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Semiclassical calculations of self-broadening and self-induced pressure shift coefficients in the �1þ �2þ �4þ �5
band of C2H2 have been performed by considering, in addition to the main electrostatic quadrupole–quadrupole
interaction, a simple anisotropic dispersion contribution, leading to results in overall satisfactory agreement with
recent measurements [C. Povey, A. Predoi-Cross and D.R. Hurtmans, J. Mol. Spectrosc., 268, 177 (2011)]. In
these calculations we have used the mean relative velocity and also considered the Maxwell–Boltzmann
distribution of relative velocities. From the theoretical results obtained at different temperatures ranging from
200 to 350K, we have determined temperature exponents of the broadenings using a simple power law, as well as
coefficients of empirical linear and quadratic temperature dependences for the line shifts. These theoretical
exponents and linear coefficients, derived from averaging over the distribution of velocities and from the mean
thermal velocity, are significantly different and they are compared with those obtained from measurements of
broadening coefficients and line shifts performed in a comparable temperature range [C. Povey, A. Predoi-Cross
and D.R. Hurtmans, J. Mol. Spectrosc., 268, 177 (2011)]. The theoretical variation of the self-shifts with
temperature is not linear and can be well fitted by a quadratic polynomial.

Keywords: semiclassical calculations; acetylene; spectral line shapes; pressure broadening; pressure-induced shifts

1. Introduction

Acetylene is a minor constituent of the Earth’s
atmosphere [2], as well as the planetary atmospheres
of Jupiter [3], Saturn [4], Mars [5] and Titan [6]. It has
been the subject of several spectroscopic studies, with
emphasis on collisional broadening with rare gases
[7–10], H2 or HD [11–13], N2 and O2 [14–17]. The
self-broadening coefficients of C2H2 lines have been
studied experimentally and/or theoretically in different
absorption bands: �5 [17–19], �4þ �5 [20, 21], 2�4þ �5
and 3�5 [20], �1þ �5 [22], �1þ 3�3 [23–25], �1þ �3
[26–28], 5�3 [28,29]. The values for self-broadened
and pressure-induced shift coefficients have been
measured recently over a range of temperatures for
transitions with rotational quantum number m ranging

between 1 and 20 in the �1þ �2þ �4þ �5 band of C2H2

[1]. To our knowledge, no such measurements of
broadening coefficients and line shifts have previously
been reported on this combination band. The spectra
were recorded with a three-channel laser spectrometer
located at the University of Lethbridge. The analysis
was performed using a multispectrum nonlinear
least-squares technique. We have compared our results
with similar measurements published recently.

The experimental conditions of the spectra, analysis

procedures and results are given in Ref. [1] and will not

be discussed in this paper. For completeness and

convenience, a few critical equations from the preced-

ing paper are reconsidered.
In this study we report theoretical results of

self-broadening and pressure shift coefficients and

their temperature dependences for lines in the

�1þ �2þ �4þ �5 band of C2H2. Semiclassical calcula-

tions of these coefficients have been performed using

the Robert–Bonamy formalism [30]. Because of the

specificities of C2H2 interactions, we have only

considered, in addition to the strong quadrupole–

quadrupole electrostatic potential, a simple anisotropic

dispersion contribution with one adjustable parameter.

The calculations of self-broadening coefficients at

room temperature are similar to those reported in

Refs. [18,21] using the mean thermal velocity, but the

results have also been obtained from the Maxwell–

Boltzmann distribution of velocities. The self-broad-

ening coefficients and self-induced line shifts at 296K

are first compared with experimental results for the

R-branch of the �1þ �2þ �4þ �5 band of C2H2 [1].

Then, they are calculated at four temperatures
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(200, 250, 300 and 350K) and are also compared with
those derived from experimental data in the tempera-
ture range 213–333K and extrapolated at these four
temperatures, using the room temperature parameters
and their temperature dependencies reported in Ref.
[1]. The temperature dependence of the broadening
coefficients is deduced from a simple power law,
whereas an empirical linear as well as a quadratic
temperature dependence are assumed for the
self-induced line shifts.

The general formulation of the semiclassical for-
malism and the energy potential considered have been
described previously [31,21] and are briefly presented
in Section 2. The theoretical results at four tempera-
tures ranging from 200 to 350K are displayed and
compared with experimental data [1] in Section 3.
From these results we have derived in Section 4 the
temperature exponents of the self-broadening
coefficients as well as temperature coefficients of the
line shifts, which are finally compared with
experimental evaluations.

