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Abstract. The use of the sample variance-to-mean ratio as a measure of deviation from randomness 
in spatial pattern is reviewed. The likelihood ratio method of constructing a statistical test for the 
equality of several population variance-to-mean ratios is described, and details are provided for the 
special case where counts are modelled as arising from a negative binomial distribution. This test is 
illustrated by application to example data sets in ecology. Likelihood ratio tests represent a general 
methodology whereby relationships among several indices of aggregation can be systematically in- 
vestigated, provided one is able to specify a suitable parametric form for the underlying distributions. 
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Introduction 

The examination of spatial pattern is fundamental to 
many ecological investigations, including studies of 
mechanisms as well as determination of sampling 
schemes. Various methods of analyzing observational 
data and detecting deviations from a random distribution 
have been developed. 

Spatial pattern is usually represented by the distribution 
of counts per unit area, volume, time, individual host or 
site. The simplest model of dispersion is a hypothesis of 
randomness, described by the Poisson probability distribu- 
tion: 

P [X=x] - -  x! ' for x=0 ,  1 . . . .  (,~>0). 

Both the mean and the variance of this probability distribu- 
tion are equal to the parameter 2. 

It was noted early in the century, however, that the 
Poisson rarely provides an adequate description of 
ecological data (e.g., Student 1919; Blackman 1935; 
Clapham 1936). The sample variance-to-mean ratio pro- 
vides a measure of the degree of departure from Poisson 
expectation. Ratios significantly greater than 1 are taken to 
indicate clumping or "contagion". Such deviations can be 
easily tested since if the underlying distribution is Poisson, 
then for reasonably large sample size n, the sampling 
distribution of (n-1)s2/~ can be reasonably approximated 
as Z2 with n -  1 degrees of freedom (Fisher et al. 1922; see 

also Hoel 1943). Fisher (1950) provided an example in 
which the variance-to-mean ratio was more sensitive than 
the usual Z 2 tests in detecting deviations from the 
Poisson. Morisita (1962) suggests that because sZ/~ 
typically varies with density (i.e., x--), it should not be 
recommended as an index of dispersion representing 
degree of aggregation, but nevertheless it provides a useful 
test of significance of departure from randomness. Perry 
and Mead (1979) found the sample variance-to-mean ratio 
was quite powerful as a test of randomness and they recom- 
mended its use in a wide variety of situations. 

The relative degree of departure from randomness 
exhibited by independent samples or treatments is often 
of  interest. Such comparisons may provide insight into 
ecological processes or consequences, such as behavioral 
tendencies to aggregate or disperse. The variance-to- 
mean ratio has been chosen as the basis for such com- 
parisons in a wide variety of  studies. For example, 
Boiteau et al. (1979) compared s:/~ ratios calculated from 
sweepnet samples of the bean leaf beetle among maturity 
groups and sampling dates. Erwin (1977) used s2/$ratios 
from samples of counts of foraging birds per 10-minute 
period to determine which species foraged more randomly 
in time. Mason (1970) computed sZ/Y~ for counts of five 
snail species from monthly collections, and drew 
ecological inferences from seasonal trends. Myers and 
Harris (1980) compared the s2/~ of distributions of two 
gall flies, Urophora affinis (Frld.) and U. quadrifasciata 
(Meig.), on diffuse and spotted knapweed (Centaurea 
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diffusa Lam. and C. maculosa Lam.) over time and be- 
tween species. In a classic study of spatial distribution of 
soil insects, Salt and Hollick (1946) compared the s2/~ of 
counts per soil sample for three age classes of  click 
beetles. In a study of winter aggregation of the northern 
red-backed vole (Clethrionomys rutilis), West (1977) com- 
pared the indices of clumping (s2/x - 1) calculated from 
monthly catches of voles in traps. 

