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Quantifying biomass production on rangeland in
southern Alberta using SPOT imagery

Kristin M. Grant, Dan L. Johnson, David V. Hildebrand, and Derek R. Peddle

Abstract. Vegetation biomass was estimated for ungrazed pastures in two grassland ecoregions of Alberta, Canada, using

multispectral 20 m SPOT satellite imagery and vegetation indices (VIs) for multitemporal imagery acquired throughout the

growing season with associated field validation data at four study areas. Eight VIs were tested as well as four different types

of transformations (linear, log, exponential, power) to ascertain the best predictive model. The Renormalized Difference

Vegetation Index and Transformed Vegetation Index provided the best overall prediction (r2 � 0.68) of the amount of

above-ground green biomass production, but only marginally better than the Normalized Difference Vegetation Index,

Modified Simple Ratio, and other indices tested. When assessed by subregion, the Foothills Fescue study areas had higher

discrimination (r2 � 0.72) and from more VIs than for Dry Mixedgrass (r2 � 0.61). In almost all cases a power function

best described the form of the relationship between biomass and imagery variables. Compared with green biomass

(current-year growth), the predictive power was lower when nonphotosynthetic vegetation (NPV, or carryover: dry, dead

matter primarily from the previous year) was included in the analysis (total biomass � green biomass � NPV). The six

VIs that used red and near infrared bands consistently outperformed the two VIs that used the green band. There was no

clear preference for a specific VI from this battery of tests, likely owing to the functional equivalence of many VIs. ANOVA

and Tukey tests showed significant variation between region and by sampling date for six imaging dates and field sampling

periods throughout the growing season, with a possible mid-season change in the rate of biomass production evident for

both green and total biomass. It was concluded that for regional studies elsewhere, a variety of VIs should be considered

and that transformations are recommended to improve statistical predictive capabilities. Other methods such as spectral

mixture analysis may be required to achieve improved results, particularly when including the important NPV component

of biomass. The ability of SPOT satellites to acquire imagery every 2�3 days enabled a more comprehensive multitemporal

study using high-spatial resolution data throughout the growing season, with important implications in terms of

operational monitoring programs.

Résumé. La biomasse végétale a été estimée pour des prairies non soumises aux activités de pâturage dans deux écorégions

de prairies en Alberta, au Canada, à l’aide d’images multispectrales de SPOT à 20 m de résolution et d’indices de

végétation (IV) dérivés d’images multidates acquises durant la saison de croissance en conjonction avec des données de

terrain sur quatre sites d’étude pour la validation. Huit indices de végétation ont été testés de même que quatre types

différents de transformations (linéaire, log, exponentielle et puissance) pour déterminer le meilleur modèle prédictif.

L’indice RDVI (Renormalized Difference Vegetation Index) et l’indice TVI (Transformed Vegetation Index) ont donné la

meilleure valeur globale de prédiction (r2� 0,68) de la production de biomasse aérienne verte, bien que leur performance

ne soit que légèrement supérieure à celle de l’indice NDVI (Normalized Difference Vegetation Index), de l’indice MSR

(Modified Simple Ratio) et des autres indices testés. Une évaluation par sous-région a montré que les zones d’étude de la

Prairie à fétuque affichaient une discrimination supérieure (r2 � 0,72) et cela pour plus d’indices de végétation que

dans le cas de la Prairie mixte sèche (r2� 0,61). Dans la plupart des cas, une fonction de puissance a permis de mieux

décrire la forme de la relation entre les variables de la biomasse et celles des images. Comparativement à la biomasse

verte (croissance de l’année en cours), le pouvoir prédictif était plus faible lorsque la part de végétation non-

photosynthétique (NPV ou matière sèche et morte datant principalement de l’année précédente) était incluse dans

l’analyse (biomasse totale � biomasse verte � NPV). Les six indices de végétation qui utilisaient les bandes du rouge et

du proche infrarouge affichaient de façon constante une meilleure performance que les deux indices utilisant la bande

verte. Aucun indice de végétation en particulier ne se distinguait clairement lors des nombreux tests effectués,

vraisemblablement à cause de l’équivalence fonctionnelle entre plusieurs des indices de végétation. Des tests d’ANOVA

(analyse de variance) et de Tukey ont montré des variations significatives entre les régions et selon les dates
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d’échantillonnage pour six dates d’acquisition et périodes d’échantillonnage sur le terrain durant la saison de croissance,

avec un changement possible observé en mi-saison dans le taux de production de biomasse évident pour la biomasse verte

et la biomasse totale. En conclusion, pour des études régionales réalisées ailleurs, plusieurs indices de végétation différents

devraient être pris en considération et il est recommandé de procéder à des transformations pour améliorer le potentiel

prédictif des statistiques. D’autres méthodes, comme l’analyse des mélanges spectraux, peuvent s’avérer nécessaires pour

atteindre de meilleurs résultats, en particulier lorsque l’on inclut la composante importante qu’est la NPV de la biomasse.

La capacité des satellites SPOT d’acquérir des images à tous les 2�3 jours a permis de réaliser une étude multitemporelle

plus détaillée en utilisant des données à haute résolution spatiale tout au long de la saison de croissance, ce qui constitue

un atout important en termes des programmes opérationnels de suivi.

[Traduit par la Rédaction]

Introduction

Rangeland and pastures are important because they

provide forage for livestock grazing as well as benefits

such as grassland cover that reduces erosion, provides

habitat for threatened species, supports important biodiver-

sity, and provides a variety of other ecosystem services.