2. Theoretical model for self-broadening and

pressure-induced shift coefficients

2.1. General formulation

The pressure broadened half-width �if and pressure-
induced line shift �if of an isolated i! f line (viJi! vfJf)
may be expressed as the real and imaginary parts of a
complex cross-section �if,

�if ¼
n �v

2�c
Re �if, �if ¼

n �v

2�c
Im �if, ð1Þ

where n is the number density of perturbing molecules
and �v the average relative velocity. �if is a weighted sum
of the cross-sections for each initial rotational state J2
of the perturber. Within the semiclassical frame and
considering the Maxwell–Boltzmann distribution of
velocities [32], �if is usually expressed in terms of the
average over all trajectories as

�if ¼

Z 1
0

x e�xdx
X
J2

�J2

Z 1
0

2�bSif ðb, x, J2Þdb, ð2Þ

where x¼ [E/(kBT )]1/2¼ v/vp, E is the initial relative
kinetic energy, v the relative velocity and vp the most
probable relative velocity [vp¼ (2kBT/m)1/2, m is the
reduced mass of the colliding partners]; �J2 is the
relative population distribution in the |J2, v2¼ 0i state
of the perturber, including the nuclear spin factor
ð�1ÞJ2þ1 þ 2; Sif is the complex differential cross-
section representing the collisional efficiency and b is
the impact parameter. In the Robert–Bonamy

formalism [30], S(b) is expressed in terms of S1(b)
and S2(b), respectively the first- and second-order
terms in the expansion of the scattering matrix,

SðbÞ ¼ 1� e�S2ðbÞe�iS1ðbÞ: ð3Þ

S1(b) (real) is a vibrational dephasing arising from the
difference of the isotropic part of the potential in the
upper and lower vibrational states of the transition.
S2(b) is complex [S2ðbÞ � ReS2ðbÞ þ i ImS2ðbÞ] and
results from the anisotropic part of the potential. The
expressions of S1(b) and S2(b) in terms of the
intermolecular potential may be found in Ref. [30].

For the description of the trajectories where long-
range forces dominate, we used an equivalent straight
path trajectory [33] around the distance of closest
approach rc, calculated from the isotropic part of the
potential, taken as a Lennard–Jones potential.

2.2. The C2H2–C2H2 system

Because of the C2H2 symmetry, the self-broadening
coefficient has a dominant quadrupole–quadrupole
contribution. Therefore, the anisotropic potential gen-
erally used in the calculations has been generally
limited to this interaction in which we have added a
simple dispersion contribution [18] according to

Vaniso ¼ VQ1Q2
� 4"A2ð�=rÞ

6P2ðcos �Þ, ð4Þ

where the indices 1 and 2 refer to the absorber and the
perturber, Q is the quadrupole of C2H2, A2 is an
adjustable effective parameter, P2 is the second-order
Legendre polynomial and � is the angle between the
C2H2 axis and the intermolecular axis. It should be
noted that A2 is often taken as �1, the reduced
anisotropic component of the polarizability of the
absorber [34]. Note that the short-range interaction in
R2r

–12 of the Tipping–Herman potential [34] provides a
negligible contribution even at high m values and has
not been considered in this study. Moreover, the same
angular dependence assumed for the attractive and
repulsive parts of this potential leads to a negative
cross-term contribution from A2R2 [34] which has a
comparable influence in S2(b) to the positive contri-
bution from R2

2. The contribution of the hexadecapole
moment � has also been estimated by considering the
total anisotropic potential

Vaniso ¼ VQ1Q2
þ VQ1�2

þ V�1Q2
þ V�1�2

� 4"A2ð�=rÞ
6P2ðcos �Þ: ð5Þ

In the calculation of line shifts, as well as the (weak)
vibrational dependence of the self-broadenings, we
consider only the vibrational dependence of the
isotropic part of the potential Viso which is, to our
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knowledge, not available for any vibrational motion of

C2H2. By assuming that Viso is described by a 6–12

Lennard–Jones (LJ) model such as

Viso ¼
C12

r12
�
C6

r6
, with C12 ¼ 4"�12 and C6 ¼ 4"�6,

ð6Þ

the vibrational dephasing contribution is obtained

from [31,35,36]

Siso
1 ¼

3

2

DC6

C6

�"�

�hv0c
�

�

rc

� �5

þ
21

32

�

rc

� �11

y

" #
: ð7Þ

Here rc is the distance of closest approach of the

equivalent straight-path trajectory described with

apparent velocity v0c, DC6¼ ðC6Þvf �ðC6Þvi and

y¼ (DC12/C12)/(DC6/C6). The parameters DC6/C6 and

y are not known and are estimated from experimental

results.
Self-broadening (�0 in cm–1 atm–1) and shifting

coefficients at different temperatures have been com-

puted for the �1þ �2þ �4þ �5 band of C2H2 by

including the contributions of the perturber in the

ground state with J2 values up to 52 (T¼ 296K). As a

first step, we used the mean relative velocity (MV) that

reduces the first integral in Equation (2) to one. Then

we have considered the distribution of relative veloc-

ities (DV) by using 66 values of x from 0 to 10 with five

different steps (0.02 from 0.04 up to 0.20, 0.05 up to

1.0, 0.10 up to 3.0, 0.2 up to 5 and 0.5 up to 10) so that

the integral of x e–x dx¼ 1.00006. Following the

method described in Ref. [37], care was taken to

discard any contribution of orbiting collisions corre-

sponding to bound translational states. These contri-

butions are very important at low relative velocities.
The fixed parameters used in the calculations are