Suggestions for assessing the equality of indices of  
aggregation have been made previously. David and Moore 
(1954) proposed a z-score, based on asymptotic normality 
of log(s2/~), for testing the equality of variance-to-mean 
ratios in two populations. Their method relies on an 
approximation, due to Bateman (1950), to the sampling 
distribution of sa/~ from a Neyman Type A contagious 
distribution. Reed (1983) investigated the use of the jack- 
knife as a distribution-free method of forming confidence 
intervals for such indices and suggested specific transfor- 
mations intended to improve small-sample performance. 
This method also lends itself to assessing the equality of 
indices of aggregation from two populations. Hutcheson 
and Lyons (1989) suggested the use of pairwise z-scores, 
based on asymptotic normality of  s2/~, for testing the 
equality of variance-to-mean ratios for binomial, Poisson 
and negative binomial populations. Their z-scores 
depend upon which parametric form is used as the model 
for the underlying distribution. Hutcheson and Lyons 
(1989) noted that in their simulation studies for negative 
binomial populations, the jackknife underestimated the 
variance more often than their moment-based estimators. 
None of these authors addressed the issue of testing the 
equality of indices of aggregation from several populations. 

In this paper, we consider the problem of inference for 
variance-to-mean ratios. We demonstrate construction of 
the likelihood ratio test of  the hypothesis of equality of 
variance-to-mean ratios for several populations based on 
independent samples of counts. The methods presented 
can be applied to statistical distributions such as the 
Neyman Type A, Poisson-lognormal, negative binomial 
and Polya distributions which model data showing 
aggregation (sE>x--). The negative binomial is detailed 
because of its versatility and wide application. 

The negative binomial is usually defined as: 

P t X = x ] = ( k + x - - 1 ] [  m ]x[___.~k ]~ 
]~ m +  k ] [ m +  k ] ' 

for x--0,  1 . . . .  (k, m > 0 )  

(e.g., Bishop et al. 1980). The parameter m is the mean, 
and the variance is m ( l + m / k ) .  The geometric and 
Poisson distributions are special cases with k = l  and 
k = o %  respectively. Defining 6 ) = m / k ,  we obtain the 
reparametrization of the negative binomial distribution 
first employed by Fisher (1941): 

ptx=xl=(k+x -l t 6)  xll * 
]!, 69+1] I 6)+1 ] ' 

for x = 0 ,  1 . . . .  (k, 6)>0). 

For the case of  p populations with parameters mi and ki, 
the hypothesis of equality of ratios can then be expressed 
a s :  

Ho: 6)1=6)2=...=6)p. 

The l ikel ihood ratio test 

Suppose interest focuses on the null hypothesis Ho: ~ ~ f2o, 
that is, the parameter vector O lies in a specified subset f2o 
of the parameter space f2. The likelihood ratio is given 
by: 

2 =L(O~ 

where L(~) is the likelihood function and 0 is the max- 
imum likelihood estimate (MLE) of O, while ~ is the 
MLE of O when Ho is assumed to be true (0 is restricted to 
lie in I2o). Note that 0_<2<-- 1; values of 2 close to 1 corres- 
pond to outcomes in good agreement with Ho and values 
of  2 close to 0 indicate outcomes in poor agreement. 

In special cases, the sampling distribution of the 
likelihood ratio 2 can be explicitly determined. In general, 
however, appeal must be made to a result concerning its 
large sample distribution. Suppose the parameter space I2 
is of dimension r (there are r unknown parameters), and 
the hypothesis Ho restricts Q to a subspace of dimension s 
(there are s unknown parameters under Ho). Under rather 
general conditions (for a detailed discussion, see Rao 
1965), if the sample size n is reasonably large, and Ho is 
true: 

-- 2 log 2 = 2[/(O)--/(~o)] ~ Z2(r_s), 

where/(O)----log L(O) is the log-likelihood function. 
For a sample of n counts from a negative binomial 

parametrized by ~ and k, let fj  be the observed frequency 
of a count o f j  (j__E0fi=n). The log-likelihood function is: 

o~ k + j - -  1 6) " 1 

oo r j - 1  

=j=~0 fj  [t~0 log ( k + l ) + j  log 6)-- 

( k + j )  log ( 0 +  1)--log (]!)]. 