Grasslands are also the largest of the Earth’s four major

types of vegetation (Sims, 1988), are among the most

productive agricultural lands on Earth (Guo et al., 2000),

and are important in the carbon cycle (Li et al., 2004; Black

and Guo, 2007). Satellite remote sensing is advantageous for

regional-scale grassland assessment owing to its spectral

domain, temporal archives, and large area coverage (Inoue,

2003; Guo et al., 2000; Zhang and Guo, 2007; Piwowar,

2009). Satellite imagery has also been used effectively in

studies of biosphere�atmosphere functioning, for example

the First ISLSCP (International Satellite Land Surface

Climatology Program) Field Experiment (FIFE) in the

tall-grass prairie of Kansas, USA (Hall et al., 1992; Sellers

et al., 1992). In southern Alberta, drought is frequent in this

semi-arid region and results in reduced productivity and

economic loss. Species composition and rangeland biomass

vary as a function of climatic conditions associated with

subregions within the six natural regions of the province.

Monitoring and prediction of a variety of grassland

biophysical variables (Rahman and Gamon, 2004) such as

vegetation biomass (Boutton and Tieszen, 1983; Davidson

and Csillag, 2001; Mutanga and Skidmore, 2004) is thus

critical, as well as for large jurisdictional monitoring

programs (e.g., national, provincial or state, county).

In the context of operational monitoring programs

encompassing large areas, it is important for remote sensing

image analysis methods to be feasible and cost effective in

terms of imagery (appropriate and available), field data

requirements (minimal � preferably validation only), proces-

sing complexity (low), and speed (fast). Vegetation indices

(VIs) are common and straightforward image analysis

procedures (Tucker, 1979) that are suitable for rangeland

and grassland applications (Duncan et al., 1993; Guo et al.,

2000; Price et al., 2002; Henderson and Piwowar, 2006;

Zhang and Guo, 2008; He et al., 2009). Although other

more sophisticated approaches exist such as spectral mixture

analysis (SMA) and other forms of modeling that address

issues such as subpixel scale mixing, spatial variability and

physical�structural interactions, it is important to first test

VIs to assess their viability, which is the focus of this study.

VIs offer the advantages of computational simplicity and

rapid processing, and some VIs require little or no

associated inputs other than image data.

The theoretical and physical bases for VIs (Rouse et al.,

1973) are driven by the different spectral response of

vegetation at certain portions of the electromagnetic spectrum

(Gates et al., 1965), with the most commonly used spectral

regions being at red and near-infrared (NIR) wavelengths.

The primary biophysical controls on the interaction of energy

with plants (McCoy, 2005) involve plant pigments in the

visible portion of the spectrum and cell structure in the NIR.

Healthy vegetation with abundant chlorophyll absorbs energy

at blue and red wavelengths, with high reflectance in the green

(thus its green colour). In contrast, at NIR wavelengths

reflectance is determined primarily by cell structure and is

much greater than even the peak visible reflectance attributed

to pigmentation. The spectral response variation by plant

type and species is much greater in the NIR due to differences

in cell structure, even for plants that have similar pigment

levels (and are thus difficult to distinguish using visible

wavebands only). Mathematical indices based on the overall

contrast in reflectance from visible (usually red) and NIR

wavelengths have thus been devised and have been linked to

various attributes such as leaf area index (LAI), biomass,

vegetation health, and productivity.

There is a wide variety of VIs available as well as methods

for deriving statistical predictive models, yet the appropri-

ateness of these in the context of a large-area regional scale

biomass monitoring program in Alberta using high-

resolution (e.g., SPOT) satellite imagery has not been

sufficiently assessed. Therefore, the objective of this study

was to perform rigourous tests of different VIs and

predictive model transformations in this context and to

recommend a VI and predictive models for deriving grass-

land biomass in southern Alberta rangeland using satellite

imagery that may be applicable throughout the region and

possibly elsewhere. To achieve this validation ground data

were collected to compare actual amounts of vegetation on

rangeland fields against results obtained from eight VIs and

with four different transformations as derived from remotely

sensed satellite imagery throughout a growing season at

different study areas representative of regional scale varia-

bility. Results were assessed with respect to VI requirements,

statistical modeling and predictive power, and quality of

derived information.
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Methods

Study areas

Four study areas in southern Alberta were assessed,

comprising grass pastures that were named based on the

nearest community: Nanton, Granum, Barnwell, and

Onefour (Figure 1). The four sites were selected within two

natural subregions: Foothills Fescue (Nanton and Granum)

and Dry Mixedgrass (Barnwell and Onefour). The Dry

Mixedgrass study areas are located in the eastern and

central portions of southern Alberta and had warmer

temperatures, less precipitation, and less biomass during

the 2005 field season (Table 1) compared with the Foothills

Fescue study areas to the west, closer to the Rocky

Mountains. Further details regarding each study area and

all pasture sites are contained in Goosen (2005). The two

natural subregions also had different dominant plant species

(Figure 2 and Table 1). Within the study areas, a series of

nine rangeland pastures sites were identified for sampling

based on ungrazed areas that were accessible. For rangeland

biomass, nonphotosynthetic vegetation (NPV, also referred

to in this paper as carryover) � typically dead litter material

from the previous growing season � can be an important

consideration (Frank and Aase, 1994; Gamon et al., 1995;
He et al., 2006) and therefore was included in this study.