given in Table 1. We present below the results for the

broadening coefficients for the R-branch only, since

the results are practically the same for the P-branch,

i.e. only very slightly smaller at high m values.

It should also be noted that the parameters DC6/C6

and y have almost no influence on the results of

broadenings [35], which are first presented

independently of the line shifts.

3. Theoretical results for the broadening and

shifting coefficients and comparisons with

experimental data

3.1. Pressure broadening and shifting coefficients
at 296K

The literature values for the quadrupole moment of

C2H2 range from 3 to 8.4D Å [40]. For the first

calculation of self-broadening coefficients (�0 in cm–1

atm–1), we have considered the experimental determi-

nation Q¼ 5.42D Å [41] associated with A2¼ �1¼ 0.18

[40]. Note that other experimental and calculated

larger values of this quadrupole moment have been

reported in Ref. [42] such as 6.15D Å [43] and 6.53D Å

[44]. The results shown in Figure 1(a) are notably

greater than the experimental data for middle and large

m values (m¼ Jþ 1 in the R-branch). This discrepancy

is not surprising since for molecules with strong dipole

and/or quadrupole moments, such as CO2 [45], CH3Cl

[46], CH3F [47] and CH3Br [48], the self-broadening

coefficients calculated from the most accurate values of

the electric moments are generally overestimated.

Then, using the same potential defined by Equation

(4) with Q¼ 5.0D Å and A2¼ 0.50, the results

(Figure 1(a)) agree well with the experimental results

for m5 10 but are still significantly larger for higher

m. Finally, the parameters Q¼ 4.5D Å and A2¼ 0.60

provide the best overall agreement with measurements

(Figure 1(a)), although the results are too small for m

values around 3–9. In the following, we shall consider

mainly the parameters Q¼ 4.5D Å and A2¼ 0.60.
As shown in Figure 1(b), the dispersion energy only

has a significant contribution at low m values (m5 7).

The total anisotropic potential defined by Equation (5)

with an arbitrary hexadecapole moment �¼ 10D Å3

yields slightly larger broadening coefficients at high m

values. Note that the literature value from a quantum

calculation, �¼ 21.8D Å3 [49], is probably overesti-

mated since the same quantum calculation also leads to

an overestimated quadrupole moment of C2H2

(Q¼ 7.35D Å).
Consideration of the Maxwell–Boltzmann velocity

distribution leads to somewhat different results, in bet-

ter agreement with the experimental data for m¼ 6–10,

but at high m values these results (especially those

Table 1. Parameters used in the calculation of self-broadening and self-shifting coefficients in the �1þ �2þ �4þ �5 band of
12C2H2.

Bi (cm
�1) Bf (cm

�1) Di (10
�6 cm�1) Df (10

�6 cm�1) " (K) � (Å)

1.17664598 1.16797695 1.62421688 4.01615457 185 4.211

Note: The rotational parameters are taken from Ref. [38] and the Lennard–Jones parameters from Ref. [39].
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including the contribution of the hexadecapole
moment) are significantly larger than the experimental
values.

The pressure-induced line shift coefficients (�0 in
cm–1 atm–1) have been calculated at 296K with a fixed
y parameter (y¼ 1) and two adjusted values of DC6/C6,
i.e. 0.011 and 0.013 (Figure 2(a) for the R-branch and
Figure 2(b) for the P-branch). In the R-branch, the
latter value of DC6/C6 provides satisfactory results
only at large m values, whereas the best overall
agreement between the theoretical and measured pres-
sure shifts is obtained using DC6/C6¼ 0.011. The total
calculated line shift results from two contributions,
namely a ‘vibrational’ dephasing contribution (given
by Equation (11) of Ref. [35]), which has a rotational

dependence through the real part of Saniso
2 , and a

rotational contribution involving its imaginary part
(see Equation (4) of Ref. [36]). The vibrational contri-
bution (for which ImSaniso

2 is neglected) is nearly
identical in the two branches. The rotational contri-
bution (including the weak vibrational dependence of
the rotational constants in the final vibrational level) is
derived from ImSaniso

2 where Siso
1 is neglected.

