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Understanding the influence of within-pixel land cover heterogeneity is essential for the extrapolation of
measured and modeled CO2 fluxes from the canopy to regional scales using remote sensing. Airborne light
detection and ranging (lidar) was used to estimate spatial and temporal variations of gross primary
production (GPP) across a jack pine chronosequence of four sites in Saskatchewan, Canada for comparison
with the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product. This study utilizes high
resolution canopy structural information obtained from airborne lidar to bridge gaps in spatial
representation between plot, eddy covariance (EC), and MODIS estimates of vegetation GPP. First we
investigate linkages between canopy structure obtained from measurements and light response curves at a
jack pine chronosequence during the growing season of 2004. Second, we use the measured canopy height
and foliage cover inputs to create a structure-based GPP model (GPPLandsberg) which was tested in 2005. The
GPP model is then run using lidar data (GPPLidar) and compared with eight-day cumulative MODIS GPP
(GPPMODIS) and EC observations (GPPEC). Finally, we apply the lidar GPP model at spatial resolutions of 1 m to
1000 m to examine the influence of within-pixel heterogeneity and scaling (or pixel aggregation) on GPPLidar.
When compared over eight-day cumulative periods throughout the 2005 growing season, the standard
deviation of differences between GPPlidar and GPPMODIS were less than differences between either of them
and GPPEC at all sites. As might be expected, the differences between pixel aggregated GPP estimates are most
pronounced at sites with the highest levels of spatial canopy heterogeneity. The results of this study
demonstrate one method for using lidar to scale between eddy covariance flux towers and coarse resolution
remote sensing pixels using a structure-based Landsberg light curve model.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Ecosystem gross primary production (GPP) can be estimated at the
flux footprint scale using eddy covariance (EC) methods (e.g. Barr
et al., 2006) or over contiguous land cover types at the low resolution
pixel scale using satellite-derived products from sensors such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g.
Heinsch et al., 2006). However, reconciling local EC estimates of GPP
from spatially and aerially variant flux footprints with fixed coverage
satellite-based estimates poses a challenge that is a function of the
disparate scales and methods of observation (e.g. Turner et al., 2002;
Chen et al., 2008). In this paper, we aim to address part of this scaling
problem by using canopy structural information extracted from
airborne light detection and ranging (lidar) data to improve estimates
of GPP both at the flux footprint and MODIS pixel scales.

A number of factors are known to lead to a level of incongruence
betweenMODIS and site-specific (EC) estimates of GPP. These include:
a) under-estimation of CO2 exchanges by EC due to atmospheric
stability, resulting in the apparent over-estimation of GPP by MODIS
(e.g. Massman and Lee, 2002; Coops et al., 2007); b) scaling errors
associated with comparing point measurements of GPP, leaf area
index (LAI) and the fraction of photosynthetically active radiation
absorbed by the canopy (fPAR) to large area remote sensing pixels
(Tian et al., 2002; Turner et al., 2002; Turner et al., 2004; Heinsch et al.,
2006); c) a limited ability to accurately represent the effects of three-
dimensional canopy shadowing and ground surface reflectance on
MODIS pixels (Xu et al., 2004; Eriksson et al., 2006; Jin et al., 2007);
and d) MODIS pixel geolocation issues and the inclusion of land areas
not represented by EC (Turner et al., 2004). Plot or transect
measurements of vegetation characteristics, used to rectify these
issues within large areaMODIS pixels, are also often difficult and time-
consuming to obtain, especially in remote locations (Heinsch et al.,
2006).
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We believe that some of the challenges associated with comparing
EC estimates of GPP with fixed coverage MODIS pixel-based estimates
can be addressed by scaling between these disparate observation
methods using airborne lidar data. Lidar provides a very high
resolution map of the three-dimensional characteristics of the
vegetated canopy, understory, and ground surface. The interception
of photosynthetically active radiation (PAR) by the canopy and
understory directly impacts GPP and photosynthesis (e.g. Baldocchi
and Meyers, 1998) through the convergence efficiency of intercepted
PAR to GPP, also known as light use efficiency (LUE) (Turner et al.,
2002; Schwalm et al., 2006). LUE can be estimated from the slope of a
Landsberg light response curve, which is related to the saturation of
photosynthesis beyond certain light levels (e.g. Turner et al., 2002;
Turner et al., 2003). If LUE for an ecosystem is known or can be
estimated from a look-up table, for example, then the Landsberg curve
can be used to model GPP:

GPPLandsberg ¼ Pmax 1−e−a PAR−Icompð Þ� �
; ð1Þ

where Pmax is the maximum average GPP at saturation (g C m−2) (the
point at which GPP plateaus with increased light levels), α is the slope
or scaling factor of GPP as it increases with incoming PAR, and Icomp is
the light compensation point at which GPP is zero. This then provides
the context for scaling between EC and MODIS using airborne lidar. EC
estimates of GPP are based on measures of flux from the ecosystem,
and MODIS estimates of GPP are based on the absorption and
reflection of light from within ∼1 km resolution pixels. However,
actual canopy detail is not considered. In both cases (EC and MODIS)
the canopy and understory structure is implicit in directly influencing
the GPP estimate. Lidar enables this implicit treatment of canopy
structure to be made explicit in both cases.

A hypothesis can be formulated as follows: Foliage density and
canopy height, which can be estimated from lidar, may correspond
with variability in LUE. LUE is also used in the MODIS algorithm to
estimate GPP. To illustrate that LUE and GPP may be related to canopy
structure, an example is provided: papers by Schwalm et al. (2006) and
Chen et al. (2006) have recorded LUE, canopy height and fractional
cover (as fPAR) for the same 16 Fluxnet-Canada forest sites. Comparing
the observations from both papers, we find that average growing
season LUE for boreal conifer and deciduous forests, temperate rain
forest, previously harvested stands, and previously burned stands is
significantly related to average canopy height (r2=0.61, p=0.001,
RMSE=0.19 g C MJ−1 APAR (not shown)) (see Schwalm et al., 2006).
Based on this comparison and results in Chasmer et al. (2008) and
Chasmer et al. (accepted for publication) it follows that (all else being
equal) areas displaying taller canopy heights and/or fractional canopy

coverwill be positively related to gross photosynthesis andCO2uptake.
Therefore, Landsberg input parameters, such as average maximum
GPP, may be greater for canopies containing more biomass and taller
trees. The light compensationpointmayalso vary due towithin canopy
shadowing, fractional cover and vegetation height. For example,
shorter vegetation with lower fractional cover will receive more
radiation early in the morning than taller vegetation with greater
fractional cover (due to longmorning shadows), thereby increasing the
level of light required for photosynthesis in forests of taller trees and
greater leaf area. If this is the case, then GPPmay bemodeled using the
Landsberg curve, canopy height and fractional cover estimates from
airborne lidar.