Vegetation sampling

Above-ground biomass samples were collected at all sites

every two weeks from late May until early August, 2005. Both
green biomass (current year growth) and NPV were collected

and sorted then separated, allowing both green biomass and

total biomass (green � NPV biomass) to be assessed and

compared. For each sampling date, a total of 20 biomass

samples were taken at randomized points along transects

located within a 50 � 20 m area (Figure 3), ensuring that the

same location was sampled only once (including all dates

throughout the growing season). At each pasture site, the
biomass samples were collected using a 0.25 m2 metal frame

(quadrat). All of the herbaceous vegetation was clipped as

close to the ground as possible using hand shears, dried (608C

Figure 1. Study areas in southern Alberta, Canada. Individual pasture sites in each study area shown on SPOT

panchromatic images.

Table 1. Natural subregion, climate data, major plant type, and biomass ranges for the four study areas.

Study areas

Natural

subregion

Average precip.

(mm) Average temp. (8C) Plant community Biomass range (with carryover) (kg/ha)

Nanton (area 1) Foothills Fescue 183.4 10.7 Festuca*/Stipa 1707�3905 (1707�3905)

Granum (area 2) Foothills Fescue 109.7 14.0 Festuca*/Stipa 648�1231 (843�1392)

Barnwell (area 3) Dry Mixedgrass 63.3 15.0 Stipa/Bouteloua$ 556�1815 (899�2728)

Onefour (area 4) Dry Mixedgrass 41.8 16.0 Stipa/Bouteloua$ 163�640 (426�1431)

*Foothills Fescue grassland is dominated by rough fescue (Festuca scabrella).
$Dry Mixedgrass regions are dominated by needle-and-thread grass (Stipa comata) and blue grama grass (Bouteloua gracilis).

Note: Temperature and precipitation values are the average over the four-month study period in 2005.
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for a minimum of 72 hours), and weighed. After clipping,

NPV carryover was determined by sorting and separating

green biomass (current-year growth) from NPV in a con-

trolled environment for each biomass sample. As shown in

Table 1, for the Foothills Fescue study areas green biomass
ranged from 648 kg/ha to 3905 kg/ha, while total biomass

ranged from 843 to 3905 kg/ha. The Dry Mixedgrass study

areas had lower biomass (green, 163�1815 kg/ha; total

biomass, 426�2728 kg/ha).

Satellite imagery

Obtaining information over larger areas for dynamic

seasonal vegetation such as rangeland, grasslands, and

crops requires higher temporal resolution that is often

available only from coarser spatial resolution imagery

(e.g., 1 km AVHRR, MODIS). However, this spatial

resolution has been found to be less appropriate for north-

ern mixed grass prairie ecosystems where pixel sizes in the

20�30 m range are required to adequately characterise the

inherent heterogeneity (Guo et al., 2004; He et al., 2006).

The twice monthly revisit period of Landsat and other

satellites is insufficient (even with ideal weather). The

programmable off-nadir capability of SPOT imagery sig-

nificantly increases revisit periods (2�3 days) for 20 m (or

less) spatial resolution imagery. The fact that SPOT imagery

offered both appropriate spatial and temporal resolution

was the basis for its use in this work.

Figure 2. Typical vegetation cover at the four study areas: (a) Nanton, (b) Granum, (c)

Barnwell, and (d) Onefour. Biomass was collected within square quadrats (0.25 m2 red metal

frames, shown in (b�d).

0

10

N

50 m

20 m
–10

0

50

S

Figure 3. Layout of transect used for biomass sample collections on each pasture site within

each study area. Biomass was estimated along 50 m transects. The total extent of each

transect required three image pixels to ensure proper coverage (extracted from a 3 � 3

window of pixels centered on each transect midpoint).
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SPOT 2005 imagery

SPOT High Resolution Visible (HRV) and HRV and

Infrared (HRVIR) imagery were acquired throughout the

2005 growing season. Images with less than 25% cloud cover

were deemed acceptable, except for instances where the

specific study area within a scene was obscured. A total of

21 SPOT images were selected for the four study areas and

different dates throughout the season (Table 2). The difference

between date of image acquisition and date of field measure-

ment ranged from 0 to 10 days (most were within a week) for

20 of the 21 SPOT scenes. The lone exception was the image

for sample 5 at Onefour, which was acquired one month after

biomass field sampling. This represented a small number of

sample dates (2 pasture dates out of 13) at Onefour (one

pasture site not sampled on 26 July, see Table 2), and further,

this fifth sampling date was the last in the growing season, by

which time most vegetation growth had ceased at this site (this

was the hottest and the driest of the four sites, see Table 1).

Therefore, while not ideal, this site was deemed appropriate to

include and is also consistent with the operational realities of

this type of study. The off-nadir imaging capability of SPOT

sensors that provided significantly increased revisit timing

(several days vs. weeks) was critical to acquiring time-sensitive

imagery. Of course, this introduced a range of view zenith

angles and possible bidirectional effects. However, owing to

the larger number of images and the goal to minimise excessive

preprocessing for an operational context, no angular image

corrections were performed in this study. The ability to acquire

this number of satellite images close to field dates for different

study areas and for dates throughout the growing season

represents a significant capability of interest for operational

monitoring programs.

Radiometric and geometric correction

To properly assess vegetation biomass using satellite

imagery, a radiometric correction was first applied. Image-

based radiometric corrections such as dark object subtrac-

tion (DOS) and pseudo-invariant targets were considered

but it was found that, as a result of the field study locations,

there were no invariant targets (such as deep lakes or other

suitably sized targets) captured in the imagery that were

adequate for either method. Atmospheric correction using

radiative transfer codes was also considered but rejected

because these require in situ data collection of atmospheric

properties and these data were not available. Instead, the

image-based radiometric correction by Chavez (1996) was

used. This is a variation of the DOS method and incorpo-

rates a multiplicative correction for transmittance to reduce

the effects of haze due to scattering in the atmosphere that

often attenuates the ground-level reflected radiance signal

from vegetation.

