
Abstract A genetic variant of the entomopathogenic fungus Metarhizium anisop-
liae var. anisopliae, isolated from a soil in Alberta, Canada, from a location with a
history of severe grasshopper infestations, was evaluated for pathogenicity in
bioassays of living grasshoppers. Mortality in treated individuals drawn from a
laboratory colony was 99% (LT50 = 6.7 days, LT90 = 9.6 days) at 12 days post-
inoculation compared to 100% (LT50 = 4.1 days, LT90 = 5.8 days) mortality at
8 days in insects exposed to a commercial isolate of M. anisopliae var. acridum (IMI
330189). Experimental infection of field-collected grasshoppers under laboratory
conditions with the native isolate of M. anisopliae var. anisopliae resulted in 100%
(LT50 = 4.4 days, LT90 = 5.4 days) mortality attained within 7 days compared to
100% (LT50 = 4.7 days, LT90 = 6.3 days) mortality in 9 days in insects treated with
M. anisopliae var. acridum. Amplification of fungal genomic DNA from the indig-
enous isolate with primers for the specific detection of M. anisopliae var. anisopliae
produced a product almost 300 bp larger than expected based on previously known
isolates. This is the first demonstration of a highly virulent, indigenous non-chemical
control agent of grasshoppers in North America.
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Introduction

Recurring outbreaks of grasshoppers cause significant economic damage to crops,
forages and range in the Canadian Prairies, and result in extensive pesticide appli-
cation. Concern over the impact of chemicals on human health and the environment
has been the driving force for investigations into the use of entomopathogenic mi-
crobes for control. Previously conducted field trials of indigenous agents against
grasshoppers have yielded divergent results, mostly attributed to timing and envi-
ronmental conditions. Applications of Nosema locustae (Johnson and Dolinski 1997;
Johnson 1989) showed modest to negligible reductions in host densities, although
reductions in activity (Johnson 1989) and feeding (Johnson and Pavlikova 1986)
were demonstrated. Johnson et al. (1988) required high doses of Verticillium lecanii
to significantly reduce insect populations; more realistic field application rates
demonstrated ineffective control. Moderate (70%) mortality due to mycosis was
obtained in grasshoppers confined in laboratory cages following treatment with a US
isolate of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomy-
cetes) and collection within two days of application (Johnson and Goettel 1993);
however, no significant reduction of field populations was observed with later
applications of two virulent strains of B. bassiana (Inglis et al. 1997).

Molecular monitoring has offered further improvements on the detection and
differentiation of entomopathogens in infected grasshoppers. Cloned DNA probes
were used in conjunction with the polymerase chain reaction (PCR) for the specific
detection of B. bassiana in infected insects, although the probes failed to distinguish
between B. bassiana strains (Hegedus and Khachatourians 1993, 1996). In the
United States, an introduced Australian pathotype of Entomophaga grylli
(Fresenius) Batko (Zygomycotina: Entomophthorales) was distinguished from
native isolates in E. grylli-infected grasshoppers collected after field release of lab-
oratory-inoculated insects (Bidochka et al. 1996).

The ability to distinguish introduced strains of Metarhizium spp. from native
populations has been limited, and has precluded full evaluation of their fate in target
hosts and non-targets. Hu and St. Leger (2002) were able to trace the release of a
transformant of M. anisopliae tagged with a green fluorescent protein reporter gene.
This method is not practical, in part because introduction of genetically modified
organisms into the environment is a highly contentious issue. Entz et al. (2005)
developed a molecular assay that would differentiate M. anisopliae var. acridum
from endemic strains of M. anisopliae var. anisopliae, and was applicable for
detection of fungal DNA in infected grasshoppers. In conjunction with investigation
into the possibility of application of Metarhizium spp. for grasshopper control in
Canada, a soil survey of locales in southern Alberta with known histories of severe
grasshopper infestations was conducted and yielded isolates of M. anisopliae var.
anisopliae. We report on one of those isolates, a naturally occurring genetic variant,
that showed virulence comparable to a standard strain (IMI 330189) of M. anisopliae
var. acridum to laboratory-reared and field-collected grasshopper nymphs, and
demonstrate the ability of a molecular assay to distinguish the isolate from other
native isolates, as well as detect fungal DNA in infected grasshoppers.
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Materials and methods