The analysis presented first investigates linkages between field-
based canopy structure measurements and Landsberg light response
curves at a jack pine chronosequence during the growing season of
2004 and tested in 2005 (GPPLandsberg). Second, we use the lidar inputs
(fractional cover and canopy height) to create a structure-based GPP
model (GPPlidar) (also tested in 2005). GPPlidar is then compared with
eight-day cumulative MODIS GPP (GPPMODIS) and EC observations
(GPPEC). Finally, we apply GPPlidar at spatial resolutions of 1 m to
1000mat three jack pine sites to examine the influence ofwithin-pixel
heterogeneity and scaling (or pixel aggregation) on modeled GPP.

2. Data collection

2.1. Site characteristics

Four jack pine sites, forming a post-harvest chronosequence, were
examined during the growing seasons (June 1st to September 31st) of
2004 and 2005. The jack pine stands included amature jack pine forest
of ∼90 years of age (OJP); an immature jack pine forest harvested in
1975 (HJP75); a regenerating jack pine forest harvested in 1994
(HJP94); and a naturally regenerating jack pine site harvested in 2000
and scarified in 2002 (HJP02). The forest stands are locatedwithin 6 km
of each other near the southern edge of the boreal forest, north of
Prince Albert, Saskatchewan, Canada. All sites examined in this study
were operating as part of Fluxnet-Canada (Barr et al., 2006; Margolis
et al., 2006), under the Boreal Ecosystem Research and Monitoring
Sites (BERMS) project. Each site is relatively flat with coarse-textured
and well-drained sandy soils (e.g., Baldocchi et al., 1997).

Forest stand characteristics are summarized in Tables 1 (OJP, HJP75,
and HJP94) and 2 (HJP02). Measurements of canopy structure were
made at eight (OJP), eight (HJP75), and six (HJP94) geo-located 11.3 m
radius plots located at distances of 100 m and 500 m (at OJP and
HJP75) and within 250 m (HJP94) of EC towers in May and August,
2005. At HJP02, four 25m×2m transects containing 50 1m×1m plots

Table 1
Average vegetation characteristics at OJP, HJP75, and HJP94 for 22 plots

Site Number of trees
sampled

Average stem density
(stems m−2)

Average tree
height (m)

Average
DBH⁎ (cm)

Average
fractional cover

Average canopy
depth (m)

Average crown
diameter (m)

Other species

OJP 381 0.11 (0.001) 14.2 (3.5) 9.33 (4.55) 0.59 (0.06) 8.3 (2.7) 2.0 (1.0) Alder, bearberry, reindeer
lichen, blueberry, cranberry

HJP75 1447 0.59 (0.19) 6.3 (1.6) 5.69 (3.49) 0.57 (0.06) 3.5 (1.3) 0.9 (0.4) Grasses, reindeer lichen, bearberry
HJP94 2081 0.86 (0.56) 1.6 (0.7) 2.31 (1.05) 0.16 (0.11) 1.6 (0.7) 0.7 (1.1) Grass, blueberry, alder, raspberry,

bearberry, reindeer lichen

The values in parentheses represent standard deviation.
⁎ DBH refers to tree bole diameter at breast height (1.3 m above the ground).

Table 2
Average vegetation characteristics at HJP02 for 200 1 m×1 m plots along four transects

Number of trees
(in 200 1 m plots)

Average tree
height (stdev) (m)

Average % tree
cover (stdev)

Average % grass
cover (stdev)

Average % reindeer
lichen cover (stdev)

Average % soil
cover (stdev)

Average % wood
debris cover (stdev)

Average % herb
cover (stdev)

LAI from PAR
(m2 ·m−2)

37 0.19 (0.12) 9 (11) 21 (18) 23 (30) 32 (18) 26 (24) 8 (15) 0.29

Average percent cover does not add up to 100% (averaged between four transects) because some plots have differing amounts of individual coverage types. Values in parentheses
represent standard deviation.
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were located at distances of 50 m to 75 m (N, S, E, andW) from the EC
tower. The centre of plots, and the start and end of transects were
located using survey-grade, differentially corrected global positioning
system (GPS) receivers (Leica SR530, Leica Geosystems Inc. Switzer-
land; Ashtec Locus, Ashtec Inc., Hicksville, NY) with the same base
station coordinate as was used for the lidar survey. Geo-location
accuracies varied from 1 cm to 1 m depending on the canopy cover
density at the time of GPS data collection.

Canopy gap fraction was obtained using digital hemispherical
photography (DHP) at OJP, HJP75, and HJP94, and radiation sensors at
HJP02 (Chasmer et al., 2008). One photograph was taken at the centre
of the plot, and four were located 11.3 m from the centre along
cardinal (N, S, E, and W) directions, determined using a compass
bearing and measuring tape (Fluxnet-Canada, 2003). Photographs
were taken at a height of ∼1.3 m at OJP and HJP75, and 0.7 m at HJP94.
Trees were often less than 2 m in height at HJP94; therefore a lower
DHP height was chosen to capture more biomass. Photographs were
taken during either diffuse daytime conditions, or 30min before dawn
or after dusk, at one F-stop belownormal exposure. Under-exposure of
photographs reduces the influence of sun brightness and under-
estimation of leaf area (Zhang et al., 2005). Individual photographs
were processed following sky and vegetation thresholdingmethods of
Leblanc et al. (2005). Thresholds for sky and foliated pixels were used
to obtain estimates of gap fraction (Ω) within the software, DHP
version 1.6.1 (S. Leblanc, Canada Centre for Remote Sensing provided
to L. Chasmer through the Fluxnet-Canada Research Network).
Average canopy height, estimated using a Vertex sonic hypsometer
(Haglof, Maddison), and vegetation fractional cover (1−Ω) per site
were compared with inputs used in light response curves, whereas
plot level averages were compared with lidar estimates of the same.

2.2. Site instrumentation

Measurement and processing of eddy covariance (EC) data has
been discussed in Kljun et al. (2006) and Barr et al. (2006) and follow
Fluxnet-Canada procedures for standardization between sites. Briefly,
EC was used at all sites to measure CO2 fluxes averaged over 30-
minute periods and then aggregated on a daily basis and again, over
eight day periods for comparisonwithMODIS. The plot measurement-
based GPPmodel (GPPLandsberg) was developed using EC data collected
during the growing season (June 1st to September 31st) of 2004 and
was then tested and compared with GPPEC and GPPMODIS in 2005.