Levin and Reeds (1977) established that the MLE (0, ~:) is 
unique and corresponds to a finite k in the case of  interest 
(s2>x-). The likelihood equations can be written as: 

~0 = i  =ofj O+ 1 = 0 ( 0 +  1~ ( x - k O ) = O '  
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8l ~ 1 1 
8k =J-E0 fj  [Jr:' log ( 8 +  1) l F=o (k+/) 

=Z=oft+/(k+l)--n log ( 8 +  1)=0, 

where 

f / - - =  j='~+ 1 j 

is the number of counts exceeding l. The choice: 

O=~/k,  

therefore maximizes the likelihood for variation in 8. 
Substitution of this choice into the second equation leads 
to the equation: 

oo 
tZ=oft+/(k+l)--n log (1 +X/k )=0 ,  

which must be solved in an iterative fashion. Computa- 
tions leading to the MLE's  k and O = E / k  were first des- 
cribed by Fisher (1941) and Haldane (1941). 

In the case of  samples of  ni counts from p independent 
negative binomials with parameters 8i and k; ( i= 1, 2 . . . . .  
p), the log-likelihood function is: 

p 
/ = l ( 8 , ,  82, ..., 8p, k, ,  ke, ..., kp)=l(8,, k)=r:~ .= ti(O~, k,), 

where the log-likelihood for the ith sample is: 

l i (8 i, ki): j~=ofO [~  log (ki d- I )+  

j log 8i-- (ki +J) log ( {~i "~- 1 ) - log (]!)]; 

here f0 is the observed frequency of a count of  j in the 
ith sample ( . Z f 0 = n ) .  Computations of maximum 

d:U 
likelihood estimates can be carried out for each sample 
separately. 

The null hypothesis of  interest, 

Ho: 8 1 = S z = . . . = S p = 8  say, 

leaves the common value 8 unspecified. The log- 
likelihood function is: 

P 
l = l ( 8 ,  k, ,  k2 . . . . .  k p ) = l ( 8 ,  k)=i=z=~ 1 1i (8  , ki) , 

leading to the likelihood equations 

88 -- 8 ( 8 + 1 )  i---~l ni(xi--ki8):O' 

8l 
:l~=of~il/(ki+l)--ni log ( 8 +  1)=0 8ki = 

for i=  1, 2 . . . .  ,p ,  

where 

fff =j~+ l f lJ 

is the number of  counts exceeding l in the ith sample. The 
choice: 

p p 
8 = ~,, flj~',/j~=l njkj, j = l  

therefore maximizes the likelihood for variation in 8. 
Substitution leads to the remaining equations: 

p 
+ P n ~ / r :  l~=ofi+/(ki+l)--ni log (1-~-j~l = njkj)=0 

for i=  1,2,...,p. 

Each of these equations involves all of k~, k2 . . . . .  kp, so 
the system of p equations must be solved simultaneously 
in an iterative fashion. This leads to the MLE's  under Ho: 

/jP nj~j, 
j = ,  '= 

and 

- - 2  l o g  2 = 2[1(0, _k)-- l(~9 ~ k~163 ~'~ ~(p--2 1) 

yields an approximate P-value for the likelihood ratio 
test of  

H o :  ~1 ~-~- 8 2 :  --. : 8p .  

In the event the data are in good agreement with Ho, one 
might wish to proceed to inferences concerning the 
parameters under the simpler statistical model specified by 
Ho (e.g., construction of a confidence interval for the com- 
mon 8). Estimates of variances and covariances of the 
MLE's  to facilitate such inferences for both the general 
model and the simpler model specified by Ho are provided 
in the Appendix. 