Fungal isolates

Metarhizium anisopliae var. anisopliae isolates S54, 6W-2, and 11S-1 were isolated
from soils in southern Alberta, Canada. Samples were collected from the upper
10 cm, in fallow agricultural fields. Isolates S54 and 6W-2 were obtained from soil
extracts that were inoculated onto selective medium according to the method out-
lined by Rath et al. (1992). Briefly, moist soil equivalent to 20 g, oven-dried weight,
was added to 200 ml sterile Ringer’s solution (Oxoid, Nepean, Ontario, Canada) in a
500-ml Erlenmeyer flask. The suspension was shaken at 150 rpm for 30 min on an
orbital shaker, then 0.1 ml of neat and 1:10 dilutions in sterile distilled water were
spread-plated on mycological agar (Difco, Oakville, Ontario, Canada) containing
50 lg/ml chloramphenicol (Sigma-Aldrich, Oakville, Ontario, Canada) and 200 lg/
ml cycloheximide (Sigma-Aldrich), and modified with 10 lg/ml dodine (Liu et al.
1993). Plates were then incubated in the dark at room temperature (ca. 20�C) for
20 days before examination for colonies of Metarhizium spp. Isolate 11S-1 was
recovered from a cadaver of Galleria mellonella larvae used in a bait assay con-
ducted at room temperature (ca. 20�C) for twenty-one days (Zimmermann 1986).

Sources, hosts, and geographical origins of additional fungal isolates used in this
study are shown in Table 1. All fungal isolates were propagated and maintained on
potato dextrose agar (PDA).

Inoculation of grasshoppers

Third- and fourth-instar nymphs of a laboratory colony of Melanoplus sanguinipes
and third- and fourth-instar field-collected nymphs of M. sanguinipes, M. bivittatus
Say, and M. packardii Scudder (Orthoptera: Acrididae) were collected, inoculated,
and housed as previously described (Entz et al. 2005). Insects randomly selected
from this group were placed individually in sterile 20 ml glass vials stoppered with a
sterile polyurethane foam plug; species, sex and instar were recorded for each insect.

Table 1 List of isolates studied

Isolate codea Name Host Country of origin

ARSEF 437 M. anisopliae var. anisopliae Teleogryllus commodus
(Orthoptera: Gryllidae)

Australia

ARSEF 727 M. anisopliae var. anisopliae unidentified tettigonid
(Orthoptera: Tettigoniidae)

Brazil

IMI 330189 Metarhizium anisopliae var.
acridum

Ornithacris cavroisi
(Orthoptera: Acrididae)

Niger

UAMH 421 M. anisopliae var. anisopliae Unidentified insect larvae USA
UAMH 4450 M. anisopliae var. anisopliae Soil Canada
6W-2 M. anisopliae var. anisopliae Soil Canada
11S-1 M. anisopliae var. anisopliae Soil Canada
S54 M. anisopliae var. anisopliae Soil Canada

a IMI = International Mycological Institute, Egham, UK

ARSEF = Agriculture Research Service Entomopathogenic Fungus Collection, US Department of
Agriculture

UAMH = University of Alberta Microfungus Collection and Herbarium, Edmonton, Canada
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On the day of inoculation, conidia of Metarhizium anisopliae var. acridum isolate
IMI 330189 or M. anisopliae var. anisopliae isolate S54 were harvested from PDA
cultures (15–20 days of growth) and resuspended in sunflower oil. The concentra-
tions of conidia were estimated with a hemocytometer and adjusted to 5 · 107

conidia/ml. Subsequently, 2-ll aliquots were pipetted onto lettuce-leaf wafers
(0.7 cm diameter), resulting in a dose of approximately 105 spores per insect (via
handling and feeding). Each grasshopper was confined with one lettuce-leaf wafer
for 24 h. Control grasshoppers were confined with untreated lettuce-leaf wafers
bearing only sunflower oil. After 24 h confinement, all surviving insects were re-
moved and individually housed in 240-ml transparent plastic containers. Throughout
the experiment, insects were contained in a temperature regime of 24�/16�C day/
night with a corresponding 16/8 h light/dark photoperiod under ambient relative
humidity (40–55%). The insects were observed and fed daily with fresh wheat leaves.
Cadavers were removed daily with sterile forceps and processed further for confir-
mation of Metarhizium infection as described below.