GPP (used interchangeably with gross ecosystem production, GEP)
was estimated from EC-measured net ecosystem production (NEP)
(μmol m−2 s−1) andmodeled ecosystem respiration (Re) (μmolm−2 s−1).
Re was estimated based on the relationship between nighttime Re and
soil temperature (Barr et al., 2004). Cumulative daily estimates of GPPEC
have been expressed inunits of g Cm−2 day−1 fordirect comparisonwith
GPPMODIS (kg C m−2 8-days−1 converted to g C m−2 8-days −1). CO2, H2O
and friction velocity were measured using a sonic anemometer (CSAT3,
Campbell Scientific Inc. Edmonton, Alberta, Canada at OJP and HJP02;
Gill R3-50, Gill Instruments Ltd., England at HJP75; SAT-550, Kaijo Co.,
Tokyo, Japan at HJP94) combined with a closed path infrared gas
analyzer (LI 6262, LI-COR Inc., Lincoln, NE, USA). EC systems have been
installed above the canopy at heights of approximately 28 m,17m, 3 m,
and 2matOJP, HJP75,HJP94, andHJP02 respectively. Anygaps in the 30-
minute fluxes were filled using a moving-window regression approach
(Barr et al., 2006; Kljun et al., 2006). EC data were quality controlled
using a minimal surface friction velocity of 0.35m s−1 at all sites, and an
energy balance closure correction was applied to reduce under-
estimates of measured net ecosystem exchange (NEE) by EC (Barr
et al., 2006).

Above-canopy incoming and reflected PAR (400 to 700 nm) and
below-canopy incoming PAR were measured using quantum sensors
LI-COR model LI190 at OJP and HJP75 (LI-COR Biosciences, Nebraska,
USA); and Eko model ML-020P (Eko Instruments, Co. Ltd., Japan) at

HJP94 and HJP02. Above canopy incident and reflected PAR sensors
were installed on booms at heights of 28 m, 12 m, 3 m and 2 m above
the ground at OJP, HJP75, HJP94, andHJP02. Belowcanopy incident PAR
measurementsweremade atOJP andHJP75 at a height of∼1m. Below-
canopy PAR measurements were not available at HJP94 and HJP02.

2.3. Lidar data collection and analysis

Airborne lidar data were obtained throughout the entire White
Gull River watershed, including jack pine chronosequence sites, on
August 12, 2005. The lidar system is an Airborne Laser Terrain Mapper
(ALTM) 3100 (Optech Inc. Toronto, Ontario, Canada) small-footprint
discrete pulse return lidar. Datawere collected in partnership with the
Applied Geomatics Research Group (AGRG), Nova Scotia, Canada. The
lidar was flown at a height of 950 m above the ground surface, and
emitted laser pulses at a rate of 70 kHz. A±19° scan angle was used
with 50% overlap of scan lines, enabling penetration of laser pulses
through to the base of the canopy and returns from all sides of
individual trees (Chasmer et al., 2006). Up to four laser returns were
obtained per laser pulse emitted resulting in cross- and down-track
resolutions of ∼35 cm.

After initial processing of GPS trajectories and range files at the
AGRG, lidar data were imported into the software package Terrascan
(Terrasolid, Finland) for area subsetting and laser return classification.
The larger lidar dataset was subset into 1 km×1 km areas containing
EC flux stations within the same geographical area covered by one
MODIS pixel. Circular 11.3 m radius mensuration plots were also
extracted from the lidar for comparison with average plot-measured
canopy height and fractional cover. Lidar datasets were then filtered
for outlying returns greater than the height of the EC tower or lower
than 1.5 m below the ground surface. Datasets were then classified
into “ground” returns (Pground), “canopy” returns (above 1.3 m at OJP
and HJP75; and 0.7 m at HJP94) (Pcanopy), and “all” returns (which
included ground returns) (Pall). Pground was used to create a 2 m×2 m
digital terrain model (DTM) from which Pall and Pcanopy returns were
normalized relative to the ground surface. The DTM was created by
interpolating between ground returns within 2 m resolution pixels
using an inverse distance weighting procedure (IDW) (i.e. O'Sullivan
and Unwin, 2003) and a search radius of 3 m. This method was chosen
because it a) retains point values of the data; b) is a rapid interpolation
method, which is important when dealing with large volumes of lidar
data; and c) is appropriate for regularly spaced data (Myers, 1994).
Although the resolution of the lidar dataset is greater than 2 m, areas
of dense canopy foliage and individual alder bushes can reduce the
density of ground returns. Therefore a 2 m resolution was used to
avoid “holes” within the DTM.

Lidar canopy height models (CHM) were created from the
normalized maximum z-height (m) at jack pine sites using IDW at
1 m×1 m resolution. At HJP02, short vegetation and ground
topography could not be resolved between first, intermediate, and
last returns. This is due to the inability of lidar systems to distinguish
between returns separated by less than 1.6 m, depending on the lidar
systems used (Hopkinson et al., 2005). Therefore, comparisons at
HJP02 were limited to measured data only and did not include any
lidar data analysis. Fractional cover (fcover) (where 1=full canopy
cover and 0=no canopy cover) was estimated based on the ratio of the
number of canopy returns to the number of all returns within
1 m×1 m×height columns throughout each site:

f cover ¼ ∑Pcanopy
∑Pall

� �
: ð2Þ

The fcover or “return ratio” method has been examined in various
forms within numerous studies and closely approximates fractional
cover when compared with DHP (Morsdorf et al., 2006; Solberg et al.,
2006; Hopkinson and Chasmer, in review).
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2.4. MODIS GPP product

GPPMODIS (Collection 5) data were obtained from the Oak Ridge
National Laboratory (ORNL) Distributed Active Archive Center (DAAC)
(http://www.modis.ornl.gov/modis/index.cfm) and was subset into
3 km×3 km areas (9 pixels) at OJP, HJP75, HJP94 and HJP02 flux tower
sites. Eight-day cumulative periods were compared with the same
cumulated GPP periods observed from EC. Only days that contained
the best quality controlled MODIS data for all nine pixels were
included. The estimation of GPP by MODIS is described in detail in
Running et al. (1999), Zhao et al. (2005), and Heinsch et al. (2006).

3. Methods

In this study, four methods are used to estimate GPP. These include
EC (GPPEC), Landberg curves based on local plot measurements
(GPPLandsberg), Landsberg curves based on airborne lidar (surrounding
the EC) within the area covered by one MODIS pixel (GPPlidar), and
MODIS pixel estimates containing the EC (GPPMODIS). GPPLandsberg has
been modeled in 2004 and tested and compared in 2005. Table 3
provides a summary of the four methods that are used. Further
discussion of the methodologies used to define these estimates is
found in the following sections.