By comparing the vibrational dephasing
contribution (written in condensed notation as ‘vib.’
contribution in the figures) with the total line shifts
(Figure 2), it appears that the rotational contribution is
only significant for jmj ranging from 2 to 6 and
induces a strong asymmetry in the shifts of these lines
in the P- and R-branches. Indeed, the rotational
contribution has roughly the same magnitude in a
P(J) line and an R(J–1) line with opposite signs, which
explains this asymmetry [50]. Consideration of the
velocity distribution provides, at low m values, a

0.08
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0.16

0.18

0.20
(b)

(a)

296 K

A
2
=0 Q=4.5 D.Å (MV)
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A
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A
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A
2
=0.6 Q=4.5 D.Å (MV)

 Exp. Voigt

Figure 1. Self-broadening coefficients �0 in the �1þ �2þ
�4þ �5 band of 12C2H2 at 296K. (a) The theoretical curves
result from the mean relative velocity (MV) and different
values of the parameter A2 and the quadrupole moment Q.
The experimental values [1] are derived from the Voigt
profile. (b) The theoretical curves result from the mean
velocity (MV) or the distribution of velocities (DV) and the
given values of A2, Q and the hexadecapole moment �.
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 Vib. contribution (MV) ΔC6/C6=0.011
 Vib. contribution (MV) ΔC6/C6=0.013
 Exp. Voigt

Figure 2. Self-shifting coefficients �0 in the R-branch (a) and
P-branch (b) of the �1þ �2þ �4þ �5 band of 12C2H2 at 296K.
The experimental values [1] are derived from measurements
assuming the Voigt profile. The theoretical curves result from
the mean velocity (MV) or the averaging over the distribu-
tion of velocities (DV) and the anisotropic potential defined
by Equation (4) with Q¼ 4.5D Å, A2¼ 0.6 and y¼ 1 and the
given values of DC6/C6.
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smaller bump in the R-branch than the calculation
with MV, as well as a shallower dip in the P-branch
with a slightly smaller magnitude of the line shifts at
large jmj.

3.2. Pressure broadening and shifting coefficients at
200, 250, 300, and 350K

The self-broadening and self-shift coefficients have
been computed for T¼ 200, 250, 300 and 350K using
the parameter values Q¼ 4.5D Å and A2¼ 0.6, DC6/
C6¼ 0.011 and y¼ 1 (Figures 3 and 4). The results
from MV and DV are close and present similar
differences at the four temperatures. Comparison of
theoretical broadening coefficients �0(calc) with exper-
imental data at the same temperature �0(exp) derived
from measurements shows the following features. At
200K, �0(calc) agrees well with �0(exp) for low m
(m5 10), and is somewhat larger for higher m; at
250K, there is overall agreement: �0(calc) is slightly
smaller than �0(exp) for m5 10 and slightly larger for

m4 10; as T rises from 300 to 350K the discrepancy
for m5 10 increases, and the agreement at higher m is
improved. Then, the best agreement between �0(calc)
and �0(exp), arising from the quadrupole moment
considered for C2H2, is shifted towards high m values
as T increases, and the dispersion energy considered is
probably too simple to provide satisfactory agreement
at room or high temperatures for low m values
(15m5 10). It should be noted that the resonance
condition [51] for the quadrupole–quadrupole interac-
tion is obtained for Ji� J2max, where J2max is the most
populated level of the perturber at the temperature
considered. J2max increases from 7 for T¼ 200K to 11
for T¼ 350K and the higher levels of the transition are
more populated as T increases.

As shown in Figure 4, the theoretical line shift
coefficients �0(calc) in the R-branch at 200, 250, 300,
and 350K are in overall agreement with experimental
data �0(exp) at the same temperatures derived from
measurements. They decrease in magnitude (as the
broadening coefficients) as T increases because the gas
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Figure 3. Self-broadening coefficients �0 in the �1þ �2þ �4þ �5 band of 12C2H2 at 200K (a), 250K (b), 300K (c) and 350K (d).
The experimental values are evaluated from measurements at different temperatures [1] assuming the Voigt profile. The
theoretical curves result from the anisotropic potential defined by Equation (4) with Q¼ 4.5D Å and A2¼ 0.6, and the mean
velocity (MV) or averaging over the distribution of velocities (DV).
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density is then smaller at constant pressure (1 atm); for
m4 3, they also roughly increase with m, due to the
vibrational dephasing contribution increasing
smoothly with m and the vanishing rotational contri-
bution. The comparison between �0(calc) and �0(exp)
shows the same behavior for all temperatures consid-
ered: the curves �0(calc) versus m present a bump for m
between 1 and 5 due to the rotational contribution,
which is much less pronounced for DV than for MV, in
agreement with the data, and rather good agreement is
obtained for m between 5 and 15; the theoretical curves
are smaller in magnitude than the experimental data
for higher m. It should also be noted that the
differences between the results derived from MV and
DV are significantly reduced as T increases.