Remark 1: 
Note that S2/X, the method of moments estimate of the 
population variance-to-mean ratio is not equal to 6~-1, 
the MLE under the negative binomial model. Since the 
method of moments is not fully efficient, the MLE is a 
better estimate of the population variance-to-mean ratio. 

Remark 2: 
The corresponding computations for the null hypothesis: 

Ho: k l = k 2 = . . . = k p = k ,  

are considerably simpler because even under Ho, max- 
imum likelihood estimation involves the iterative solution 
of only a single equation rather than a system of equa- 
tions. For details, see Bliss and Fisher (1953), Bliss 
(1958), and Bliss and Owen (1958). This problem has 
attracted considerable attention and application in the 
ecological literature because the parameter k has also been 
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Table 1. Statistics for cankers on apple trees (Johnson et al. 1982). 

Unrestricted MLE MLE under Ho 
Cultivar ~ s2/~ n 

k 0 ~ 0 ~ 

Golden Delicious 6.60 6.73 48 0.85 7.74 1.15 5.18 
Spartan 6.91 8.83 45 1.22 5.67 1.31 5.18 
Mclntosh 10.73 5.74 33 2.45 4.38 2.13 5.18 
Delicious 12.67 4.55 36 4.18 3.03 2.61 5.18 

used to indicate the degree of  aggregation, 

E x a m p l e s  

compell ing reason for entertaining research hypotheses 
which depend upon  or seek to explain differences among 
the var iance- to-mean ratios o f  counts o f  cankers on the 
four  apple varieties. 

Apple cankers 

Neetria galligena Bres. is a common fungal parasi te  of  
apple trees. On infected trees, localized areas of  ba rk  and 
underlying cambium die and tissue sloughs f rom the face 
o f  the canker,  leaving a blackened ell ipsoid series of  con- 
centric callus ridges. Johnson et al. (1982) counted the 
cankers per tree in an orchard  to assess whether cultivar 
might affect canker distr ibution,  as measured by the respec- 
tive var iance- to-mean rat ios.  The Poisson dis tr ibut ion 
did not  provide an acceptable fit for  any of  the four apple 
cultivars examined (Table 1), but  the negative b inomial  
dis tr ibut ion provided a reasonable fit for  all four  cultivars 
( P > 0 . 0 5  for  G O F  ZZ). The l ikel ihood rat io  test for com- 
mon O led to - 2 1 o g 2 = 5 . 0 7  and indicates that  the 
differences in aggregation o f  the cultivars may  be due to 
chance ( P ~ 0 . 1 7  f rom Z~3)). Hence, there appears  to be no 

M o u n t a i n  goats  

Foster  (1982) counted the number  of  mounta in  goats in 
129 quadrats  (each 400m 2) in the Nass Ranges, B.C. ,  
Canada ,  each month  for 16 months .  He calculated the 
var iance- to-mean rat io for  each month  as an index of  
deviat ion f rom randomness .  I f  the samples for different 
months  are assumed to be independent ,  our  test can be 
appl ied to examine differences in dis t r ibut ion over t ime 
as a possible aid to unders tanding the t iming o f  mounta in  
goat  aggregation.  

The negative b inomial  provides a reasonable fit ( P >  0.05 
for G O F  Z 2) to the da ta  of  all months  except May and 
November ,  1977 (P<0 .01) .  The da ta  lead to - 2  log 2--  
32.31, suggesting differences among months  in deviations 
f rom a random pat te rn  are not  due to chance ( P ~ 0 . 0 0 6  
f rom Z~Js)). Removing the two samples for which the 

Table 2. Statistics for Foster's (1982) mountain goats, n = 129 for each sample (month). 

