÞ

Ka2a2
ðsÞ

� �
¼
ha1ðsÞa2ð0Þi0
ha2ðsÞa2ð0Þi0

� �
¼ UðsÞ

1=N0

1=N0

� �
:

(69)

Setting s¼ 0 gives the following important results:

ha1ð0Þa1ð0Þi0 � ha2
1i0 ¼ Ka1a1ð0Þ ¼

5

3N0

; (70)

ha1a2i0 ¼ ha2a1i0 ¼ Ka1a2ð0Þ ¼
1

N0

; (71)

ha2
2i0 ¼ Ka2a2ð0Þ ¼

1

N0

: (72)

The root-mean-square values of a1 and a2 are given by

Fig. 8. Entropy production rates with initial condition a1(0)¼ a2(0). Thick

(thin) solid curves represent r1 (r2), while the total rate of entropy produc-

tion is plotted as a dashed curve. The time scale is in units of s0 as given in

Eq. (46).
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a1rms �
ffiffiffiffiffiffiffiffiffiffi
ha2

1i0
q

¼

ffiffiffiffiffiffiffiffi
5

3N0

s
; (73)

a2rms �
ffiffiffiffiffiffiffiffiffiffi
ha2

2i0
q

¼ 1ffiffiffiffiffiffi
N0

p : (74)

Thus, we can quantify the total amount of fluctuation in our
variables. We also verify that these rms quantities scale as
N
�1=2
0 , so that in the thermodynamic limit (N0 !1) relative

fluctuations disappear.
Returning to the case s> 0, if we combine Eq. (69) with

Eqs. (61) and (62) we obtain

Ka1a1
ðsÞ ¼ U11ðtÞ

5

3N0

þU12ðsÞ
1

N0

¼ ½1:28335 ekf s � 0:28335 ekss� 5

3N0

þ ½�0:69631 ekf s þ 0:69631 ekss� 1

N0

¼ 1:44261
ekf s

N0

þ 0:22406
ekss

N0

; (75)

Ka1a2
ðsÞ ¼ U11ðtÞ

1

N0

þU12ðsÞ
1

N0

¼ ½1:28335 ekf s � 0:28335 ekss� 1

N0

þ ½�0:69631 ekf s þ 0:69631 ekss� 1

N0

¼ 0:58704
ekf s

N0

þ 0:41296
ekss

N0

; (76)

Ka2a1
ðsÞ ¼ U21ðtÞ

5

3N0

þU22ðsÞ
1

N0

¼ ½0:522233 ekf s � 0:522233 ekss� 5

3N0

þ ½�0:28335 ekf s þ 1:28335ekss� 1

N0

¼ 0:58704
ekf s

N0

þ 0:41296
ekss

N0

¼ Ka1a2
ðsÞ;

(77)

Ka2a2
ðsÞ ¼ U21ðtÞ

1

N0

þU22ðsÞ
1

N0

¼ ½0:522233 ekf s � 0:522233 ekss� 1

N0

þ ½�0:28335 ekf s þ 1:28335 ekss� 1

N0

¼ 0:23888
ekf s

N0

þ 0:76112
ekss

N0

: (78)

The correlation functions are easily calculated numerically
and are displayed in Fig. 9. We have also verified the expected
result that ha2ðtÞa1ð0Þi0 ¼ ha1ðtÞa2ð0Þi0. Knowledge of corre-
lation functions can be used to obtain noise spectra for varia-
bles such as pressure, chemical potential, etc., using Fourier
transformation.

X. FOURIER ANALYSIS

The Fourier transforms of the correlation functions are
given by

JijðxÞ �
1

2p

ð1
�1

Kaiaj
ðsÞ e�ixsds; (79)

with inverse transforms

Kaiaj
ðsÞ ¼

ð1
�1

JijðxÞ eixsdx: (80)

These Wiener-Khintchine relations relate the correlation func-
tions to the spectral densities Jij. Making use of the relations
K	aiaj
ðsÞ ¼ Kaiaj

ðsÞ (real functions) and Kaiaj
ð�sÞ ¼ Kaiaj

ðsÞ
gives the following relations for the spectral densities:

J	ijðxÞ ¼ JijðxÞ; (81)