4. Temperature dependence of broadening and shift-

ing coefficients

4.1. Temperature dependence of self-broadening
coefficients

The temperature dependence of the broadening coef-
ficients is usually well represented by the simple power
law given by Equation (9) of Ref. [1]. For a constant

pressure of 1 atm at any temperature considered, this

equation becomes

�0ðT Þ ¼ �0ðT0Þ
T0

T

� �n
, ð8Þ

where T0¼ 296K is our reference temperature. The n

exponent values were determined [1] by comparing the

measured values of �0(T ) derived from the Voigt and

speed-dependent Voigt profile for T in the range

213–333K. The experimental broadening coefficients

were then calculated at 200, 250, 300 and 350K from

these n values. Assuming non-independent errors in the

broadening measurements which are obtained from the

same spectrometer, the uncertainty in n was estimated

to be about �0.03. The experimental values of n lie

between 0.57 and 0.63 for m� 11 and decrease signif-

icantly at higher m values.
The theoretical n values have been evaluated from

the calculated �0 values at 200, 250, 300, and 350K. As

shown in Figure 5, the relation between ln �0(T ) and

ln(T0/T ) is quite linear, which justifies a posteriori the

use of the empirical power law defined by Equation (8).

The n exponent is given by the slope of the straight line

obtained for each m value. The results (with
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Figure 4. Self-shifting coefficients �0 in the R-branch of the �1þ �2þ �4þ �5 band of 12C2H2 at 200K (a), 250K (b), 300K (c) and
350K (d). The experimental values are evaluated from measurements at different temperatures [1] assuming the Voigt profile.
The theoretical curves result from the anisotropic potential defined by Equation (4) with Q¼ 4.5D Å and A2¼ 0.6, the isotropic
LJ potential (Equation (6)) with DC6/C6¼ 0.011 and y¼ 1, and the mean velocity (MV) or averaging over the distribution of
velocities (DV).
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uncertainty bars arbitrarily set to 3SD of these slopes)
derived from the calculated broadening coefficients
involving the velocity distribution are significantly
different to those derived from the average velocity. As
shown in Figure 6 the curve n(m) calculated from DV
has less prominent variations than the curve calculated
from MV. Figure 6 and Table 2 show a comparison of
these results with experimental results derived from
Voigt and speed-dependent Voigt profiles. In view of
the experimental and theoretical uncertainties the
theoretical n values are significantly larger for m
ranging from 7 to 19 than the experimental results.

Note, however, that the curves n(m) present the same
behavior, with first a decrease (up to m¼ 4 or 5), then
an increase (up to m¼ 9 or 11) and finally a decrease
for higher m. For m� 9, corresponding to the resonant
condition of the quadrupole–quadrupole interaction,
the theoretical exponent is close to 0.75, as predicted
by Birnbaum [52] for this interaction. It should also be
noted that the standard deviations and thus the error
bars for n values (DV) are generally smaller than for n
values (MV) and these errors become much larger
for m4 20.

4.2. Temperature dependence of self-shift coefficients

In the preceding paper [1] we employed two empirical
laws given by Equations (11) and (12) of Ref. [1] to
derive the temperature dependence of self-line shift
coefficients. The power law described by Equation (12)
cannot be used here to calculate this dependence
theoretically since this law is unable to predict negative
and positive line shifts depending on m. Actually, the
calculated line shifts �0 are generally negative, except
for two lines, R(1) and R(2), of C2H2 at 200K
calculated with MV. Therefore, we first used the linear
temperature dependence defined by Equation (11) of
Ref. [1], i.e.

�0ðT Þ ¼ �0ðT0Þ þ �
0
0ðT� T0Þ: ð9Þ

Typical results of �0 vs. T are represented in
Figure 7 for T¼ 200, 250, 300, and 350K. The linear
dependence is generally inaccurate for any calculations
derived from MV or DV. Nevertheless, we have fitted
all the shifts according this equation in order to
compare the theoretical and experimental temperature
dependences. The resulting �00(MV or DV) coefficients
are given in Table 3 and Figure 8 where the uncertainty
bars correspond to three times the standard deviation
derived from the linear least-squares procedures. These
standard deviations (SDs) are very large in relative
value, except for the lines R(6), R(7) and R(8)
calculated using MV.