3.1. Objective 1: Landsberg light response curve analysis and development
of GPP model

The first objective makes comparisons between Landsberg input
variables used to predict GPP from light response curves and canopy
structure attributes at the jack pine chronosequence during the
growing season of 2004. The purpose is to first determine if there is a
relationship between canopy structure and Landsberg input variables,
and if there is, to then develop GPP models based on canopy structure
and Landsberg principles.

The Landsberg Eq. (1) (e.g. Landsberg and Waring, 1997; Chen et al.,
2002) was used to examine the relationships between daily average
incoming PAR and GPPEC per site during 2004. Fitted values for Pmax and
α were compared to canopy height across sites and the fitted value for
Icompwas comparedwith average fractional cover across sites to estimate
GPP (GPPLandsberg). However, fractional cover was not actually measured
in 2004. To estimate fractional cover in 2004, DHP plot measurements
were adjusted based on percentage differences in fractional cover
measurements made by PAR sensors between 2004 and 2005:

Fractional cover ¼ PARACA−PARBC↓
� �

=PARACA; ð3Þ

and at HJP94 and HJP02:

Fractional cover ¼ PARACA 1−e−kL⁎
� �

=PARACA ð4Þ

where PARAC↓ is above-canopy incoming PAR, and PARBC↓ is incoming
below-canopy PAR after interception with branches and leaves. L is
LAI, and k is the extinction coefficient estimated as a constant 0.45 for

simplicity (Chen et al., 2006). Measured fractional cover [3, 4] was
examined during diffuse radiation conditions only and then averaged
throughout the growing season. Based on results of Middleton et al.
(1997) we have assumed that canopy fractional cover did not vary at
the jack pine sites within the growing seasons studied.

Measured below canopy PAR percent differences between the two
years were used to vary site-averaged estimates of fractional cover
between 2004 and DHP measurements in 2005. PAR adjusted DHP
fractional cover was estimated as 0.57 (OJP), 0.73 (HJP75), 0.41
(HJP94), and 0.22 (HJP02) in 2004. Measurement of average fractional
cover by DHP was 0.59 (OJP), 0.72 (HJP75), 0.39 (HJP94) and 0.29
(HJP02) in 2005. Meteorological conditions during 2004 were similar
to 2005; however, a severe drought in 2003 and a late, cool spring in
2004 may have caused slight reduction in foliage cover at some sites
(Chasmer et al., 2008).

Tree heights also were not measured in 2004 and were estimated
based on jack pine forest growth rates in Manitoba and Saskatchewan
(Burns and Honkala, 1990). Average growth rates are approximately
0.15 m from ages one to two, 0.23 m per year from ages five to eight
years, 0.33m per year at age 30, and 0.23 m per year at age 50. Canopy
heights for 2004 were reverse estimated and averaged from the 2005
field plot data as 13.97 m (OJP), 5.64 m (HJP75), 1.37 m (HJP94), and
0.15 m (HJP02).

3.2. Objectives 2: GPP model assessment

GPP was modeled based on the relationships between canopy
height and fractional cover, and Landsberg curve inputs in 2004. To
test the applicability of themodel, the structure-based GPPmodel was
run during the 2005 growing season by substituting 2005 measured
canopy height and fractional cover, and incoming PAR into the
Landsberg equations (GPPLandsberg). GPPLandsberg was then compared
with GPPEC in 2005.

Root mean square error (RMSE), systematic RMSE (RMSEs) and
unsystematic RMSE (RMSEu) were used to evaluate the accuracy of
GPPLandsberg when compared with GPPEC. RMSE provides a measure of
the average differences between observed and predicted GPP, whereas
RMSEs and RMSEu provide measures of the systematic biases and
unsystematic or random biases un-related to the model (Rymph,
2004). RMSEs and RMSEu were calculated as:

RMSEs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
P̂i−Oi

� �2

n

vuuut
ð5Þ

and

RMSEu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Pi−P̂i

� �2

n

vuuut
ð6Þ

where Oi is the GPPEC, Pi is the GPPLandsberg, Pi=mOi+b, and m and b
are the slope of the regression lines and Y-intercepts, respectively

Table 3
Summary of GPP methods estimated using EC, plot measurements, airborne lidar, and MODIS

GPP estimation
method

Description Growing season examined Data inputs

GPPEC GPP estimated using EC 2004 and 2005. 2005 comparedwith all other GPPmethods. NEE, Re
GPPLandsberg GPP estimated using canopy structure

inputs from forest plot measurements
Method developed in 2004, tested in 2005.
2005 compared with all other GPP methods.

Incoming PAR, average measured
tree height and fractional cover

GPPlidar GPP estimated using area averaged canopy
height and fractional cover from airborne lidar.
Average areas include that within MODIS
pixel area including the EC (1 km×1 km)

2005 compared with all other GPP methods. Incoming PAR, lidar average tree h
eight and fractional cover

GPPMODIS GPP estimated from MODIS within the
pixel containing the EC at each site.

2005 compared with all other GPP methods. Incoming PAR, MODIS fPAR product,
and LUE determined from a look-up table.
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(from Rymph, 2004). Models that performwell have low RMSE, RMSEs
should be close to zero and the RMSEu should be close to the RMSE.
Low measurements of RMSEs indicate that the model is predicting at
maximum accuracy and the sources of errors are random and not
related to the model (Rymph, 2004).

3.3. Objective 3: model application and comparison

The third objective uses airborne lidar to spatially model GPP
(GPPlidar) within the 1 km×1 km area surrounding the EC station
(equivalent to one MODIS pixel) at 1 m resolution during the growing
season of 2005. Average canopy height from the CHM and lidar
fractional cover (fcover) are input into the Landsberg GPP model
(Objective 1) to estimate GPP (GPPlidar). GPPlidar is compared with
GPPMODIS and GPPEC, cumulated over 8-day periods during the growing
season of 2005. The purpose is to compare GPPlidar at the MODIS pixel
scale with GPPEC at the flux footprint scale and GPPMODIS at 1 km
resolution to determine if differences in GPP exist as a result of spatial
variability in canopy structure beyond the footprint of the EC station.We
hypothesize that GPPLidar and GPPMODIS will be more similar thanwhen
compared with GPPEC because the same area will be included in the
estimation of GPP using remote sensing methods, whereas GPPEC will
sample a smaller area within the larger MODIS pixel. The maximum

source area of the footprint extends to up to 1 km at OJP and HJP75,
250 m at HJP94, and 150m at HJP02 during convective daytime periods
(Chasmer et al., accepted for publication).