Jijð�xÞ ¼ JijðxÞ; (82)

i.e., these spectral density functions are also real-valued and
even functions of x. It suffices to calculate and plot these
functions on the positive real axis. We can re-express
Eq. (79) as

JijðxÞ ¼
1

p

ð1
0

KaiajðsÞcos xs ds: (83)

These functions can be evaluated explicitly using Eqs.
(75), (76), and (78) to give

J11ðxÞ ¼
1

p

ð1
0

Ka1a1
ðsÞcos xs ds

¼ 1:44261

N0p

ð1
0

ekf s cos xs ds

þ 0:22406

N0p

ð1
0

ekss cos xs ds

¼ 1:44261

N0p
kf

k2
f þ x2

þ 0:22406

N0p
ks

k2
s þ x2

; (84)

Fig. 9. Correlation functions ha1ðtÞa1ð0Þi0 (thick solid curve), ha2ðtÞa1ð0Þi0
(thin solid curve), and ha2ðtÞa2ð0Þi0 (dashed curve). Apart from being nor-

malized by N0, these functions are presented on actual scales. The time scale

is in units of 6s0 with s0 given in Eq. (46).
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J21ðxÞ ¼ J12ðxÞ ¼
1

p

ð1
0

Ka1a2
ðsÞ cos xs ds

¼ 0:58704

N0p
kf

k2
f þ x2

þ 0:41296

N0p
ks

k2
s þ x2

; (85)

J22ðxÞ ¼
1

p

ð1
0

Ka2a2
ðsÞ cos xs ds

¼ 0:23888

N0p
kf

k2
f þ x2

þ 0:76112

N0p
ks

k2
s þ x2

: (86)

These functions are plotted in Fig. 10. We can interpret these
functions as representing the amount of fluctuation, or noise, at
a given frequency and within a narrow bandwidth. Though
each of these functions has two cutoff frequencies, the frequen-
cies are close enough together that a clear double-step shape to
these curves is not observed. All of these functions fall off at
high frequencies. We note that the noise in the energy variable
a1 goes out to larger frequencies than the noise in the particle
number variable a2. This is consistent with the energy transfer
process being somewhat faster than the particle transfer.

The areas under these curves are related to the correlation
functions by Eq. (80); setting s¼ 0 givesð1

0

JijðxÞ dx ¼ 1

2
Kaiaj
ð0Þ; (87)

with values given by Eqs. (70)–(72).
Direct observation of these fluctuations in the readings

from a standard pressure gauge on a typical-size vacuum
chamber (say 50 l) near atmospheric pressure will likely be
difficult. One might consider making the chambers as small
as possible and conduct the experiments at lower pressures,
i.e., make N0 small.

XI. CONCLUSIONS

After briefly reviewing the nonequilibrium formalism for
the Onsager symmetry relations and the linear equations for

the approach to equilibrium, we have discussed in detail the
kinematics of the effusion process. By linking the basic
thermodynamics to the specific ideal gas kinetics, we ex-
plicitly verified the Onsager symmetry that we set out to
test. This gives students of nonequilibrium thermodynamics
a concrete example to supplement the general thermody-
namic proofs available for the Onsager symmetry relations.
Following this, we continued with example calculations for
initial condition dynamics. These examples led to a frank
assessment of the usefulness of Prigogine’s stationary
states. While the assessment is mostly negative, some
insights are gained into how some systems with highly dis-
parate timescales may benefit greatly from the stationary-
state analysis. This discussion was followed by calculations
for the correlation functions and noise spectral functions
for this system. Example calculations of correlation func-
tions and spectral densities for multi-variable systems are
often left out of textbooks on this subject, so inclusion
of these calculations is also beneficial for pedagogical
reasons.

Also included was some brief discussions about how to
experimentally test these results using standard vacuum tech-
nology. These calculations could be used to help understand
and better design precision variable-leak valves used in
many vacuum systems. It is hoped that the calculations
discussed here will be beneficial to students of statistical
mechanics and non-equilibrium thermodynamics. Additional
exercises for students could be designed by using variables
transformed away from the ones used here, such as can be
found from diagonalizing the G matrix. Further example
problems that verify the Onsager symmetry relations could
be developed by looking into non-ideal gases and quantum
gases (obeying either Fermi or Bose statistics) as well as
looking into particle transfer processes other than effusion.
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