Momh ~ ~ 
Unrestricted MLE MLE under Ho 

k 0 k ~ 

May 1977 1.38 5.18 0.183 7.56 0.180 7.76 
June 1977 2.05 9.15 0.178 11.55 0.215 7.76 
July 1977 1.03 8.17 0.080 12.86 0.100 7.76 
August 1977 1.97 12.18 0.125 15.80 0.171 7.76 
September 1977 1.76 8.73 0.250 7.04 0.238 7.76 
October 1977 1.06 4.79 0.171 6.20 0.153 7.76 
November 1977 1.59 5.30 0.187 8.51 0.196 7.76 
December 1977 1.03 16.53 0.066 15.59 0.088 7.76 
January 1978 1.17 5.43 0.209 5.61 0.177 7.76 
February 1978 1.78 5.52 0.299 5.93 0.259 7.76 
March 1978 1.74 4.28 0.370 4.71 0.279 7.76 
April 1978 1.46 3.37 0.520 2.80 0.284 7.76 
May 1978 1.73 6.68 0.248 6.96 0.235 7.76 
June 1978 1.48 6.74 0.171 8.63 0.181 7.76 
July 1978 0.75 6.48 0.075 10.04 0.084 7.76 
August 1978 1.02 10.63 0.119 8.53 0.124 7.76 
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Table 3. Statistics for the prairie vegetation example (Steiger 1930). n----40 quadrats for each sample. 

Unrestricted MLE MLE under Ho 
Species Site X s2/~ ~ ~ ~o 

A. rnultiflorus low prairie 2.53 6.66 0.328 7.69 0.372 6.18 
high prairie 1.35 4.35 0.313 4.31 0.255 6.18 

- 2  log 2--0.749 (P~0.39 from ;~1)) 

S. glabberrima low prairie 6.45 10.50 0.504 12.79 0.498 13.08 
high prairie 3.23 19.52 0.238 13.55 0.242 13.08 

- 2  log ~=0.010 (P~0.92 from Z~)) 

negative binomial  does not  provide a good fit results in 
- 2 1 o g 2 - - 3 2 . 2 0  ( P ~ 0 . 0 0 2  f rom ~13)), so, in this case, 
lack of  fit in some of  the samples does not  affect the 
conclusions. 

Prairie vegetation 

Steiger (1930), in a detailed study of  prair ie  grasses and 
forbs,  publ ished tables of  the distr ibut ions of  counts of  
individual  plants found on "high prairie" and "low prairie" 
sites in Nebraska .  C lapham (1936) calculated variance-to-  
mean ratios for Steiger 's  samples but  found the Poisson 
was not  a reasonable model  for most  of  the samples. He 
at t r ibuted the degree o f  over-dispersion (aggregation) of  
plants  to the mode  of  reproduct ion with vegetative 
reproduct ion resulting in highly aggregated spatial  pat-  
terns and reproduct ion  by seed resulting in less aggrega- 
t ion especially as the dispersal distance increased. 

The negative binomial  provides a good fit to the distr ibu- 
t ion of  counts for As te r  multi f lorus A i t  and Solidago 
glaberrima Martens in 40 quadrats  o f  high and low 
prairie.  We appl ied the l ikel ihood rat io  test to determine 
whether either species has different var iance- to-mean 
ratios in high and low prair ie  (Table 3). There is no  strong 
evidence for reject ion o f  the hypothesis  of  equali ty in 
either case. 

Concluding remarks 

We do not  suggest that  the var iance-to-mean rat io be 
adopted  as a general index o f  spatial  pat tern.  We present 
the details o f  the l ikel ihood rat io  test for  the equali ty o f  
several such popula t ion  ratios,  and expressions for  
variances and covariances of  maximum l ikel ihood 
estimates, so that  researchers who choose to use this index 
as a measure of  departure  f rom Poisson expectation can 
proper ly  make inference. We do not  suggest the negative 
binomial  as a general model  of  contagion;  our develop- 
ment  demonstrates  a method to produce the details 
necessary for  other models  which describe contagion.  