3.4. Objective 4: GPP scaling analysis

The final objective aggregates GPPlidar from 1 m to 25 m, 250 m,
500 m, and 1000 m resolutions to determine the influence of within
pixel patches on GPP estimation. This is done by averaging from
higher resolution pixels (i.e. 1 m) to lower resolutions in ArcGIS (ESRI,
CA). When scaling from 1m to 25m resolution, for example, themean
of all 1 m resolution pixels within the 25 m×25 m area are used to
estimate a single value of GPP at 25 m resolution. This was repeated
for all pixels within each MODIS pixel area (i.e. 1 km×1 km). The same
methodology was then applied to other resolutions by aggregating
all 1 m×1 m pixels within 250 m×250 m, 500 m×500 m, and
1000 m×1000 m pixels by retaining the individual 1 m resolution cell
values of GPP. The mean GPPlidar of the lower resolution pixels was
used following results of Woolard and Colby (2002). They found that
themeans of the aggregated pixels were statistically most appropriate
when compared with other methods of aggregation (i.e. central pixel
resampling, median, etc.) and retained patterns in the landscape at
varying scales. Comparisons between resolutions were then made by
subtracting each lower resolution pixel from 1 m×1 m pixels.

4. Results

4.1. Objective 1: comparisons between Landsberg inputs and canopy
structure

IncomingPAR accounted for 60%, 54%, 61%and8%of thevariabilityof
30-minute average GPPEC at OJP, HJP75, HJP94, and HJP02 (Table 4,
Fig. 1). Landsberg curve relationships between GPPEC and incoming PAR
indicate that saturation occurred at different levels of PAR depending on
the forest age and the structural characteristics of the site. This indicates
that canopy structure plays a role in thevariability in CO2 uptake per site,

Table 4
Parameters (Pmax, Icomp, and α) used in Landsberg curves and the correlation between
incoming PAR and GPP described by the Landsberg curve

Site Pmax

(μmol m−2 s−1)
α (scaling) Icomp

(μmol m−2 s−1)
Correlation (r2) between
incoming PAR and GPP
described by Landsberg curve

OJP 10.37 0.0048 12 0.60
HJP75 9.25 0.0035 14 0.54
HJP94 6.53 0.0028 10 0.61
HJP02 1.71 0.0011 8 0.08

Landsberg input parameters have been determined from all 30-minute periods of PAR
and GPP measured during the growing season of 2004.

Fig. 1. Landsberg model light response curves and relationships between observed 30-minute incoming PAR (μmol m−2 s−1) and GPP (μmol m−2 s−1) during the 2004 growing season.
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and the non-linearity of the Landsberg curves. GPP saturated at
incoming PAR levels of approximately 800, 700 and 450 μmol m−2 s−1

at OJP, HJP75, HJP94 and almost immediately at HJP02.
Relationships between average measured tree heights, measured

fractional cover and Landsberg input variables are shown in Fig. 2
for 2004. Pmax was positively related to average canopy height
(r2=0.99), where taller trees had greater average maximum GPP at
saturation than shorter trees at the sites studied. The relationship
was non-linear, where increases in Pmax with height were greatest
between HJP02 and HJP94, and leveled off between HJP75 and OJP.
Relationships between Pmax and fractional cover were lower, but still
non-linear (r2=0.74). Icomp was linearly related to the average
fraction of foliage cover within each stand (r2=0.99) and non-
linearly related to canopy height (r2=0.80). The scaling function (α)
also varied with canopy structure (r2=0.97, canopy height; 0.68,
fractional cover). α was greatest at OJP and was slightly lower at
HJP75 and HJP94. At HJP02, the scaling function was much lower
than at other sites.

Based on the relationships between plot measured canopy
structure (Table 1) and Landsberg input variables (Fig. 2), canopy
structure obtained either from plot measurements may be used to
model GPP. Pmax, Icomp, and α can be substituted into the Landsberg
equation (including daily incoming PAR) based on logarithmic and
linear relationships between sites as follows:

Pmax ¼ 2:8� Ln tree heightð Þ þ 6:50; ð7Þ

Icomp ¼ 13:7� fraction coverð Þ þ 5:17; ð8Þ

and

α ¼ 0:0008� Ln treeheightð Þ þ 0:0026: ð9Þ

Application of these relationships is suitable only for the sites
examined in this study. Relationships between measured canopy
structure and Landsberg inputs should be examined at other sites.

4.2. Objective 2: comparing GPP predicted from height and fractional
cover with GPPEC

In the second objective, GPPLandsberg [Eqs. (7), (8), and (9)], is tested
and compared with GPPEC during the 2005 growing season at each
site. Average canopy cover and tree heights from plot measurements
were used to estimate GPPLandsberg (Table 3; Fig. 3).

GPPLandsberg (Table 5) comparedwellwithGPPEC at all sites butHJP02
in 2005. The slopes of the linear regression (ideally 1.00) were between
0.72 and 0.78 at OJP, HJP75, and HJP94. The Y-intercept was close to zero
at HJP94 and HJP02, but high at OJP and HJP75 (2.28 g C m−2 d−1, and
1.31 g C m−2 d−1). This indicates that GPPLandsberg was over-estimated at
OJP and HJP75 for low values of GPPEC. Table 5 provides measures of
GPPLandsberg model accuracy when compared with GPPEC. Examination
of daily GPPEC using probability plots (not shown) indicate that OJP and
HJP02 were normally distributed in 2004, whereas HJP75 and HJP94
were not normally distributed. In 2005,when themodelwas tested, OJP,
HJP75, and HJP94 were normally distributed, whereas HJP02 was not.
Either Pearson's r or Spearman's rank correlations are shown for each
site because Pearson's r correlation requires that data are normally
distributed, whereas Spearman's rank does not. Daily RMSE was less
than 10%of themeandailyGPP, and systematic errors varied by less than
∼14% of the mean daily GPP at HJP75, HJP94, and HJP02. Unsystematic
errors were lower than systematic errors at all sites, except HJP75,
indicating that predictedGPPmayhave been influenced by other factors
at this site. At OJP, however, the model did not perform as well,
indicating that predicted GPP was prone to some systematic biases and
could be further refined.

