Geog 1000 - Lecture 32

Remote Sensing Technology http://scholar.ulethbridge.ca/chasmer/classes/

Today's Lecture

- 1. Camera's and aerial photography
- 2. Multispectral scanning
- 3. Thermal imaging
- 4. Hyperspectral remote sensing
- 5. Lidar
- 6. RADAR
- 7. Ground penetrating RADAR

Some applications

Aerial Photogrammetry

Black and white (often in Near Infrared) or colour photography; thermal infrared.

→ Film based in the past → Now digital

Acquired from aircraft

→ Has long history starting in the 1800s

Aerial photography perspectives

.ow obliau

Vertical

Maps vs. Air Photos

<u>Map</u>: Objects are planimetrically and geometrically accurate.

Modern Aerial Photography & LiDAR: UAV's

AIBOTIX: 3D Mapping with Unmanned Airborne Vehicle (UAV) \rightarrow 2 cm resolution, georeferenced

Multi-spectral scanning

Multispectral Scanning

 $\mathit{Bands} \rightarrow \mathit{Discrete}$ wavelengths that show greatest differences between things on <code>Earth</code>

AND are not scattered by atmosphere

Multi-spectral scanning is interested in a few (4-8 or so) *discrete* wavelength ranges

Each "Band" is assigned a RGB display colour

Solat

Example: WorldView-2 Instrument

Launched: October 8, 2009 \rightarrow operating at full capability by January 4, 2010.

Very high resolution (1.85 m; 0.46 m - resampled), 9-band commercial satellite

Flying altitude = 770 kms

Revisit time: 1.1 days, collects up to 1 million sq kms per day (!)

Bands include: Panchromatic, coastal, blue, green, yellow, red, red edge, NIR1 and NIR2

WorldView-2 Spectral Bands

750 Wavelength (nm)

Thermal Imaging

Thermal Remote Sensing \rightarrow Emitted thermal infrared (3 to 5 µm and 8 to 14 µm).

- \rightarrow Measure the surface temperature
- ightarrow Have an internal temperature reference

 \rightarrow Thermal IR cameras have large view area because there isn't much energy from longer wavelengths.

Thermal Imaging of thawing permafrost

Hyperspectral Imaging

Similar to multi-spectral, but instead of discrete bands collects data across the electromagnetic spectrum.

- ightarrow Does not collect within discrete bands may have hundreds of bands
- → Data are viewed in an 'image cube'

Each feature has a "fingerprint" \rightarrow spectra that characterises that object.

Hyperspectral Imaging

Lidar

LiDAR = Light Detection And Ranging. Dr. Chris Hopkinson will present on LiDAR applications on Friday.

Can be Terrestrial, Airborne, Spaceborne

Airborne LiDAR \rightarrow Active laser scanning

Airborne LiDAR: Example of Earthquake Zone

Use of LiDAR for examining earthquake behaviour.

- → Before and after picture of earthquake zone (via change detection), Mexicali, northern Mexico, April 10th.
- ightarrow Example: 5 foot escarpment created when part of hill moved up and sideways.

→ Further warping

→ 7 small faults came together to create a major earthquake.

Radar

RADAR = RAdio Detection And Ranging,

- \rightarrow Active sensor that pulses microwave radiation.
- → Antenna emits radiation, some is reflected back
- → Energy is timed (speed) and measured = 2D image

RADAR has a transmitter, receiver, antenna and recording electronics

Used often for terrain mapping: Various wavelengths are used (code letters from WWII)

X-band \rightarrow airborne reconnaissance

C-band → research systems, including RADARSAT S-band → used on Russian ALMAZ satellite L-band → American, Japanese satellites

P-band \rightarrow longest wavelengths, experimental, NASA

Radar

- Two RADAR images of same field using a Cband radar (top) and L-band radar (bottom)
- → Very different due to ways in which radar energy interacts with crops depending on wavelength.

Radar also emits in different polarization:

Transmit radiation either horizontally polarized (H) or vertically polarized (V)

Radar

Transmit radiation either horizontally polarized (H) or vertically polarized (V)

Receives in one or the other or both:

HH = horizontal transmit, horizontal receive VV = vertical transmit, vertical receive HV = horizontal transmit, vertical receive VH = vertical transmit, horizontal receive

Ground Penetrating Radar

Emits electromagnetic energy in microwave wavelengths.

- → Reflected signal detected from various objects below ground
- → Dependent on *dielectric constant* of objects and surroundings.

Variable Frequencies:

Higher frequency = better spatial resolution, decreased depth penetration Lower frequency = better depth penetration, reduced spatial resolution

Ice = several hundred meters; dry soil = up to 15 m; wet soil = few cms.

Ground Penetrating Radar

Remote Sensing Applications

Agriculture: → Crop mapping, stress assessment...

Forestry: → Mapping harvested areas, deforestation, species identification, forest fires...

Hydrology: * Flood delineation, water water quality Hydrology: * Flood delineation, water Hydrology: * Flood delineation, water Hydrology: * Flood delineation, water

Advanced Methods, Education and Training in Hyperspectral Science and Technology

AMETHYST web site: http://www.uleth.ca/artsci/amethyst/ NSERC CREATE Program : Collaborative Research and Training Experience

D.R.Peddk

ollaborative Research and Training Experience

Key AMETHYST Program Features

- \$1,650,000 over 6 years (80 % to go to trainee stipends) (2010-2016)
- Targeting awards to 50 research trainees over six years
- 32 external collaborators for internship placements

Main AMETHYST Program Objectives

- Provide enhanced learning experiences in cross-disciplinary settings
- · Establish a program of workshops and workplace internships
- · Ensure professional skills development for workforce preparation
- Create a structured and interdisciplinary approach to imaging science education

D.R.Peddle

Education and Research

Advanced Methods, Education and Training in Hyperspectral Science and Technology

Primary AMETHYST Research Areas

- Imaging spectroscopy and remote sensing technologies for resource and environmental monitoring and studies of terrestrial vegetation dynamics
- Scene physics and analysis research on satellite image understanding
- Spectroscopic laboratory studies and field instruments for monitoring atmospheric greenhouse gases
- Advanced research on magnetic resonance contrast mechanisms of neural tissue and magnetic resonance imaging contrast agents

Related University of Lethbridge Research and Pedagogical Building Blocks in Place

- · Multi-Disciplinary Major BSc in Remote Sensing
- · Terrestrial and Atmospheric Remote Sensing Laboratory Facilities
- Earth Sensing Laboratory Calibration and Image Correction Services
- Alberta Water and Environmental Science Building

30

Laivesity of Lethbridge	University of Lethbridge	Education and Research
	Remote Sensing Faculty - University of Lethbridge	
	Professors:	
	Dr. Laura Chasmer – Geography	
	Dr. Craig Coburn - Geography	
	Dr. Albert Cross – Neuroscience	
	Dr. Chris Hopkinson - Geography	
	Dr. Derek Peddle - Geography	
	Dr. Adriana Predoi-Cross - Physics	
	Dr. Karl Staenz – Geography	
	Adjunct Faculty:	
	Dr. Ron Hall - Cdn Forestry Service (Geography)	
	Dr. Nadia Rochdi - ATIC (Physics)	
	Dr. Anne Smith - Agriculture Canada (Geography)	
	Dr. Phil Teillet – (Physics)	
	Dr. Jinkai Zhang – ATIC (Geography)	

If interested in Remote Sensing....

www.CRSS-SCT.ca

Contact: derek.peddle@uleth.ca

D.R.Peddle