A Lidar/Data Fusion Classification of Heterogeneous Land Cover Types in Alberta and NWT

L. Chasmer^{1,2}, C. Hopkinson², R. Petrone¹, W. Quinton¹ ¹ Dept. of Geography, Wilfrid Laurier University

² Dept. of Geography, University of Lethbridge

Email: laura.chasmer@gmail.com

Presented at the LiDAR Forum, University of Lethbridge: July 8, 2013

Problem Statement:

Accurate classification of rapidly changing land covers is fundamentally important for quantifying how changes affect ecosystems... (assumption of accuracy...).

Also important for modelling earth-system processes.

Far Reaching Implications...

Fusion of Airborne LiDAR and WorldView 2 Spectral Data

Problem Statement:

Objectives:

1. Develop decision-tree data fusion (DT) classification method, compare with 'best' (spectral) supervised classification.

- 2. Validate the classification using GPS, water line, and manually delineated land cover types.
- 3. Application ET Modelling; Runoff Modelling

	Airborne LiDAR Data				WorldView2	
Topographic	Texture	Vegetation	Single	SVIs	Speckle	
position		structure	intensity			

Airborne LiDAR Data				WorldView2	
Topographic position	Texture	Vegetation	Single intensity	SVIs	Speckle
		LiDAR D - IDW g - 10 m - Low-j (remove	EM grid search radiu pass filter (3 es surface he	us x 3) et.)	

Land Cover Classification Comparison: Scotty

1. Fusion classification

2.82% - 96% of land covers classified using topographic derivatives alone (41% - 76% using veg structure, less for SVIs).

* Results for watershed

Comparisons with GPS Along Plateau/Fen Edge

DT Fusion classification: within 2 m, 60% of time

Spectral classification: within 2 m, 40% of time

Area Coverage of Land Cover Types - Implications

Scotty Creek Discharge:

Land Cover	Fusion	Parallele- piped
Plateau	20%	43%
Fen	12%	18%
Bog	19%	12%
Upland	48%	25%
Water	2%	3%

Differences of up to 23%

 \rightarrow Significant implications to land surface modelling....For example:

Discharge significantly influenced by area.

Deviation in modelled discharge increases by 25% of difference in plateau area.

The Importance of a good land cover classification?

Scotty Creek Discontinuous Permafrost:

Spectral classification: ~2x greater plateau area than DT Fusion

- \rightarrow SC = overestimate thaw-related discharge from plateaus
- → Suggests that increases in modelled discharge due to plateau thaw may be lower than previously anticipated...

URSA Western Boreal Plain:

- \rightarrow Classification accuracy impacts ET model application.
- ightarrow May be used to monitor reclamation sites, disturbance areas, regeneration, etc.
- ightarrow Need to validate with (existing) transect, LAI, land cover spatial data.

<u>Thanks to:</u> George Sutherland (WLU) Tyler Veness (WLU) Dr. John Diiwu (AESRD) Dr. Oliver Sonnentag (U. of Montreal) Dr. Parinaz Rahimzadeh (U. of Guelph) Dr. Aaron Berg (U. of Guelph) Allyson Fox (AGRG (prev)/Airborne Imaging (curr)) Tristan Goulden (Dalhousie U.)

<u>Data From</u>: Alberta Sustainable Resource Development (URSA 2008 LiDAR data) C-CLEAR/AGRG (Scotty 2010 LiDAR data)

> <u>Support and Funding from</u>: Liidii Kue First Nation Canadian Space Agency NSERC Aurora Research Institute Water Survey of Canada

Aberta Sustainable