Figure 8 also shows the �00(vib) coefficients derived
from the vibrational dephasing contribution to the
theoretical (MV) line shifts and the �00(exp) coefficients
derived from the experimental results for the line shifts.
It appears that the SDs of �00(vib) are significantly
smaller than the SDs of �00(MV) for low m (m5 7),
which means that the lack of accuracy in the linear
model of Equation (9) arises mainly from the rota-
tional contribution calculated with MV. That contri-
bution also explains the dip and bump around m¼ 2–3
and m¼ 5–6, respectively. The dip is well observed
experimentally and is indeed much deeper, but not
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Figure 6. Variation of the temperature dependence exponent
n with m for the self-broadening coefficients of C2H2 in the
�1þ �2þ �4þ �5 band. The experimental results with error
bars are derived from Voigt and speed-dependent Voigt
(SDV) profiles. The solid curves (with error bars corre-
sponding to 3SD) represent the theoretical results calculated
with the mean velocity (MV) or averaging over the distribu-
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the bump. The dip and bump are much less pro-

nounced for the �00(DV) coefficients, which are also

notably smaller than �00(MV) for large m values. It

should be noted that, except for the bump around

m¼ 5–6, reasonable agreement is obtained with the

experimental results, which increase with m from

m¼ 3. Note also that the SDs of �00(vib) are compa-

rable to the SDs of �00(MV or DV) as m increases since

the vibrational contribution becomes predominant in

the line shifts.
The coefficients �00(DV), with SDs generally smaller

than those of �00(MV), lead only through Equation (9)

only to a rough evaluation of �0(T ) from �0(T0).

Therefore, we also used a quadratic temperature

dependence of the self-induced shifts given by

�0ðT Þ ¼ �0ðT0Þ þ �
0
0ðT� T0Þ þ �

00
0

ðT� T0Þ
2

2
: ð10Þ

Table 2. Self-broadening coefficients �0 (cm
�1 atm�1) at 296K and their temperature dependence exponents n. The experimental

results �0(exp) and n(exp) are derived from measurements assuming the Voigt lineshape [1]. The calculated results �0(MV) and
�0(DV) are derived from the average velocity and the distribution of velocities, respectively. The values quoted in parentheses for
the theoretical exponents n are one standard deviation (see text).

Line m �0(exp) �0(MV) �0(DV) n(exp) n(MV) n(DV)

R(0) 1 0.1962 (2) 0.1994 0.1944 0.62(3) 0.703(2) 0.704(1)
R(1) 2 0.1933 (2) 0.1862 0.1823 0.63(3) 0.672(2) 0.693(0)
R(2) 3 0.1837 (2) 0.1782 0.1756 0.62(3) 0.652(1) 0.681(1)
R(3) 4 0.1768 (2) 0.1701 0.1690 0.59(3) 0.636(2) 0.675(2)
R(4) 5 0.1728 (2) 0.1620 0.1633 0.58(3) 0.640(7) 0.681(4)
R(5) 6 0.1666 (2) 0.1555 0.1589 0.60(3) 0.673(12) 0.697(5)
R(6) 7 0.1631 (2) 0.1515 0.1557 0.61(3) 0.721(14) 0.715(6)
R(7) 8 0.1584 (2) 0.1497 0.1535 0.63(3) 0.755(10) 0.729(5)
R(8) 9 0.1566 (2) 0.1491 0.1520 0.63(3) 0.768(4) 0.737(3)
R(9) 10 0.1524 (2) 0.1488 0.1507 0.63(3) 0.763(0) 0.738(1)
R(10) 11 0.1503 (2) 0.1484 0.1496 0.63(3) 0.746(4) 0.733(1)
R(11) 12 0.1486 (1) 0.1475 0.1483 0.59(3) 0.723(6) 0.722(3)
R(12) 13 0.1451 (1) 0.1461 0.1468 0.56(3) 0.698(6) 0.708(4)
R(13) 14 0.1402 (1) 0.1442 0.1451 0.56(3) 0.672(6) 0.692(4)
R(14) 15 0.1375 (1) 0.1418 0.1431 0.56(3) 0.647(5) 0.675(5)
R(15) 16 0.1341 (1) 0.1390 0.1408 0.53(3) 0.625(3) 0.657(4)
R(16) 17 0.1325 (1) 0.1359 0.1382 0.51(3) 0.604(2) 0.641(3)
R(17) 18 0.1275 (1) 0.1325 0.1355 0.52(3) 0.588(3) 0.626(2)
R(18) 19 0.1253 (1) 0.1290 0.1326 0.48(2) 0.576(6) 0.614(1)
R(19) 20 0.1201 (1) 0.1254 0.1295 0.54(3) 0.566(9) 0.603(2)
R(20) 21 0.1218 0.1264 0.560(12) 0.594(4)
R(21) 22 0.1181 0.1232 0.557(16) 0.588(7)
R(22) 23 0.1145 0.1199 0.556(19) 0.583(9)
R(23) 24 0.1110 0.1167 0.557(21) 0.579(11)
R(24) 25 0.1075 0.1134 0.558(23) 0.576(13)
R(25) 26 0.1042 0.1096 0.560(24) 0.573(14)
R(26) 27 0.1009 0.1070 0.561(25) 0.569(15)
R(27) 28 0.0978 0.1037 0.561(25) 0.565(16)
R(28) 29 0.0947 0.1005 0.559(24) 0.559(16)
R(29) 30 0.0917 0.0973 0.555(23) 0.551(16)
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Figure 7. Theoretical temperature dependence of C2H2 self-
shift coefficients �0 calculated from the distribution of
velocities for m¼ 5, 10, 15 and 20. The straight lines are
obtained from a linear fit and the curves from a quadratic
least-squares procedure. The reference temperature T0