Following radiometric correction, all images were geome-

trically corrected using the orthoengine module of PCI

Geomatica Suite 9.0 (PCI, 2004). This correction required

ground control points (GCPs) to co-register the raw

imagery. Where possible, the GCPs used a vector set of

Alberta roads (projection: Alberta 10TM, earth model:

GRS 80). The Nanton, Granum, and Barnwell study areas

were in locations with sufficient primary and secondary

roads to allow use of this vector set. As the final step of

image preparation, a 3 � 3 window of pixels was extracted

around each sampling site to ensure that the entire sample

collection at all field sites was covered with the imagery.

Only pixels corresponding to the transect area were

analyzed.

Table 2. Biomass sample collection dates and image acquisition dates for each of the four study areas from May until August 2005.

Nanton (area 1)

Pasture sites 1, 2, and 3 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Biomass collection date, 2005 June 15 June 29 July 13 July 27 August 9

Image acquisition date, 2005 June 22 July 4 July 11 July 23 August 19

August 13 (ps2)

Granum (area 2)

Pasture site 1 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Biomass collection date, 2005 May 24 June 16 June 30 July 12 July 25 August 8

Image acquisition date, 2005 May 18 June 22 June 29 July 11 July 23 August13

Barnwell (area 3)

Pasture sites 1 and 2 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Biomass collection date, 2005 June 14 June 30 July 12 July 25 August 8

Image acquisition date, 2005 June 14 July 3 July 10 July 24 July 29

Onefour (area 4)

Pasture sites 1, 2, and 3 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Biomass collection date, 2005 May 25 n/a (ps3) June 13 June 27 July 11 July 26 n/a (ps1)

Image acquisition date, 2005 May 27 n/a (ps3) June 14 June 24 July 15 August 26 n/a (ps1)

Note: ps1, ps2, or ps3 refer to pasture site 1, 2, or 3; n/a means for the pasture site indicated there was no biomass sample or image acquired on the specified

date.
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VIs and biomass prediction

Eight VIs were evaluated in this research (Table 3). They

were selected from an extensive list of indices developed to

suit different vegetative applications as reviewed in Bannari

et al. (1995) and Chen (1996). The physiological basis of VIs

that use red (R) and NIR reflectance is that as the amount

of photosynthetically active biomass increases, R reflectance

decreases and NIR reflectance increases. Nonphotosynthetic

vegetation (carryover) as well as the timing of senescence

may negatively impact the utility of VIs in this regard. The

multitemporal nature of satellite imagery throughout (and

in some cases after) the growing season enabled assessment

of this. Several indices were excluded from consideration due

to unavailable data such as VIs that use a blue band (not

acquired by SPOT HRV and HRVIR) or that required

additional field or spectral information such as soil mea-

surements or correction factors (Chen, 1996) such as soil

adjusted vegetation index (SAVI) (Huete et al., 1988) and

SAVI-1 (Qi et al., 1994), the latter of which requires explicit

soil spectral measurements (e.g., from a field spectroradi-

ometer) that were not available in this study. Six of the VIs

evaluated were based on R and NIR spectral bands. The

other two were the Normalized Difference Greenness Index

(NDGI) and the Redness Index (RI) and were based on

ratios between the R and green (G) spectral bands to include

those available SPOT bands and their potential information

content. Table 3 gives the abbreviations, equations and

features of the eight VIs used.

Each index was derived from the SPOT imagery using the

band math function in ENVI software (RTI, 2009). The

field transects were then superimposed on the imagery as a

vector layer using the same projection file as the imagery.

The pixels representing each transect were identified and the

indices for each pixel were recorded for each of the 20

biomass samples.

Statistical analyses of VIs

The satellite image VIs and transformations were tested

for their ability to predict both green and total biomass at

different dates throughout the growing season using multi-

ple pasture sites at each study area. Regression models were

used to predict biomass from the VIs. Analysis of Variance

(ANOVA) and Tukey tests were used to compare data

among fields, sample dates, and field by sample date

(Davidson and Csillag, 2003). The nine pasture sites were

grouped by area and assigned numbers as follows: Granum

(1); Nanton (2, 3, 4); Barnwell (5, 6); and Onefour (7, 8, 9).

The sample dates were labelled 1�6, with the first sample

collection being the first date that biomass samples were

collected during the 2005 growing season (Table 2).

The relationship between VIs and biophysical attributes

can be nonlinear and in those cases can be more effectively

described using mathematical transformations (e.g., Sellers,

1987; Gamon et al., 1995). Both green and total biomass

were each compared against each of the indices using

Table 3. Eight vegetation indices used in this study.

Vegetation index Reference Equation Adjustments

Simple ratio (SR) Birth and McVey (1968)
NIR

R
Ratio

Normalised Difference Vegetation Index

(NDVI)

Rouse (1972)
NIR� R

NIRþ R
Normalised difference

Transformed Vegetation Index (TVI) Perry and Lautenschlager

(1984)

NDVIþ 0:5

NDVIþ 0:5
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVIþ 0:5j j

p
Avoid negative NDVI

Difference Vegetation Index (DVI) Cleavers (1986) NIR� Rð Þ Difference

Renormalized Difference Vegetation Index

(RDVI)

Roujean and Breon (1995)
NIR� Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIRþ R
p Combines DVI and NDVI

Modified Simple Ratio(MSR) Chen (1996)

NIR

R
� 1ffiffiffiffiffiffiffiffiffiffi

NIR

R

r
þ 1

Increase linear relationship from

RDVI

Normalized Difference Greenness Index

(NDGI)

Chamard et al. (1991)
G � R

G þ R
Incorporates green band

Redness Index (RI) Escadafal and Huete (1991)
R� G

Rþ G
Incorporates green band
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regression models involving linear, logarithmic, exponential,

and power equations. Two indices, NDGI and RI, were not

log-transformed in any model as the outputs of these two

ratios may include negative values. This resulted in six
outcomes for all equations containing the natural log of the

VI variables, compared with eight outcomes from the rest of

the equations. The biomass data were also transformed and

tested. Analyses of green and total biomass were performed

for both the log-transformed and untransformed cases.

