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Abstract  Leaf Area Index (LAI) is an important measure of forest canopy structure that is often employed 
in physical environmental models as an input to precipitation interception, canopy radiative transfer and 
evapotranspiration loss computations. As models become more sophisticated and computing power 
increases, the accuracy and spatial variability of key model inputs like LAI becomes more important. As part 
of a study investigating hydrological and CO2 fluxes in the boreal forest ecoregion of northern 
Saskatchewan, this paper aims to test a method of mapping effective LAI (LAIe) from LiDAR. The model 
used is based on the assumption that the canopy is considered a turbid medium (analogous to Beers’ Law) 
and utilises the multiple return echo class and vertical intensity profile from LiDAR to simulate canopy gap 
fraction. However, extinction coefficient (k) remains unknown. LiDAR data were collected in 2005 and 
2008 over five forested stands ranging from immature to mature jack pine, mature aspen and mature black 
spruce. Coincident with the LiDAR collection, GPS located field samples of gap fraction were collected 
using digital hemispheric photography (DHP) for the purpose of training and testing the LiDAR LAIe 
model. Canopy gap fraction was computed from the LiDAR point cloud for 2 m resolution grids over the 
five sites, and from this, LAIe was derived.  LAIe was first executed without any optimisation of the gap 
fraction component by assuming an average k of 0.5. The predicted LAIe values for the co-located DHP 
plots were automatically extracted using a python script and cross-correlated with the field estimates to 
obtain an adjusted k for each of the stand types. The purpose of this paper is to examine the applicability of a 
LiDAR-derived LAI model and to illustrate how k effects differences in LAIe between pre- and post- 
optimisation. 
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INTRODUCTION 

 Leaf area index (LAI) is a metric describing the total leaf surface area per ground area.  LAI is 

an important input to numerous biogeochemical and coupled ecosystem-atmosphere models. 

Given that many biogeochemical models operate at the stand and landscape scale, tree- and plot-

level LAI estimated from high resolution three-dimensional remote sensing data would provide a 

means for better parameterizing these models. Light Detection and Ranging (LiDAR) data 

provides spatially contiguous point measurements of the three-dimensional characteristics of 

vegetation at the tree-, plot- and landscape-scales. The purpose of this study is to examine the 

applicability of a LiDAR-derived LAI model pre- and post-parameterisation within three dominant 

boreal forest ecosystems: mature black spruce, chronosequence jack pine, and mature aspen. 

 In this study, effective LAI (LAIe) is modelled using gap fraction derived from LiDAR 

(Hopkinson & Chasmer, 2007) and extinction coefficient. Extinction coefficient (k), is the fraction 

of radiation intercepted by the canopy, and varies between species as a result of canopy clumping, 

leaf angle distribution, and radiation type and direction (Richardson et al., 2009). The objective of 

this study is to calibrate k and improve LAIe within the three boreal forest species types.  
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METHODS 

 The data used were collected as part of Fluxnet-Canada (2002-2007) and the Canadian Carbon 

Program (2007-2011) networks. Located in the Boreal forest of Saskatchewan (Fig. 1) these sites 

include a three stage chronosequence of Jack Pine stands (mature, ~95 years old) harvested in 

1975, harvested in 1994), a mature aspen stand and a mature black spruce stand (Table 1).   
 

Table 1.  Forest plot descriptions and stand type 

Stand Description LAIe/DHP 

Training 

Plots 

LAIe/DHP 

Testing 

Plots 

JP All Jack Pine 

Sites 
75 56 

OJP Old Jack Pine 25 27 

HJP75 Jack Pine 

harvested in 

1975 

25 17 

HJP94 Jack Pine 

harvested in 

1994 

25 12 

OBS Old Black 

Spruce 
20 8 

OA Old Aspen 20 11 

  Fig. 1. Map showing location of study area 

 

 DHPs were collected at each plot (Hopkinson & Chasmer, 2009), using transects and five 

photograph (N, S, E, W and centre) plot methods. Digital images were analyzed using CAN_EYE 

software (http://www.avignon.inra.fr/can_eye/). CAN_EYE allows users to classify vegetation and 

sky, creating a two-tone image from which gap fraction and ultimately LAIe is calculated.   

 LiDAR data were collected in 2005 (JP chronosequence) and 2008 (JP chronosequence, OA, 

and OBS) by the Applied Geomatics Research Group coincident with DHP collection (Hopkinson 

& Chasmer, 2009). 