4.3. Objective 3: comparing GPPEC with GPPMODIS and GPPlidar

Airborne lidar provided reasonable estimates of canopy fractional
cover (based on annulus rings 1–9) at 40, 40, and 30 DHP locations
within OJP, HJP75, and HJP94, respectively. Correlations (r2) between
measured vs. lidar fcover were 0.86 for all DHP plots combined. Due to

Fig. 2. Site-level relationships between a) Pmax and average measured tree height; b) Icomp and average measured fractional foliage cover from DHP; and c) α and average measured
tree height estimated in 2004.
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reduced variance for individual forest cover types, however, the site-
specific (OJP, HJP75, and HJP94 (HJP02 has been excluded)) lidar and
DHP fractional cover correlations were not as strong (r2=0.22
(p=0.01), 0.09 (pb0.1), and 0.21 (p=0.01), respectively). This indicates
that the fcover method works well over variable canopy structures,
but not as well within a single ecosystem of little variability. Average
percent differences between measured and lidar-estimated fcover
were 19% (standard deviation (stdev.)=9%, OJP), 15% (stdev.=9%,
HJP75) and 36% (stdev.=22%, HJP94). Comparisons between plot-
averaged measured tree height and lidar canopy heights, based on the
90th percentile of the return distribution, were strong (r2=0.99) and
followed an almost 1:1 relationship. Site-specific correlations were
also strong at OJP (r2=0.88) and HJP75 (r2=0.83), but were weak at
HJP94 (r2=0.18, p=0.32). This was due to the low height of the trees at
HJP94 resulting in reduced probability of multiple returns and
increased penetration of pulses into surrounding tall grasses and
shrubs (Hopkinson et al., 2005). From the results presented here and
elsewhere, lidar can provide a map of the spatial variability of canopy
height (e.g. Hopkinson et al., 2005) and fcover (e.g. Morsdorf et al.,
2006) for use in the Landsberg-based GPP model over large areas.

Direct comparisons between GPPEC, GPPMODIS, and GPPlidar are
shown in Fig. 4. Adjacent MODIS pixels provide maximum and

minimum ranges (as error bars) of GPP and were used as bounds for
geo-location errors that occur as a result of sensor geometry, earth
curvature, and ground surface topography (e.g. Wolfe et al., 2002;
Turner et al., 2004).

Mixed pixels may have had some influence on the relationships
between GPPEC, GPPlidar, and GPPMODIS (Fig. 4). Table 6 provides
Pearson's r correlation coefficients between GPPEC, GPPlidar and
GPPMODIS and the average percent difference when compared with
each other for all sites examined. OJP is relatively homogeneous
throughout the entire MODIS pixel. Lidar estimated average
(1 km×1 km area surrounding the EC) fcover was 0.62 (slightly
higher than measured, 0.59) and average canopy heights were much
lower than that measured at plots (11.2 m) (Table 1). At OJP, GPPlidar
underestimated eight-day total GPPEC by 11%, whereas GPPMODIS

underestimated eight-day total GPPEC by 6%, on average (Fig. 4,
Table 6). The differencesmay have been due, in part, to shorter average
vegetation heights within the larger MODIS pixel as opposed to taller
trees within the footprint of the EC system.

At HJP75, average lidar canopy height and fcover (5.67 m, 0.47)
were lower than plotmeasurements (Table 1), whichmay have caused
some underestimation of GPPlidar (6%) when compared with GPPEC
(Fig. 4, Table 6). MODIS underestimated GPPEC by 9%, on average.

Table 5
Measurements of the accuracy of GPPEC vs. GPPLandsberg (n=122) during the growing season of 2005

Site RMSE (g C m−2 d−1) RMSEs (g C m−2 d−1) RMSEu (g C m−2 d−1) Pearson's correlation coefficient (r) (p) Spearman's rank correlation (p)

OJP 1.59 1.38 0.75 0.76 (0.000) –

HJP75 0.66 0.42 0.87 0.86 (0.000) –

HJP94 0.63 0.46 0.39 0.87 (0.000) –

HJP02 0.45 0.37 0.26 – 0.28 (0.002)

p-values are included in brackets. Pearson's r correlation is appropriate for OJP, HJP75 and HJP94, whereas Spearman's rank correlation is appropriate for HJP02.

Fig. 3. Comparisons between GPPEC and GPPLandsberg with the inclusion of measured canopy height and fractional cover during the growing season of 2005.
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When GPPMODIS was compared with GPPlidar, average differences of 6%
were found. The standard deviation of differences were greatest
between GPPEC and remote sensing estimates (GPPlidar, and GPPMODIS)
(16% and 24%, respectively), but were less when comparing between
GPPlidar and GPPMODIS (14%).

At HJP94, the footprint area of the EC covers approximately 50% of
the MODIS pixel for the site. The remaining 20% and 30% of the pixel
contains older jack pine stands with average tree heights of 12 m and

6.5 m, respectively. Tree heights and fcover within the MODIS pixel
area were also greater (5.2 m, 0.32) than those measured within plots
near the tower (Table 1). Average GPPlidar underestimated GPPEC by
6%, especially towards the end of the growing season, whereas
GPPMODIS overestimated GPPEC by 17% and GPPlidar by 18% (Fig. 4,
Table 6). The standard deviation of the differences were also smallest
when comparing GPPlidar with GPPMODIS (17%) but larger when
comparing between GPPEC and GPPMODIS (31%).

4.4. Objective 4: assessing the influence of site heterogeneity — scaling
GPP from 1 m to 1000 m

From the results of the previous section, it is evident that
differences between GPPLidar, GPPMODIS and GPPEC may depend, in
part, on the location and distribution of “patches” of vegetationwithin
mixed pixels. Individual MODIS pixels may include areas of diverse
vegetation cover, ranging from recent clearcuts and grasslands, to
older and/or more productive forests, wetlands, and agricultural areas
(Milne and Cohen, 1999). It is not clear if within-pixel patches have
influenced pixel average GPPlidar and GPPMODIS when compared with
GPPEC. To examine the influences of spatial heterogeneity in
vegetation structure, 1 m resolution GPPlidar, estimated for a single
day, was aggregated by averaging to 25 m, 250 m, 500 m, and 1000 m
pixel resolutions and then subtracted from 1 m pixels to demonstrate
where GPP differences may exist between adjacent patches of
vegetation types (Fig. 5).

After aggregating 1 m GPPlidar to lower resolutions, and
subtracting them from the original 1 m GPPlidar dataset, GPPlidar
was found to vary by almost 10% at the heterogeneous HJP94 site
when lower resolutions were used (Table 7). We can start to see the
effects of aggregation in Fig. 5a, (3rd panel) at HJP94. Differences
between 1 m and 25 m resolutions along the outer edges of the
HJP94 site (rectangular area located in the centre of the pixel) were
over-estimated by 25 m resolution pixels compared with 1 m
resolution pixels, due to edge effects and averaging between taller
and shorter vegetation. A t-test confirms that significant differences
between 1 m and 25 m resolution pixels exist at HJP94 (p=0.000,
n=1600), and to a lesser extent between 1 m and 250 m resolutions
(p=0.10, n=16). The greatest deviations were found at HJP94 at pixel
resolutions between 25 m and 500 m, which underestimated
average GPP (when compared with 1 m resolution) by up to 10%
over the 1 km pixel, and by as much as 5 g C m−2 d−1 (140%) when
compared with 1 m resolutions. These results exemplify the
averaging of GPP that occurs as resolution decreases. At HJP75, as
pixel resolution decreased to 500 m, pixel average GPP also
decreased indicating that short vegetation surrounding the site
had some influence on average GPP at lower (e.g. 500 m) resolutions.
Slight edge effects at 25 m resolution can be found at HJP75 (Fig. 5a,
2nd panel) between shorter vegetation along the outer edges of the
site, and taller vegetation within the site, however, differences
between higher and lower pixel resolutions were not significant.
Systematic over- and under-estimation of GPPlidar was not found at
OJP and average differences between high and low resolution pixels
were less than 1.5%. Significant differences at OJP exist between 1 m
and 25 m resolution pixels (p=0.05, n=1600), but not at lower