Results

Vegetation indices and biomass production

The satellite images that were acquired close to the field
data collection dates and with acceptable cloud cover were

analysed to assess how accurately biomass could be

predicted on the rangeland fields. The statistical predictions

based on the VIs derived from the imagery did not always

coincide with field collection results. The green and total

biomass increased over the growing season however the

seasonal dynamic in terms of rate of growth varied in terms

of predictive capability, particularly when NPV (carryover
component of total biomass) was included.

Regression model results

Assessments across all study areas

Regression analysis was used to determine to what extent

the dependant variable (above-ground vegetation biomass)

can be predicted by the independent variable (VIs consid-

ered individually for each of the transformation models).

The results for each VI using linear, log, exponential, and

power models are shown in Table 4 with standard errors

provided in Table 5. The power regression model provided

the best fit in most cases. Two of the VIs, NDGI and RI,
were not assessed using log or power models as a result of

the negative values these indices produced. Table 4 shows

that there were minimal differences in r2 among most of the

first six indices for green and total biomass. For green

biomass, RDVI had the highest r2 value (0.68) from the

power model (shape of relationship shown in Figure 4), with

the same r2 also obtained for NDVI and TVI (exponential

model). All six VIs had similar results using the power
model (r2 � 0.65�0.68), with a greater range (r2 � 0.56�
0.68) found from the exponential models. The linear and log

transformations had lower r2 values. When carryover was

included (total biomass), the same VIs and models were

preferred but had lower r2 values (ranging to 0.51). For both

green and total biomass, the two VIs that used the green

band (NDGI and RI) instead of NIR had considerably

lower r2 values in all cases and substantially higher errors.

Mid-season assessment of individual subregions

As a further, more specific assessment, representative

common-date samples from the two subregions were com-

pared. Tables 6�9 show the independently fitted regressions
for each index by subregion, for both green and total

biomass in each case. Results from the same sampling period

(27�30 June) in the middle of the growing season field

sampling period were assessed for both subregions. These

were sample 3 from the Onefour study area in the Dry

Mixedgrass subregion and sample 3 from the Granum study

area in the Foothills Fescue subregion (n � 100 and 60,

Table 4. The coefficient of determination (r2) for regression models that included the log-transformed and untransformed vegetation biomass

(y) and remote sensing vegetation indices (x).

Linear Log Exponential Power

(y � a � bx) (y � a � bln(x)) (ln (y) � a � bx) (ln (y) � a � bln(x))

Green biomass (y)

SR 0.56 0.61 0.56 0.65

NDVI 0.60 0.54 0.68 0.65

TVI 0.59 0.57 0.68 0.67

MSR 0.60 0.59 0.61 0.67

DVI 0.60 0.56 0.64 0.66

RDVI 0.62 0.58 0.67 0.68

NDGI 0.33 � 0.21 �
RI 0.33 � 0.21 �
Total biomass (y)

SR 0.39 0.45 0.41 0.49

NDVI 0.45 0.42 0.51 0.50

TVI 0.45 0.44 0.51 0.51

MSR 0.43 0.45 0.46 0.51

DVI 0.42 0.39 0.44 0.42

RDVI 0.44 0.42 0.47 0.47

NDGI 0.25 � 0.23 �
RI 0.25 � 0.24 �

Note: In the NDGI and RI rows, the r2 value is represented by a dash (�) due to possible negative numbers before applying the log transformations.
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Table 5. The standard error (SE) of predicted values for regression models that included the log-transformed and untransformed vegetation

biomass (y) and remote sensing vegetation indices (x).

Linear Log Exponential Power

(y � a � bx) (y � a � bln(x)) (ln (y) � a � bx) (ln (y) � a � bln(x))

Green biomass (y)

SR 0.19 1.06 0.01 0.03

NDVI 3.84 2.30 0.11 0.07

TVI 8.13 8.56 0.23 0.24

MSR 0.92 1.12 0.03 0.03

DVI 0.04 1.50 0.01 0.04

RDVI 0.36 1.79 0.01 0.05

NDGI 12.60 � 0.45 �
RI 12.60 � 0.45 �
Total biomass (y)

SR 0.23 1.23 0.01 0.03

NDVI 4.37 2.51 0.11 0.60

TVI 9.15 9.54 0.22 0.23

MSR 1.07 1.27 0.30 0.03

DVI 0.04 1.71 0.01 0.40

RDVI 0.42 2.05 0.10 0.50

NDGI 12.98 � 0.34 �
RI 12.98 � 0.34 �

Note: In the NDGI and RI rows, the r2 value is represented by a dash (�) due to possible negative numbers before applying the log transformations.

Figure 4. Shape of the relationship between log-transformed vegetation green biomass (y)

and the best overall VI predictor (RDVI, power model: ln(y) � a � bin(x)).
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respectively, from 20 biomass samples per field, with

replicates; see also Table 2). Observed r2 were higher in

the Foothills Fescue subregion ranging from 0.58 to 0.72

(Tables 6 and 7) compared with the observed r2 ranging

from 0.34 to 0.61 for the Dry Mixedgrass subregion

(Tables 8 and 9) for green and total biomass for both

subregions. In all cases, the six VIs that used R and NIR

bands produced better results compared with NDGI and RI

that used the green band. As with the full analysis (Tables 4

and 5), the predictive capability was stronger for green

biomass compared with total biomass for both subregions.