Data Analyses 

 Gap Fraction (P) was calculated using LiDAR intensity grids for each stand based on the 

model published by Hopkinson & Chasmer (2007). The model uses the intensity of LiDAR returns 

divided into 4 echo classes (first, last, single, intermediate) and accounts for two-way transmission 

loss for intermediate and last returns using a square root function. The ratio of these total returns to 

a subset of total ground (below canopy) returns is used to estimate gap fraction, which has been 

shown to compare well with results from DHP without calibration (Hopkinson & Chasmer, 2009): 
 

 P      (1) 

 

where subscripts denote the echo class and subset of each return. Thus, LAIe is modelled from the 

Beer-Lambert Law, whereby the canopy is assumed to be a turbid medium with randomly 

distributed foliage : 
 

        (2) 
 

Extinction coefficient (k) varies due to leaf angle distribution, radiation type and direction, and 

canopy structure and clumping (Bréda, 2003). Initially, a mid-value k of 0.5 is used because it is an 

accepted alternative to species specific values (Richardson et al., 2009). 
  

       (3) 
 

The k term in LAIeLiDAR (3) is then optimized for each stand type by rearranging the generic 
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equation (2) and using LAIeDHP to train a new estimate of k (kNEW): 
 

      (4) 
 

 A GIS-based tool was created to generate P and LAIe raster layers from 1 m LiDAR intensity 

grids (1). Mean LAIe was automatically extracted from within 11.3 m radius plots surrounding 

geo-registered DHPs. LAIe estimates from (3) were then compared to LAIeDHP to generate kNEW 

(4). The optimized kNEW value replaced the initial estimate of 0.5 in (3) to derive a corrected raster 

image of LAIeLiDAR. The model was then tested using independent LAIeDHP data for each stand 

type as well as all jack pine plots combined (Table 1).   
 

RESULTS & DISCUSSION 

 LAIe modelled using a mid-value 0.5 extinction coefficient revealed significantly different 

means when compared to DHP LAIe (p > 0.05) for all stands. LAIe for conifer stands was 

underestimated while the broad-leaved aspen stand was overestimated compared with field 

measurements (Fig. 2).  These results agree with Bréda, (2003) who found that broad-leaved 

stands experience higher levels of k than conifers. These results also emphasize the need for a 

more specific k for predicting LAIe from LiDAR data.     

 

 
Fig. 2. LAIeLiDAR compared with LAIeDHP for the training data subset. Grey symbols are 

estimated from k = 0.5.  Black symbols use kNEW. Dashed line is 1:1. 

 The inclusion of kNEW improved the LAIe model fit, reducing the RMSE by an average of 0.43 

across all stand types (Table 2).  The greatest improvement was observed in the OJP model while 

the lowest RMSE occurred in the HJP75 stand (Table 2). The average LAIe values also shifted, 

between -1.25 (OBS) and 0.43 (OA) with an average absolute shift of 0.43 across all stand types 

within the training subset after optimization. This magnitude of change is similar to the difference 

in LAIe between conifer and deciduous stands, suggesting a notable difference in canopy structure. 

Test plot LAIe results calculated using kNEW demonstrated no significant difference at the 95% 

level of confidence between LAIeLiDAR and LAIeDHP for all stands except HJP75 (p = 0.28).  This 

indicates a significant improvement in model predictions using kNEW.  Figure 3 is an example of a 

high resolution map that can be produced by this model. 
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Table 2.  Pre and Post-optimization statistics 

Stand Mean LAIeDHP 

 

Optimized  

LAIeLiDAR 

 

kNEW RMSE 

pre-optimized 

Training plots 

 RMSE 

post-optimized 

Training plots 

RMSE 

post-optimized 

Testing plots 
JP 1.17 1.17 0.24  0.71  0.35  0.32 

OJP 1.35 1.34 0.21  0.79  0.26  0.34 

HJP75 1.70 1.59 0.27 0.91 0.39 0.30 

HJP94 0.46 0.46 0.30 0.25 0.21 0.43 

OBS 2.42 2.42 0.24 1.34 0.49 0.56 

OA 1.71 1.71 0.63 0.67 0.44 0.42 
 

 

 

Fig. 3.  Estimates of LAIeLiDAR using kNEW within the 2008 OJP stand.  
 

CONCLUSIONS 

 These results indicate that improvement and optimization of k when modelling LAIe from 

LiDAR data will improve results, which are important for ecosystem model parameterisation using 

spatially continuous remote sensing data.  The model and optimization procedure presented offers 

the potential to improve spatially explicit parameterisations of rainfall interception, 

evapotranspiration and below canopy snow melt within GIS-based physical hydrological models 

by providing a high resolution map of LAIe. 
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