Control groups consisted of 30 grasshoppers. M. anisopliae var. acridum isolate
IMI 330189 was used to treat 144 grasshoppers from a laboratory colony and 128
field-collected insects. M. anisopliae var. anisopliae isolate S54 conidia were inocu-
lated to 79 laboratory-reared grasshoppers and 131 field-collected nymphs.

Confirmation of Metarhizium infection in grasshoppers

M. anisopliae var. acridum infection in grasshopper nymphs treated with IMI 330189
spores was confirmed by PCR assay with specific primers Mac-ITS-F1 and Mac-ITS-
R1 (Entz et al. 2005). Cadavers were kept frozen at –20�C prior to DNA extraction.
A 25-ll aliquot of cadaver homogenate, prepared prior to DNA extraction, was
removed and spread onto selective medium previously described. Plates were
incubated at 25�C for a maximum of 20 days before examination for colonies of
Metarhizium spp.

Mortality attributed to native isolate M. anisopliae var. anisopliae isolate S54 was
recorded as incidence of mycosis with evidence of external sporulation characteristic
of Metarhizium. Dead insects were removed daily and disinfected by immersion for
1 min in 70% ethanol followed by 1 min in sterile distilled water. Cadavers were
then placed individually on moistened sterile filter paper in a 60 mm · 10 mm Petri
dish, the dish sealed with Parafilm�, and incubated at ca. 20�C for a maximum of
21 days. PCR assays were used to confirm M. anisopliae var. anisopliae infection in
infected cadavers. Conidia from the surface of infected cadavers were transferred
with a sterile loop to 500 ll of potato dextrose broth (PDB) and incubated at in the
dark at room temperature (ca. 20�C) for 3 to 4 days; 1 ll of culture was then used
directly as template in nested PCR assays described below. Insects that did not
display signs of external sporulation after 21 days were then frozen at –20�C until
DNA extraction for PCR amplification.

Mortality data analysis

Because the resulting mortality data were not normally distributed, the Kruskal–
Wallis test (Steel and Torrie 1980) was used to compare the distributions for the
three grasshopper species for each Metarhizium isolate.
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For all treated grasshopper experiments, mortality data from control insect
groups were used in Abbott’s (1925) formula to determine corrected mortality.
Corrected daily mortality data were then fitted to a Weibull distribution and the
LIFEREG procedure (SAS Institute 2005) used to estimate lethal times for mor-
tality of 50% (LT50) and 90% (LT90) of treated insects with upper and lower 95%
confidence limits (CL).

Fungal genomic and total grasshopper DNA extraction

Fungal genomic and total grasshopper DNA extractions were as described in Entz
et al. (2005). Estimates of DNA quantities were obtained by electrophoresis in 0.9%
TAE (40 mM Tris acetate, pH approx. 8.3, containing 1 mM EDTA) agarose gels
containing 10 lg ml–1 ethidium bromide (Sambrook et al. 1989). Fifty ng of fungal
genomic DNA and 100 ng of total grasshopper DNA were subjected to PCR
amplifications.

PCR Amplification

DNA primers for the specific detection of M. anisopliae var. anisopliae were used to
initially amplify the partial 3¢ end of the large subunit ribosomal RNA and intergenic
spacer (IGS) region followed by a secondary reaction with primers that amplified a
380 bp fragment within the IGS region specific to M. anisopliae var. anisopliae.
Nested PCR assays were conducted with an initial reaction with primers Ma-28S4
(5¢-CCTTGTTGTTACGATCTGCTGAGGG-3¢) and Ma-IGS1 (5¢-CGTCACTT
GTATTGGCAC-3¢) (Pantou et al. 2003). A second reaction was performed with a
1-ll aliquot from the initial amplification and primers Ma-IGSspF (5¢- CTAC-
CYGGGAGCCCAGGCAAG-3¢) and Ma-IGSspR (5¢- AAGCAGCCTACCC-
TAAAGC-3¢) (Pantou et al. 2003). Amplifications were performed in a total volume
of 50 ll containing 20 mM Tris, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-
100, 0.4 lM of each primer, 25 lM of each dNTP (Invitrogen, Carlsbad, CA), 2.5
units Taq DNA polymerase (MBI Fermentas, Hanover, MD, USA) and template
DNA. Negative controls for all amplifications consisted of sterile water in place of
DNA. DNA amplifications were performed in a GeneAmp� PCR System 9700
(Applied Biosystems, Foster City, CA, USA) programmed as follows: initial dena-
turation 5 min at 94�C; 30 cycles of the following steps: denaturation 1 min at 94�C,
annealing 1 min at 54�C (Ma-28S4 and Ma-IGS1) or at 58�C (Ma-IGSspF and Ma-
IGSspR), extension 2 min at 72�C; with a final extension 5 min at 72�C. PCR
products were analyzed on 1.5% TAE agarose gels with a 100 bp DNA ladder (MBI
Fermentas) included as a size marker.