For Foothills Fescue, the r2 values for the six VIs that used

R and NIR bands were consistently near 0.72 (Table 6) and

0.64 (Table 7) for green and total biomass, respectively. For

Dry Mixedgrass, the Simple Ratio (SR) provided the highest

r2 values for both green biomass (r2 � 0.61, Table 8) and

total biomass (r2 � 0.43, Table 9). The lower r2 values with
Dry Mixedgrass may be due to the greater heterogeneity in

these grasses compared with Foothills Fescue.

Comparisons by subregion and growing season date

ANOVA and Tukey tests were used to compare the

differences in biomass production among all dates, field

sites, and the interactions using the best VI found from the

full sample (Table 4) for green and total biomass. When

using the entire data set (837 observations, i.e., number of

biomass samples per pasture site, per study area, overall
dates), the results showed a significant difference among the

fields, sample dates, and the field by sample date interaction.

Table 10 illustrates the significant difference in biomass

production obtained between the Foothills Fescue (n � 378)

Table 6. Independently fitted regressions (n � 60) for each index for the mid-season Foothills Fescue subregion for green biomass on sample

date 3 (27�30 June).

Variable r2 Label DF Estimate Error t value Pr � jtj
lnSR 0.72 Intercept 1 1.39 0.20 6.87 B.0001

Slope 1 1.27 0.10 12.34 B.0001

lnNDVI 0.73 Intercept 1 5.05 0.10 48.80 B.0001

Slope 1 3.89 0.31 12.52 B.0001

lnTVI 0.73 Intercept 1 2.45 0.12 21.01 B.0001

Slope 1 13.24 1.06 12.53 B.0001

lnMSR 0.72 Intercept 1 3.12 0.07 45.86 B.0001

Slope 1 1.53 0.12 12.47 B.0001

lnDVI 0.68 Intercept 1 �5.28 0.81 �6.55 B.0001

Slope 1 2.45 0.20 11.32 B.0001

lnRDVI 0.72 Intercept 1 �1.59 0.45 �3.53 0.0008

Slope 1 2.90 0.24 12.09 B.0001

NDGI 0.67 Intercept 1 3.74 0.04 92.03 B.0001

Slope 1 7.48 0.68 10.95 B.0001

RI 0.67 Intercept 1 3.74 0.04 92.03 B.0001

Slope 1 �7.48 0.68 �10.95 B.0001

Table 7. Independently fitted regressions (n � 60) for each index for the mid-season Foothills Fescue subregion for total biomass on sample

date 3 (27�30 June).

Variable r2 Label DF Estimate Error t value Pr � jtj
lnSR 0.64 Intercept 1 1.82 0.20 8.96 B.0001

Slope 1 1.07 0.10 10.34 B.0001

lnNDVI 0.64 Intercept 1 4.91 0.11 46.49 B.0001

Slope 1 3.26 0.32 10.31 B.0001

lnTVI 0.64 Intercept 1 2.72 0.12 22.93 B.0001

Slope 1 11.12 1.08 10.33 B.0001

lnMSR 0.64 Intercept 1 3.29 0.07 47.70 B.0001

Slope 1 1.29 0.12 10.38 B.0001

lnDVI 0.63 Intercept 1 �3.89 0.79 �4.95 B.0001

Slope 1 1.92 0.19 9.91 B.0001

lnRDVI 0.64 Intercept 1 �0.71 0.45 �1.58 0.119

Slope 1 2.45 0.24 10.30 B.0001

NDGI 0.58 Intercept 1 3.81 0.04 92.96 B.0001

Slope 1 6.21 0.69 9.02 B.0001

RI 0.58 Intercept 1 3.81 0.04 92.96 B.0001

Slope 1 �6.21 0.69 �9.02 B.0001
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# 2013 CASI 703

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

et
hb

ri
dg

e]
 a

t 1
2:

45
 1

7 
Ju

ne
 2

01
6 



and the Dry Mixedgrass (n � 459) natural subregions for

both green and total biomass.
Table 11 shows a comparison of biomass obtained

between sample dates (number of biomass samples per

date shown in Table; total n � 837). For total biomass there

were significant differences when samples were collected in

different months but not between consecutive samples taken

within a month, with the exception that the late June and

early July sample periods were also not significantly

different. This exception may be due to a mid-season change

in vegetation growth in terms of the rate of biomass

production, possibly related to the timing of meteorological

Table 8. Independently fitted regressions (n � 100) for each index for the mid-season Dry Mixedgrass subregion for green biomass on sample

date 3 (27�30 June).

Variable r2 Label DF Estimate Error t value Pr � jtj
lnSR 0.61 Intercept 1 1.16 0.12 10.00 B.0001

Slope 1 1.36 0.11 12.51 B.0001

lnNDVI 0.53 Intercept 1 3.62 0.11 32.57 B.0001

Slope 1 1.28 0.12 10.66 B.0001

lnTVI 0.57 Intercept 1 2.71 0.44 61.26 B.0001

Slope 1 6.09 0.53 11.46 B.0001

lnMSR 0.57 Intercept 1 3.00 0.05 51.15 B.0001

Slope 1 0.94 0.08 11.40 B.0001

lnDVI 0.47 Intercept 1 �2.44 0.53 �4.64 B.0001

Slope 1 1.55 0.16 9.47 B.0001

lnRDVI 0.54 Intercept 1 0.54 0.19 2.84 0.005

Slope 1 1.74 0.16 10.75 B.0001

NDGI 0.00 Intercept 1 2.46 0.15 16.10 B.0001

Slope 1 �1.04 2.45 �0.43 0.32

RI 0.00 Intercept 1 2.47 0.15 16.10 B.0001

1.04 2.45 0.43 0.32

Table 9. Independently fitted regressions (n � 100) for each index for the mid-season Dry Mixedgrass subregion for total biomass on sample

date 3 (27�30 June).