Table 6
Pearson's r correlations between GPPEC, GPPlidar, and GPPMODIS including p-values (in brackets)

Site Pearson's r correlation
GPPEC and GPPlidar

Average % difference=
GPPEC GPPEC–GPPlidar

Pearson's r correlation
GPPEC and GPPMODIS

Average % difference=
GPPEC GPPEC–GPPMODIS

Pearson's r correlation
GPPlidar and GPPMODIS

Average % difference:=
GPPlidar GPPlidar–GPPMODIS

OJP 0.71 (0.003) 11% 0.64 (0.030) 6% 0.77 (0.003) 8%
HJP75 0.70 (0.004) 6% 0.39 (0.270) 9% 0.81 (0.004) 6%
HJP94 0.63 (0.280) 6% 0.64 (0.100) −17% 0.59 (0.04) −18%

Average percent differences are shown for eight-day composite periods (where data were available) over the growing season, 2005.

Fig. 4. Eight-day cumulative average GPP comparisons between GPPEC, GPPMODIS, and
GPPlidar at a) OJP; b) HJP75; and c) HJP94. Error bars onMODIS data indicate the range of
GPP recorded for eight adjacent pixels (to the centre one, nine in total).
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resolutions. The effects of pixel averaging at OJP and HJP75 were not
great as at HJP94 because these sites are relatively homogeneous and
were not subject to large pixel differences as a result of structural
heterogeneity. Similar observations have been found in Reich et al.
(1999) who show that differences in photosynthetic capacity

of vegetation patches can affect the averaging of pixels at lower
resolutions.

The results of Fig. 5 and Table 7 provide a good rationale for using
low resolution MODIS vegetation products within homogeneous sites,
and higher resolution products (e.g. 25 m) within heterogeneous sites.

Fig. 5. Differences between GPPlidar on June 16, 2005 (as an example) at 1 m resolution and a) 25 m b) 250 m; c) 500m; and d) 1000m pixels. Maps of GPPlidar illustrate more and less
productive parts within 1 km×1 km MODIS pixel areas. Low resolution pixels were subtracted from 1 m resolution pixels at each site. Positive differences indicate that lower
resolutions underestimate GPP compared with 1 m resolution, whereas negative differences indicate that lower resolutions over-estimate GPP when compared with 1 m resolution.
White areas equal missing data due to short vegetation.
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Depending on the location of patches within pixels, the averaging that
occurs within decreasing resolutions may be prone to large and
compounding errors in GPP (e.g. Kimball et al., 1999).

5. Discussion

5.1. Influences of site heterogeneity

Low standard deviations in the range of differences between
GPPlidar and GPPMODIS indicate the importance of comparing MODIS
GPP products over homogeneous pixels where EC systems exist. HJP94
and to a lesser extent, HJP75 are considered “mixed pixels” because
they contain some areas of taller and shorter vegetation and variable
canopy fractional cover. If applied over an entire MODIS pixel, we
expect that GPPlidar and GPPMODIS would be similar because the same
pixel area containing the same average vegetation characteristics was
used to estimate GPP. In principle, greater differences should exist
when comparing predicted GPP (MODIS or lidar) with GPPEC because
EC samples only part of the mixed pixel and, therefore, does not
represent other landcover types within that pixel. If EC provides only
partial coverage of the pixel, then it may be more appropriate to apply
a lidar-based or ecosystem model approach over the entire pixel to
reduce differences that may be caused by mixed pixels. Alternatively,
the spatially variant footprint can be modeled and within footprint
lidar-based canopy attributes extracted to scale from point to
landscape scales (e.g. Chasmer et al., accepted for publication).

5.2. Other influences affecting MODIS vs. EC GPP

Differences between EC, MODIS and lidar-modeled GPP may also
be due to energy balance closure, and biome-specific estimates of LUE
and fPAR used by MODIS. EC is prone to underestimating CO2 fluxes,
and differences between GPPEC and GPP estimated using lidar and
MODIS may be affected by this. Barr et al. (2006) found that energy
balance closure at OJP was 0.86% (±0.003) for daytime periods when
friction velocity was greater than 0.35 m s−1. Lack of energy balance
closure is sometimes believed to lead to deficits in measured fluxes
(Barr et al., 2006; Baldocchi 2008). This uncertainty is minimized, in
part, by applying an energy balance correction to the measured fluxes
so that deficits are reduced. Baldocchi (2008) suggests that adjusting
for energy balance closure may not be appropriate because under-
estimates in the energy balance may not be manifest in under-
estimates in CO2 fluxes. Energy balance correction has been applied to
all sites examined in this study (Barr et al., 2006), whichmay have also
increased differences between GPPMODIS and GPPEC.

The use of LUE and estimation of fPAR by MODIS may also
introduce additional errors. MODIS typically uses a biome-specific
look-up table of LUE, varied with changes in air temperature (Tair) and
vapour pressure deficit (VPD) (e.g. Heinsch et al., 2003). However, LUE
between vegetation species, age classes, previous disturbance, and
meteorological drivers tends to vary greatly (e.g. McCrady and Jokela,

1998; Lagergren et al., 2005; Jenkins et al., 2007; Pereira et al., 2007;
Schwalm et al., 2006; Chasmer et al., 2008), despite the simple
application of LUE in the MODIS GPP algorithm (Turner et al., 2003).
With respect to meteorological driving mechanisms, Jenkins et al.
(2007) found that PAR had the greatest influence on measured gross
carbon exchanges, whereas Tair and VPD had only weak influences.
Lagergren et al. (2005), on the other hand, found the opposite to be
true. Chasmer et al. (2008) found that the importance of meteor-
ological drivers on LUE varied with forest age, as did LUE. When
applying the MODIS biome-specific estimate for LUE, linearly varied
with measured Tair and VPD, Chasmer et al. (2008) found that average
growing season LUE was underestimated by 40% at a mature jack pine
forest, and between 14% and 16% within younger jack pine stands
when compared with measured LUE.