Sequencing of the IGS Region of native M. anisopliae var. anisopliae isolate S54
and 6W-2

The PCR products that resulted from amplification of M. anisopliae var. anisopliae
S54 and 6W-2 DNA with primers Ma-28S4 and Ma-IGS1 were cloned in vector
pGEM�-T Easy using the pGEM� and pGEM�-T Easy Vector Systems cloning kit
(Promega, Madison, WI, USA). Standard protocols were used for plasmid DNA
isolation, buffers, and electrophoresis techniques (Sambrook et al. 1989). Sequences

Discovery of a genetic variant of the entomopathogenic fungus 331

123



were determined by the dideoxy chain termination method and deposited in Gen-
Bank (DQ342236, isolate 6W-2; DQ342237, isolate S54).

Results

M. anisopliae var. anisopliae PCR assays with fungal genomic DNA

Most isolates of M. anisopliae var. anisopliae in this study produced a 380 bp product
in a nested PCR assay with primer combinations Ma-28S4/Ma-IGS1 and Ma-IG-
SspF/Ma-IGSspR (Fig. 1). Isolate ARSEF 437 produced a slightly smaller product
of approximately 350 bp. Amplification of fungal genomic DNA from native isolate
S54 resulted in a PCR product approximately 670 bp in size.

PCR products produced by amplification of the partial 3’ end of the large subunit
ribosomal RNA and IGS region with the Ma-28S4/Ma-IGS1 primers were cloned
and sequenced for native isolates S54 and 6W-2. Isolate 6W-2 was identified as a
group-B M. anisopliae var. anisopliae based on the presence of a 20 bp GT-rich
insertion sequence found to be present in group-B strains (Pantou et al. 2003).
Isolate S54 was identified as a group-B variant lacking the priming site for the Ma-
IGSspF primer. The Ma-IGSspF primer false-primed upstream of the missing site at
nucleotide positions 163–183, resulting in a PCR product 300 bp larger than ex-
pected. Colony morphologies (dark green conidia) on PDA for the group-B and
variant group-B isolates were similar, as were size and shape of conidia.

Analysis of differential impact of Metarhizium infection on field-collected
grasshopper species

The Kruskal–Wallis test indicated that the distributions for the three grasshopper
species were not significantly different for either fungal isolate (IMI 330189:

600 bp— 

Fig. 1 Detection of Metarhizium anisopliae var. anisopliae fungal genomic DNA in nested PCR
assays using Ma-28S4/Ma-IGS1 and Ma-IGSspF/Ma-IGSspR primers. Lane 1: 100 bp ladder Lane 2:
M. anisopliae var. anisopliae UAMH 421 Lane 3: M. anisopliae var. anisopliae UAMH 4450 Lane 4:
M. anisopliae var. anisopliae ARSEF 437 Lane 5: M. anisopliae var. anisopliae ARSEF 727 Lane 6:
M. anisopliae var. anisopliae 6W-2 Lane 7: M. anisopliae var. anisopliae 11S-1 Lane 8: M. anisopliae
var. anisopliae S54 Lane 9: Water
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P = 0.09; S54: P = 0.77); mortality did not differ among the target species tested.
Consequently, the data were further analyzed without respect to species for each
treatment.

Infection of laboratory-reared and field-collected grasshopper nymphs with
M. anisopliae var. acridum isolate IMI 330189

Complete mortality was observed by 8 days for laboratory colony nymphs versus
9 days for field-collected grasshoppers for treated insects exposed to M. anisopliae
var. acridum isolate IMI 330189. The LT50 value for the IMI 330189-treated
laboratory colony assay was 4.1 days versus 4.7 days for the IMI 330189-treated
field-collected assay (Table 2). LT90 values were 5.8 and 6.3 days for the IMI 330189-
treated laboratory and field-collected assays, respectively (Table 2). Daily corrected
cumulative mortalities for laboratory-reared and field-collected grasshopper nymphs
challenged with IMI 330189 are shown in Figs. 2 and 3, respectively.