Variable r2 Label DF Estimate Error t value Pr � jtj
lnSR 0.43 Intercept 1 1.98 0.14 14.09 B.0001

Slope 1 1.14 0.13 8.60 B.0001

lnNDVI 0.39 Intercept 1 4.05 0.13 31.85 B.0001

Slope 1 1.08 0.14 7.92 B.0001

lnTVI 0.40 Intercept 1 3.28 0.05 63.13 B.0001

Slope 1 5.14 0.62 8.24 B.0001

lnMSR 0.40 Intercept 1 3.52 0.07 51.30 B.0001

Slope 1 0.79 0.09 8.23 B.0001

lnDVI 0.25 Intercept 1 �0.53 0.63 �0.85 0.398

Slope 1 1.14 0.19 5.86 B.0001

lnRDVI 0.34 Intercept 1 1.53 0.23 6.78 B.0001

Slope 1 1.40 0.19 7.26 B.0001

NDGI 0.00 Intercept 1 2.98 0.15 19.60 B.0001

Slope 1 �2.43 2.43 �1.00 0.32

RI 0.00 Intercept 1 2.98 0.15 19.6 B.0001

Slope 1 2.43 2.43 1.00 0.32

Table 10. The predicted biomass for Foothills Fescue and Dry Mixedgrass natural subregions differ significantly for both green and total

biomass, as indicated by ANOVA and by the Tukey grouping.

Total biomass Green biomass

Natural subregion n Mean

Tukey

grouping n Mean

Tukey

grouping

Foothills Fescue 378 58.17 A 378 55.56 A

Dry Mixedgrass 459 29.39 B 459 16.32 B

Note: Means with the same letter are not significantly different at the a � 0.01 level.
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influences and the overall hotter and drier conditions in the

Dry Mixedgrass compared with Foothills Fescue sites

(Table 1). When green biomass was considered alone (with-

out carryover), most of the sample dates were significantly

different � the only exception again being the mid-season

late June to early July period, again perhaps due to a change

in the rate of biomass production with respect to the

growing season peak and meteorological factors. The

presence of carryover in the analysis may serve to regulate

the results to some extent in terms of the overall multi-

temporal dynamic observed.

Discussion and conclusions

This analysis validated a methodology for multitemporal

image analysis for biomass estimation, with field validation

protocols. Biomass production varied significantly between

the Foothills Fescue and the Dry Mixedgrass natural

subregions. The RDVI and TVI as well as MSR and

NDVI indices provided the overall highest r2 results for

predicting rangeland biomass production for this study. For

these and most other indices, a power function best

described the form of the relationship for predicting range-

land biomass.

Many of the VIs had similar levels of prediction (r2) for

biomass, and these typically did not differ greatly from the

top-ranked index. Additionally, there was no particular VI

that was clearly preferred across all tests (i.e., different tests

often had a different top-ranked VI, with others having

r2 values that were close to the highest r2 value). This is

likely due to the functional equivalence of different VIs

(Perry and Lautenschlager, 1984; Peddle et al., 2001).

As another example, Gamon et al. (1995) assessed three

vegetation types (including grasslands) and commented on

the functional similarity of these mathematically inter-

changeable VIs (referring to NDVI and log-transformed

SR for predicting biomass and other parameters) and

concluded that the choice of VIs appeared to be arbitrary

and not based on a difference in theoretical limitations of

either index. Given the similar performances of a variety of

indices tested in our study, the actual selection of VI may be

less critical, similar to the conclusion of Davidson and

Csillag (2001). Thus, from this study, there is no definitive

conclusion that for landscapes of southern Alberta (or

possibly elsewhere) that RDVI and TVI would be preferred,

even though they yielded marginally better results here.

Therefore, it may be necessary to test a variety of VIs for a

given study to determine which VI (and transformations)

may work best. The only clear VI result amongst the eight

VIs assessed was that the VIs based on R and NIR bands

outperformed those that used the green bands. Therefore,

use of the green band cannot be recommended, at least for

those tested here. For other studies elsewhere, the selection

of which VIs to test should also be made with reference to

their particular purpose, the wavelength bands used, the

type of vegetation, and the theoretical properties and

limitations of the VIs (e.g., Sellers, 1987; Chen, 1996; Hall

et al., 1992; Peddle et al., 2001; Price et al., 2002; He et al.,

2006) as well as to practical considerations such as

feasibility, validation, and operational constraints, if any.

In terms of transformations, the power function was

useful for most VIs. Similar to other studies (e.g., Sellers,

1987; Gamon et al., 1995), linearity in relationships between

remote sensing products and biophysical parameters

provides a strong analytical context, and transformations

represent a way to help achieve that. It is therefore

recommended that, for other studies, comparative tests be

considered to assess a variety of VIs and transformations to

maximize information extraction. In terms of operational

monitoring programs, this is not prohibitive as these indices

and transformations are easily derived and can be compared

against field data that typically exist as standard field

monitoring protocols.