is 296K.
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As shown in Figure 7, this quadratic dependence of
�0(T ) allows us to fit much more accurately the
calculated self-shift coefficients than the linear depen-
dence. The coefficients �0, �00 and �000 determined
through the fit of the calculated line shifts with DV
at 200, 250, 300, and 350K are given in the last
columns of Table 3. The new �00 coefficients, shown in
Figure 8 with error bars also set to 3SD, are notably
different to the previous linear coefficients derived
from MV and Equation (9), and their SDs are on
average six times smaller. They are in good agreement
with the same coefficients calculated with DV from
Equation (9) for m5 12 and slightly smaller for higher
m. The quadratic polynomial (Equation (10)) enables
the calculation of �0(T ) at any temperature between
200 and 350K from the values of �0, �

0
0 and �000 (last

columns of Table 3) with an accuracy (with respect to
the results of the direct calculation) less than or equal

to the SDs of the coefficient �0. Note that the �0 values
listed in columns 3 and 4 of Table 3 are those
calculated directly with MV and DV at 296K, whereas
the �0 values with their SD in column 8 correspond to
the fitted value for T¼ 296K.

5. Conclusion

We have calculated the self-broadening coefficients and
self-shift coefficients in the �1þ �2þ �4þ �5 band of
C2H2 first at 296K and then at four temperatures
ranging from 200 to 350K and compared them with
previous experimental measurements [1]. The calcula-
tions were performed using a semiclassical model
involving only two interactions: the strong electrostatic
quadrupole–quadrupole interaction and an empirical
dispersion contribution significant only at lowm values.

Table 3. Self-shifting coefficients �0 (10�3 cm�1 atm�1) at 296K and the temperature dependence parameters �00
(10�5 cm�1 atm�1K�1) and �000 (10�7 cm�1 atm�1K�2). The experimental results �0(exp) and �00(exp) are derived from
measurements assuming the Voigt lineshape [1]. The parameters �0(MV) and �0(DV) are calculated using the mean velocity
and the distribution of velocities, respectively. The parameters �00(MV) and �00(DV) are calculated from Equation (9). The
parameters of the last columns �0, �

0
0, �
00
0(DV) are calculated from Equation (10). The values quoted in parentheses for the

calculated parameters are one standard deviation (see text).

Line �0(exp) �0(MV) �0(DV) �00(exp) �00(MV) �00ðDVÞ �0, �
0
0, �
00
0(DV)