The presence of M. anisopliae var. acridum DNA in IMI 330189-challenged in-
sects was confirmed by successful amplification of a 420 bp DNA sequence from the
total DNA extracted from 100% of treated laboratory colony and field-collected
grasshopper nymphs in a PCR assay with the Mac-ITS-F1 and Mac-ITS-R1 primers
(data not shown) and supported by isolation of a fungus with conidial morphology
characteristic of M. anisopliae var. acridum on selective medium from 92.1% and
91.9% of treated laboratory colony and field-collected insects, respectively. No
Metarhizium spp. were isolated from extracts of homogenized cadavers inoculated to
selective medium from the control group, for either laboratory colony or field-
collected nymphs. No amplified products were produced with the M. anisopliae var.
acridum-specific primers in PCR assays of the control groups.

Infection of laboratory-reared and field-collected grasshopper nymphs with
M. anisopliae var. anisopliae isolate S54

At 12 days post-inoculation, cumulative mortality was 97.9% in laboratory colony
nymphs treated with M. anisopliae var. anisopliae isolate S54 (Fig. 2). Sporulation
occurred in 91.5% of treated insects. LT50 was 6.7 days and LT90 was 9.6 days
(Table 2). Nested PCR assays with primer combinations Ma-28S4/Ma-IGS1 and Ma-
IGSspF/Ma-IGSspR produced amplified products 670 bp in size, corresponding to
that expected for S54 DNA, in 97.2% of S54-treated laboratory colony nymphs,
including all insects that exhibited sporulation and 4 out of 5 non-sporulating
cadavers. No band sizes corresponding to those expected for M. anisopliae var.
anisopliae with these primers were detected in untreated insects. The sole surviving
insect in the treated group at the end of the experiment, 12 days post-inoculation,
tested negative with the nested PCR assay.

Complete mortality (100% of experimental subjects) was observed 7 days post-
inoculation in field-collected nymphs treated with isolate S54 (Fig. 3). The LT50

value for this bioassay was lower, 4.4 days compared to 6.7 days for infected labo-
ratory colony nymphs (Table 2). The LT90 value was 5.4 days (Table 2). Nested
PCR assays with M. anisopliae var. anisopliae-specific primers produced positive
results for 97.6% of infected nymphs. Metarhizium-induced mycosis was confirmed
by sporulation in 83.2% of infected insects one week after death.
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The cumulative mortality curves for treated laboratory colony grasshoppers
(Fig. 2) and treated field-collected nymphs (Fig. 3) approach the sigmoidal shape
expected for populations of target insects treated with entomopathogenic fungi
(Bateman et al., 1996).

Discussion

Prior to application of a biological control agent, a method is required that allows
discrimination of the introduced organism from indigenous populations. The native
isolate of M. anisopliae var. anisopliae evaluated in bioassays against North Amer-
ican grasshopper species in this study was selected on the basis of its distinctive
genetic characteristics. The isolate, S54, was chosen because it could be distinguished
from three other native isolates of Metarhizium spp. in a PCR assay. The three
grasshopper species (M. sanguinipes, M. bivittatus, and M. packardii) used in assays
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of field-collected grasshoppers were selected because they are the main agricultural
pest species of grasshoppers in the Canadian Prairies.

The discovery of a soil isolate of M. anisopliae var. anisopliae that demonstrated
comparable virulence with a commercialized Metarhizium isolate towards orthop-
teran species in southern Alberta is unexpected based on earlier studies that showed
direct isolation from a target host was the most appropriate method for isolation of
target-specific pathotypes (Shah 1994; Kooyman and Shah 1992). Furthermore,
documentation of isolates of M. anisopliae var. anisopliae from orthopteran hosts is
not common (Hernández-Crespo and Santiago-Álvarez 1997; Kooyman and Shah
1992; Prior 1992). However, other studies have demonstrated that Metarhizium
isolates from non-orthopteran origins may have greater pathogenicity to acridids
than isolates from Orthoptera (Bateman et al. 1996). In Madagascar, Welling et al.
(1994) found a native virulent strain of M. anisopliae isolated from soil caused faster
and higher mortality than an indigenous orthopteran isolate of M. flavoviride in
bioassays of a laboratory strain of desert locusts, and concluded that soil-derived
isolates may also be effective against certain target species and therefore should be
included in routine bioassays.