Regarding overall information content, the highest r2

values obtained (0.68 overall, 0.73 per site) suggest that

consideration of other image processing methods may be

warranted. This study was rather comprehensive in several

respects, such as regional-scale landscape variability (two

major subregions, four study areas, different pasture sites

per area), multitemporal dynamics (field and image data

throughout the growing season) and the VIs and processing

methods considered, thus there is a reasonable basis for

drawing conclusions. It is recognized that given the plethora

of VIs, not all were considered in this study, and it was not

feasible to assess all statistical methods; however, given the

Table 11. Tukey’s multiple comparison of the biomass predictions for all study areas at each of the sampling dates during the growing season,

for green and total biomass.

Total biomass Green biomass

Sample date n Mean Tukey grouping n Mean Tukey grouping

8�9 August 117 65.96 A 117 60.15 A

25�27 July 160 47.84 B 160 43.08 B

11�13 July 160 41.04 B C 160 32.99 C

27�30 June 160 37.56 C D 160 29.30 C

14�16 June 180 33.54 D 180 22.24 D

24�25 May 60 24.93 E 60 9.88 E

Note: Means with the same letter are not significantly different at the a � 0.01 level.
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scope of the study areas and VIs considered, the results are

considered as a good indicator of VI capabilities. Follow-on

research in this context could consider additional VIs that

adjust for characteristics such as soil (Huete, 1988; Major

et al., 1990; Qi et al., 1994) and atmosphere (Kaufman and

Tanre, 1992). It may also be warranted to test other image

analysis methods such as SMA and modeling. Additional

image preprocessing may also be warranted, for example

more sophisticated atmospheric correction and the consid-

eration of radiometric corrections for angular effects (Peddle

et al., 2003). In this study, the use of off-nadir SPOT imagery

was essential for appropriate multitemporal image acquisi-

tion (2�3 day revisit period); however, it did introduce

additional variability in terms of different angular radio-

metric factors both per-scene and across the full set of

images. The objectives, scope, and context of the study would

need to be considered � in this work, our experimental design

was driven by operational considerations in terms of larger-

area, regional monitoring programs with a requirement for

minimal data processing and analysis requirements.

It was also found that carryover (NPV) is an important

factor to consider in studies of this nature. In terms of the

VIs and transformations tested, the results were consistently

lower when NPV was included (reduction in r2 values by

0.15�0.20). Most VIs (including all but two used in this

study) are based on green vegetation and thus would be

expected to be more suited for green biomass than total

biomass (Gamon et al., 1995), as there is considerably less

contrast between the R and NIR reflectance for NPV

(reduced chlorophyll and in some cases altered cell struc-

ture). Increased scatter in the VI relationship for predicting

biophysical parameters has thus in part been attributed to

the presence of dead (NPV) canopy material (e.g., Gamon et

al., 1995; Vescovo and Damiano, 2006), and our results are

consistent with this. Accordingly, although NPV is an

important part of the overall biomass dynamic, it was not

as well discerned using VIs. The presence of woody

vegetation may have been an additional, albeit minor, source

of error in this study, but for other studies this or related

NPV may be more significant. For example, Gamon et al.

(1995) found that although indices such as NDVI and SR

were poor indicators of biomass due to the abundance of

NPV, they were good indicators of green biomass across

a variety of grassland types and times (i.e., seasonality).

As a result, they performed a correction based on percent

greenness on a dry mass basis to adjust for NPV and found

higher correlations from using NDVI. VIs that incorporate

other wavebands such as short-wave infrared could also be

considered as these can be useful for dry biomass. As above,

other VIs that consider background reflectance should also

be tested; however, given the poorer performance (highest

r2 � 0.45) when NPV was included, it is quite possible that

other methods such as SMA that explicitly account for

subpixel scale components may be required. For example,

Roberts et al. (1993) separated green vegetation from NPV

explicitly using SMA. More comprehensive tests of different

VIs and SMA such as that conducted by Peddle et al. (2001)

involving ten VIs including three soil-adjusted indices versus

SMA in a boreal forest application would be warranted for

the grassland setting to determine if SMA results are

superior to VIs as they were in that forest study. Attention

to operational considerations should also be made in any

such comparison in terms of broader viability. For SMA, the
main issue is endmember spectral inputs, imaging scale,

and surface heterogeneity. A variety of methods exist to

derive these automatically and (or) from image data instead

of relying on site-specific field spectra and corrections at

those scales. For example, multiple endmember spectral

mixture analysis (Roberts et al., 1998) reduces the reliance

on individual endmember spectra and instead can utilize

spectral libraries and determine optimal inputs for SMA

that may be more appropriate for operational settings.

However, these would need to be assessed in the particular

rangeland�grassland domain of interest and with attention

to the greater change in vegetation dynamics throughout a

growing season (e.g., compared with forests). It is likely that

scene-specific image endmember spectra would be required,

which should be as feasible as a single-image based

approach particularly given the increased availability of
complementary spectral libraries.

Another important, broader conclusion from this study

was the excellent availability of optical satellite imagery

throughout the field season (Table 2) that was facilitated by

the programmable, off-nadir capabilities of the SPOT sensor

that enabled image acquisition windows every 2�3 days.

Although off-nadir imagery introduces potentially variable

atmospheric and bidirectional angular effects, we concluded

that these were clearly acceptable given the much greater

acquisition opportunities. Further, angular and atmospheric

correction methods exist that were not explored in this

study, which may improve on the biomass results obtained

here. In rangeland areas such as southern Alberta that are

characterized by clear sunny conditions, it was feasible to

consider a large number of images at different locations

throughout the growing season to provide a much more
comprehensive study of biomass dynamics. This may also be

important for other areas and applications such as agricul-

tural zones throughout the region, as well as other areas that

are not as sunny as southern Alberta.
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