The estimation of fPAR by MODIS could also increase differences
between EC-measured GPP and that of MODIS. For example, Turner
et al. (2006) found that MODIS underestimated measured GPP in
highly productive sites and overestimated measured GPP in low
productivity sites. Heinsch et al. (2006) also found that MODIS often
over-estimates fPAR, which is used as a multiplier with LUE to
estimate GPP. Therefore, low biome-specific estimates of LUE may be
used to offset over-estimates of fPAR by the MODIS algorithm (e.g.
Zhao et al., 2005; Turner et al., 2006; Heinsch et al., 2006). When
compared over an entire watershed (99 MODIS pixels), Chasmer et al.
(in press) found that MODIS overestimated fPARwhen compared with
lidar estimates of the same in approximately 22% of the watershed,
especially where pixels contained mixed vegetationwith low biomass
(e.g. cleared areas). However, in 30% of the watershed, that which
contained areas of high biomass, MODIS slightly underestimated fPAR
when compared with lidar. These results may also have contributed to
the differences between GPPMODIS and GPPEC.

5.3. Implications of this research

The results of this study indicate that airborne scanning lidar is a
useful tool for scaling between ECmeasurements and lower resolution
satellite products. Whilst it does not measure the reflective properties
of the canopy, which may be directly applicable to MODIS, it does
provide information on three-dimensional vegetation structure. The
ability to accurately estimate canopy fractional cover and leaf area
from lidar within one to many MODIS pixels has many benefits. These
include, but are not limited to, continuous scaling of leaf area over
varying pixel resolutions, significantly reduced time and costs
associated with extensive LAI measurements within and beyond
pixels, and the ability to map and discretize the three-dimensional
foliage areawith depth into the canopy. Running et al. (1999) provide a
list of measurements that are useful for validating MODIS using
ecosystem models. Several of these can be accurately obtained from
airborne lidar and may be incorporated into ecosystemmodels. These
include: a) light transmission (e.g. Solberg et al., 2006; Thomas et al.,
2006; Hopkinson and Chasmer, 2007); b) above ground biomass

Table 7
Summary statistics (percent differences) between GPP estimated at 1 m spatial resolution and lower resolutions per site

Site Difference statistics due to pixel
resolution

Pixel resolution (subtracted from 1 m)

1 m×1 m 25 m×25 m 250 m×250 m 500 m×500 m 1000 m×1000 m

OJP Average pixel GPP (g C m−2 d−1) 4.22 4.21 4.27 4.26 4.22
Mean % difference from 1 m 0 −0.2 1.2 0.9 0
Pixel (GPP) standard deviation 0.30 0.24 0.19 0.17 0

HJP75 Average pixel GPP (g C m−2 d−1) 4.54 4.55 4.55 4.41 4.54
Mean % difference from 1 m 0 0.2 0.2 −2.8 0
Pixel (GPP) standard deviation 0.44 0.46 0.59 0.57 0

HJP94 Average pixel GPP (g C m−2 d−1) 3.65 3.29 3.31 3.31 3.56
Mean % difference from 1 m 0 −9.9 −9.3 −9.3 −2.5
Pixel (GPP) standard deviation 1.53 1.52 1.25 1.5 0

Negative signs represent underestimation of GPP by lower resolution pixels.
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(Patenaude et al., 2004; Omasa et al., 2007); c) leaf area index
(Magnussen and Boudewyn, 1998; Morsdorf et al., 2006; Hopkinson
and Chasmer, in review); d) canopy height (Naesset and Bjerknes,
2001; Hopkinson et al., 2005); e) aerodynamic roughness length and
zero plane displacement (Chasmer et al., accepted for publication);
and f) above-ground growth increment (Yu et al., 2004; Hopkinson
et al., 2007). The increasing popularity of lidar, and vast lidar data
collection and archiving projects (e.g. the USGS CLICK project, and the
Canadian LIMERIC data archive) have made lidar an accessible tool for
the evaluation of lower resolution remote sensing products. Repeat
surveys and small-area monitoring strategies are also gaining focus
(Hopkinson et al., 2007).

Lidar estimates of fractional cover at high resolutions may be
combined with incoming PAR (e.g. in this study) and other
meteorological driving mechanisms to produce spatial and temporal
maps of GPP. If ecosystem production models (e.g. SVAT, Running
et al., 1999; Biome BGC, Thornton et al., 2002; 3PGS, Coops et al.,
2007), were combined with airborne lidar, the results may provide
more appropriately scaled estimates of GPP forMODIS evaluation than
EC within mixed pixels. In this study, differences between GPPMODIS

and GPPlidar were not as large as differences between GPPEC. This was
due, in part, to the same area being compared between MODIS and
lidar. Within mixed MODIS pixels, EC samples the ecosystem of
interest, and may or may not provide an accurate description of GPP
for the entire MODIS pixel (Rahman et al., 2001). If the forest is
homogeneous and extends beyond the MODIS pixel, then compar-
isons between MODIS and EC should be similar, as was shown in this
study.

6. Conclusions

In summary, this study describes the application of a canopy
structure-based GPP model within both homogeneous and mixed
pixels for comparison with the MODIS GPP product. First, canopy
height and foliage fractional cover were compared with inputs used
in Landsberg light response curves during the growing season of
2004. Pmax was positively, but non-linearly, related to canopy height.
Similar relationships were also found between the canopy structure
and both the scaling factor (a) and Icomp. A GPP model was created
based on the strong relationships found between canopy structure
and Landsberg inputs. GPPLandsberg approximated GPPEC at HJP75 and
HJP94, but over-estimated GPPEC at OJP and under-estimated GPPEC
at HJP02.

Second, we used lidar inputs into the GPPLandsberg model (instead of
measured: i.e. GPPlidar) with GPPEC and the GPPMODIS within
1 km×1 km MODIS pixel areas surrounding the EC. When compared
over eight-day cumulative periods throughout the 2005 growing
season, the standard deviation of differences between GPPlidar and
GPPMODIS were less than differences between GPPEC at all sites.
Although OJP and HJP75 were relatively homogeneous surrounding
the EC system, lower canopy heights and leaf area may have resulted
in lower estimates of GPP by lidar and MODIS than measured. At
HJP94, MODIS overestimated GPP when compared with EC, possibly
due to taller trees with higher leaf area surrounding the site, but
outside of the fetch of the EC system. Differences in canopy cover and
tree height within and beyond the site did not have the same affect on
GPPlidar, which was slightly underestimated towards the end of the
growing season.

Finally, we examined the influence of coarser resolutions and
within-pixel averaging on GPPlidar at OJP, HJP75, and HJP94. We found
that the largest differences occurred at HJP94, especially when
aggregating pixels beyond 25 m. This provides a good rationale for
using high resolution spatial data in heterogeneous environments.
Further, the use of airborne scanning lidar greatly reduces the need for
extensive field validation, and is an appropriate method for scaling
between EC estimates of GPP and MODIS products.
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