In this study, the LT50 value of 4.1 days for laboratory-reared grasshoppers ex-
posed to M. anisopliae var. acridum IMI 330189 fell within the range of reported
values between 4 and 6 days in bioassays of laboratory stocks of acridids infected
with M. anisopliae var. acridum in previous studies (Smits et al. 1999; Bateman et al.
1996; David Hunter, pers. comm.). The LT50 value of 4.7 days for field-collected
nymphs treated with the same isolate also was comparable to results from previous
tests with commercialized Metarhizium (Shah et al. 1998; D. Hunter, pers. comm.).

In contrast with results in bioassays of field-collected grasshoppers, in this study a
southern Albertan isolate of M. anisopliae var. anisopliae showed significant slower
mortality compared to an exotic isolate of M. anisopliae var. acridum in treated
nymphs from a laboratory stock of M. sanguinipes. This may be a reflection of the
genetic homogeneity of a laboratory culture of insects that has resulted from
inbreeding within a closed genetic pool for over forty years. Over the initial twelve-
year period during which the laboratory insect stock was established, Pickford and
Randell (1969) noted no evidence of deleterious mutants, although noted that the
population had been reduced to very small numbers on several occasions due to dis-
ease. The plot of cumulative mortality for laboratory-reared insects exposed to the
exotic isolate IMI 330189 showed almost no initial lag in mortality as would be ex-
pected of a sigmoidal curve for a heterogeneous population treated with a pathogen,
suggesting a narrow range of physiological response from the laboratory-reared in-
sects. Similarly, since the native isolate of M. anisopliae var. anisopliae demonstrated a
longer lag phase initially, this may be an indication that the individual laboratory stock
nymphs possessed similar levels of resistance to the indigenous strain; however, this
resistance was insufficient to prevent almost 100% mortality twelve days post-treat-
ment. Large differences among host genotypes in insect populations in response to
microbial pathogens have been previously well documented (Watanabe 1987). In this
case, the results suggest that bioassays of native field-collected insects may better
reflect the target response to indigenous fungal entomopathogens.

The Ma-IGSspF/Ma-IGSspR primers used in this study for the detection of M.
anisopliae var. anisopliae were reported as species-specific in the amplification of a
380 bp product for this entomopathogen (Pantou et al. 2003). Contrary to the
findings of that study, isolate ARSEF 437, obtained from an orthopteran host in
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Australia, was observed to produce a slightly smaller product of approximately
350 bp (Fig. 1). More importantly, an isolate of M. anisopliae var. anisopliae found
in southern Alberta produced a 670 bp product when amplified in nested PCR with
the Ma-28S4/Ma-IGS1 and Ma-IGSspF/Ma-IGSspR primer combinations. Success-
ful isolation of M. anisopliae var. anisopliae from soils in southern Alberta indicates
that this species can survive and even possibly persist in semi-arid agroecosystems.
The identification of an indigenous strain of M. anisopliae var. anisopliae, especially
one with a unique built-in genetic fingerprint, that demonstrates high virulence to-
wards native grasshopper pest species will ease some of the impediments to regis-
tration of a microbial control agent through the use of molecular methodology for
monitoring and tracking the fate of the specific pest control product in the target
population and in the environment.

Concerns over the safety and efficacy of exotic agents used to control native pests
have led to the promotion of strategies for augmentation of native agents for bio-
logical control (Lockwood 1993a, b). The environmental impacts of a biological
control agent native to the target area are expected to be reversible and more
predictable than those that result from the introduction of an exotic agent (Howarth
2000). Further, regulatory agencies require data that address critical issues of toxicity
and other effects on indicator non-target species. More work is required to
determine host specificity of the native fungus, since there is no indication of the
entomopathogen’s host range, because it was isolated from soil; however, safety to
ring-necked pheasants, Phasianus colchicus Linnaeus (Galliforma: Phasianidae),
exposed to a closely related strain of M. anisopliae var. acridum, was previously
demonstrated in a Canadian study (Johnson et al. 2002; Smits et al. 1999).

This study has identified an indigenous southern Albertan isolate of M. anisopliae
var. anisopliae that shows high virulence to native grasshoppers, is readily propa-
gated on culture media, and can be differentiated from other native isolates of
Metarhizium spp. with a sensitive molecular assay. Further investigation is war-
ranted because implementation of a native pathogen in a biological control program
would help alleviate regulatory concerns about ecological consequences.
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