R(0) �3.92 �2.40 0.04(20) �0.47(15) �2.43(3) �0.27(5) 0.92(16)
R(1) �1.08(1) �2.43 �1.62 0.5(1) �1.86(45) �0.84(16) �1.62(2) �0.63(4) 0.98(12)
R(2) �2.21(1) �0.84 �2.06 �4.6(2) �1.61(14) 0.20(6) �2.04(2) 0.12(3) �0.36(9)
R(3) �2.14(1) �1.36 �3.18 �1.2(1) 1.00(42) 1.23(19) �3.18(3) 0.99(5) �1.18(17)
R(4) �4.47(2) �3.24 �4.24 �1.6(1) 2.97(57) 1.73(21) �4.25(3) 1.46(4) �1.30(13)
R(5) �4.23(2) �5.02 �5.02 0.8(1) 3.24(34) 1.85(18) �5.04(2) 1.62(2) �1.14(8)
R(6) �5.70(3) �6.13 �5.51 0.6(1) 2.56(8) 1.79(15) �5.53(2) 1.59(2) �0.96(7)
R(7) �4.81(2) �6.56 �5.82 1.9(1) 1.79(7) 1.69(13) �5.84(2) 1.52(2) �0.82(8)
R(8) �5.10(3) �6.56 �5.98 2.6(1) 1.49(3) 1.61(12) �6.00(2) 1.45(2) �0.78(8)
R(9) �6.17(3) �6.46 �6.10 2.8(1) 1.59(21) 1.63(15) �6.12(2) 1.44(3) �0.92(11)
R(10) �5.80(3) �6.33 �6.19 3.6(2) 1.83(28) 1.70(17) �6.21(2) 1.48(4) �1.08(13)
R(11) �5.67(3) �6.37 �6.33 1.5(1) 2.25(37) 1.88(22) �6.33(3) 1.59(5) �1.36(18)
R(12) �5.78(3) �6.55 �6.48 1.6(1) 2.69(44) 2.08(26) �6.48(5) 1.74(7) �1.62(24)
R(13) �7.30(4) �6.75 �6.70 5.8(3) 3.16(53) 2.37(31) �6.69(5) 1.97(8) �1.94(26)
R(14) �8.09(4) �7.08 �6.95 3.8(2) 3.66(62) 2.65(36) �6.94(5) 2.18(9) �2.24(28)
R(15) �8.90(4) �7.44 �7.28 4.1(2) 4.13(67) 2.99(40) �7.26(6) 2.46(10) �2.50(32)
R(16) �10.11(5) �7.89 �7.63 4.8(2) 4.53(68) 3.29(43) �7.61(6) 2.72(10) �2.72(34)
R(17) �9.74(5) �8.36 �8.04 3.5(2) 4.95(71) 3.62(47) �8.02(6) 3.01(10) �2.94(34)
R(18) �10.62(5) �8.89 �8.46 4.2(2) 5.41(76) 3.92(49) �8.44(6) 3.27(10) �3.10(34)
R(19) �11.69(6) �9.42 �8.94 3.7(2) 5.73(79) 4.22(52) �8.91(6) 3.54(10) �3.24(32)
R(20) �9.99 �9.41 5.97(77) 4.49(53) �9.39(6) 3.78(10) �3.36(34)
R(21) �10.54 �9.93 6.26(79) 4.75(54) �9.91(6) 4.03(10) �3.42(32)
R(22) �11.06 �10.43 6.56(79) 4.97(56) �10.40(6) 4.24(10) �3.50(32)
R(23) �11.60 �10.97 6.74(78) 5.20(57) �10.92(6) 4.45(10) �3.56(32)
R(24) �12.13 �11.50 6.87(79) 5.42(57) �11.44(6) 4.66(10) �3.60(32)
R(25) �12.68 �12.01 7.02(78) 5.62(59) �11.94(8) 4.84(13) �3.72(42)
R(26) �13.20 �12.50 7.19(78) 5.80(60) �12.46(6) 5.01(9) �3.76(30)
R(27) �13.66 �13.04 7.36(76) 6.00(61) �12.96(7) 5.19(9) �3.86(30)
R(28) �14.12 �13.52 7.52(80) 6.18(63) �13.46(7) 5.34(12) �3.98(38)
R(29) �14.57 �14.03 7.67(85) 6.38(65) �13.94(9) 5.52(13) �4.10(42)
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This very simple intermolecular potential associated
with a rather low value of the quadrupole moment of
C2H2 (4.5D Å) leads to results for broadening
coefficients in overall agreement with the experimental
data at any temperature considered. Slightly different
results are obtained using the mean relative velocity and
the Maxwell–Botzmann distribution of relative
velocities.

The theoretical temperature dependence exponents
of the self-broadening coefficients were also deter-
mined from calculated results at 200, 250, 300 and
350K. They are significantly different using the aver-
age velocity or the distribution of velocities and they
are notably larger than the exponent values derived
from measurements of broadening coefficients for a
comparable temperature range. Note, however, that
the theory reproduces roughly the rotational depen-
dence of these experimental n values.

The vibrational dependence of the isotropic part of
the potential including mainly one adjustable param-
eter can well predict the general behavior of the line
shifts that increase in magnitude with m. Note that we
have neglected in this calculation the vibrational
dependence of the anisotropic part of the potential.
The rotational contribution, which is only significant
for m ranging from 2 to 5 and notably depends on the
MV or DV calculation, roughly explains the small line
shifts observed at low m values in the R-branch. There
is a similar overall agreement between the measured
and theoretical variations of the self-shift coefficients

at the four temperatures considered. Although the
empirical linear temperature dependence of the theo-
retical line shifts is not satisfactory and significantly
different from MV or DV calculations, the resulting �00
coefficients agree more or less with those derived from
the measurements of line shifts for middle or high m
values. We have shown that the theoretical variation of
the temperature is well reproduced by a quadratic
polynomial. If we discard plausible large experimental
uncertainties in the �00 coefficients at low m values, the
disagreement with theoretical results for these m values
could be partly due to the calculation of the rotational
contribution of the shifts. Note that the theoretical
model includes only second-order terms in the devel-
opment of the semiclassical S matrix.
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