Maximum l ikel ihood est imation and l ikel ihood rat io 
tests provide a general statistical methodology  whereby 
relationships among several indices of  aggregation,  or 
other popula t ion  parameters ,  can be investigated 
systematically. If,  for example,  one wished to investigate 
the suitabil i ty of  a power law relat ionship between the 
variances and means of  several related populat ions  (02= 
a/2~, Taylor  1961), maximum l ikel ihood est imation of  the 
parameters  a and /3 would lead directly to a l ikel ihood 
rat io  test to assess the adequacy of  the postulated power 
law as a representat ion o f  the relat ionship.  Note that  
equali ty of  var iance- to-mean ratios corresponds to the 
special case/3 = 1. Of  course, these methods only apply  if  
one is able to specify a suitable parametr ic  form for the 
underlying dis t r ibut ion of  the data.  

A copy of  the For t ran  p rogram used to per form the 
Newton-Raphson  i terat ion and the calculations for the 
examples presented is available f rom D. L. Johnson.  
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Appendix. Variances and covariances of  maximum likelihood 
estimates 

In making inferences about population parameters (e.g., construc- 
tion of confidence intervals), estimated variances and covariances 
of maximum likelihood estimates are required. For a log- 
likelihood function l(O) depending on a vector of r parameters O, 
typically the MLE can be found by solving the likelihood equa- 
tions. If 0 must be determined iteratively, the Newton-Raphson 
method is most commonly employed: 

~(k+l)= ~(k)__ [ft(~)(k))]--I /'(~(k)); 

here ~k) denotes the approximation to the solution ~ at the kth 
iteration,/ '(Q) denotes the r • 1 vector of  first partial derivatives 
and [/"(~)] denotes the r • r matrix of second partial derivatives. 
Under rather general conditions (for further discussion, see Rao 
1965), the variance-covariance matrix of 0 can be approximated 
by [ /"(~)] ~; note that the latter matrix is computed in the 
course of  the Newton-Raphson iteration. 

For a sample of n counts from a single negative binomial 
population. 

where 

n~: n 

[_/,,(8, ~:)1 = 0 ( 8 +  11 (8+1)  

n 

( 8 +  1) S 

co 

s=s(f,)= ~of,+ / (T, + 02. 

Inversion of this matrix leads to the estimates: 

v~r(8) = (O+ 1)/D, 

co~ar(8, k) = - (n/S)/D, 

v~r(k) = (n/S)(ic/8)/O, 

where 

D = D ( 8 ,  k ) = n [ k / 8 - ( n / S ) / ( 8 +  1)l; 

the estimate v,~r(~:) can also be obtained directly in the course of  
the Newton-Raphson iteration for ~:. In the case of  samples of  n~ 
counts from p independent negative binomials with parameters Oi 
and ki ( i=1,  2 . . . . .  p) and with no restrictions (the general 
model), the above expressions apply for each population separate- 
ly. 

If  the data are in good agreement with Ho: {91 = ~ = . . .  = {gp = {9 
say, one might wish to proceed to inferences concerning the 
parameters under the simpler model specified by Ho. In this case, 

where 
P 

a= Z nil~,/[~Y'(O~ 1)1, 
i=l 

the p x 1 vector/2, has ith element bi given by 

bi=ni/(O ~ + 1), 

and the p •  diagonal matrix S has ith diagonal element Si given 

by 

co ^ 

S i : (S)_ ii : l =~0 fief / ( ~  ~- I)2" 

Inversion of  this matrix leads to the estimates: 

vgtr(~O) = (~o+ 1)/D, 

cogar(~ ,  ~,) = - (ni/Si)/D, 

vfix(~) = 1/Si+ (ni/S3V[(O ~ + 1)Dl, 

co~ar(~,  ~ )  = (n/S3(n/Sj)/[(~~ + 1)/9], 
where 

P 
D=D(8 ~ ~ )  = Z ni[~/~~ (nj/Sj)/(~~ 1)l. 

j = l  

The estimates v~r(~) and co~'ar(~, ~ )  can also be obtained 
directly in the course of the Newton-Raphson iteration for ~ .  


