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Abstract Two LiDAR datasets were acquired over the Marmot Creek headwaters of the Bow River, Alberta; 

the first during dry snow free conditions in August 2007, and the second during snow covered conditions in March 

2008. A LiDAR snow depth model (SDM) was derived by subtracting the snow free digital elevation model (DEM) 

from the digital snow surface model (SSM). Field crews were deployed coincident with the 2008 LiDAR survey to 

collect snow depth transects in: a) low elevation valley locations of shallow and discontinuous snow cover; b) alpine 

locations of deep but discontinuous snowpack; and c) forested locations at intermediate elevations displaying 

variable depth but more continuous cover. The SDM was validated using the field measurements and then stratified 

by the three LiDAR point cloud derivatives: elevation, intensity and canopy fractional cover. The SDM performed 

favourably over the alpine transect areas with no significant bias (r
2
 = 0.94, n = 137), with the valley transects 

demonstrating a slight overestimation of 7 cm (r
2
 = 0.48, n = 310) and the forest transects demonstrating the weakest 

correlation (r
2
 = 0.20, n = 402) and a mean over-estimation of 13 cm. Canopy cover creates a challenge for mapping 

shallow snow depth with LiDAR in mountainous environments but canopy also reduces the spatial accuracy of GPS 

field data, so a weaker correlation is to be expected. The SDM illustrated increasing snow depth up to tree line at 

approximately 2250 m a.e. with reducing depth and cover in the alpine zone. Overall, high LiDAR intensity values 

were not well correlated with snowcover at the basin scale with only 44% spatial correspondence. However, above 

tree line this increased to 76%, suggesting that LiDAR intensity has some value for snow covered area (SCA) 

mapping as long as there is no forest canopy to attenuate or split the laser pulse returns. 
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INTRODUCTION 

Within mountainous watersheds, snow depth varies with terrain and landcover (e.g. Elder et al., 1998). 

A demonstrated method for remotely mapping landscape-level snow depth at high resolutions is repeat 

airborne LiDAR; whereby a LiDAR ground surface digital elevation model (DEM) is subtracted from a 

LiDAR snow surface model (SSM) to derive a snow depth model (SDM) (Hopkinson et al., 2004). 

Hopkinson et al. (2004) found that whilst snow depth could be mapped accurately in open areas, low-

level vegetation or understory could lead to systematic bias of a few cm. A further property of LiDAR 

data offering potential for snowpack mapping is the ‘intensity’ or peak amplitude of the returning infrared 

laser pulse. An interpolated laser intensity image looks similar to a black and white photograph, and given 

many commercial airborne sensors operate in the near-infrared (1064 nm), snow appears bright relative to 

other surfaces. For example, in Hopkinson & Demuth (2006), a LiDAR intensity image was used to 

classify glacier snow and ice facies. The application of LiDAR to snowpack distribution assessments in 

mountainous environments has been studied by Fassnacht & Deems (2006), Deems et al. (2006) and 

Trujjillo et al. (2007).  

To date, a thorough evaluation of LiDAR SDM accuracy over a range of mountainous surfaces has not 

been presented. However, some challenges associated with LiDAR surface comparison in alpine 

environments have been explored previously. For example, it is known that horizontal DEM uncertainty 

can propagate vertical errors (e.g. Hodgson et al., 2004), and when alpine DEMs are compared in areas of 

steep slope, errors <100 m have been documented (Hopkinson & Demuth, 2006). Another characteristic 

that leads to potential bias in alpine landscapes is LiDAR point-based sampling either side of ridge or cliff 

edges, which typically results in some rounding of these features in raster DEMs (Hopkinson et al., 
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2009). Both of these potential error sources are associated with steep terrain, however, and can be 

mitigated with dense sampling and extreme care with data calibration procedures. This paper presents the 

results of a LiDAR-based SDM validation exercise in and around the Marmot Creek Research Basin (9.7 

km
2
) in the Canadian Rockies (Figure 1). Relationships between the SDM and LiDAR terrain elevation, 

intensity and canopy cover (ratio of canopy returns to all returns) are presented to further explore the 

inter-related properties of the LiDAR point cloud and the snowpack we are attempting to model.  
 

 
Figure 1. Study area. A) Marmot Creek Research Basin, stream network and elevation distribution (grey box illustrates area in 

Figure 3A). Circles represent forested sample sites and squares represent alpine sample sites (valley sites not shown); B) LiDAR 

intensity image; C) LiDAR canopy fractional cover. The alpine zone is the area with no canopy on the western side of the basin. 

 

METHODS 

The first LiDAR dataset was collected during dry summer conditions in August 2007 while the second 

was collected during winter in late March 2008. Both surveys were configured and flown identically at an 

altitude of ~3500 m a.e. using an Airborne Laser Terrain Mapper (ALTM) 3100 (Optech, Toronto, 

Ontario). Swath overlap was optimized to 50% at the 75
th
 percentile terrain elevation, leading to a point 

spacing at ground level of between 1 m and 2 m, with actual point density increasing and swath width 

decreasing with terrain elevation. Sensor calibration and validation was performed before and after each 

mission at an airport runway providing a vertical RMSE < 0.15 m. Before the SDM was generated, the 

two datasets underwent extensive calibration and georegistration to ensure accurate alignment, as even a 

slight horizontal shift in one dataset could result in large SDM errors or a spatial autocorrelation with 

terrain features. The SDM was generated in a GIS by subtracting the DEM from the DSM. 

SDM validation was conducted in three distinct areas: i) four valley locations adjacent to the highway 

east of Marmot Creek; ii) two mid-elevation mainly canopy covered locations on the montane slopes of 

the watershed; iii) two alpine sites on the western side of the watershed (Figure 1). Depth measurements 

(894 in total) were made at recorded distances along transects using a graduated aluminium rod. For 

registration of the field and LiDAR data, the end points of the transects were differentially GPS surveyed 

to the same base location used for the LiDAR missions, approximately 20 km northeast of Marmot Creek. 

Following calculation of all field sampling coordinates, the spatially coincident SDM values were 

extracted and compared. Relationships between LiDAR primary derivatives, the SDM and snowcovered 

area (SCA) (defined as SDM > 0cm) were evaluated by stratifying the SDM into: i) 100 m elevation bins 

from the DEM; ii) high vs. low intensity (defined as above or below the median intensity value); iii) high 

(>30%) vs. low (<30%) canopy fractional cover (30% being the approximate median value). 
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RESULTS & DISCUSSION 

Mean field-measured snow depths at the valley, forested and alpine sites were, respectively: 28 cm 

(n=310, =21 cm); 50 cm (n=447, =20 cm); and 72 cm (n=137, =67 cm). While for the corresponding 

LiDAR SDM grid values, the depths were: 35 cm (=33 cm); 63 cm (=28 cm); and 68 cm (=65 cm). 

Therefore, the LiDAR SDM deviated from the field measurements by, respectively: +7 cm ( +12 cm), 

+13 cm ( +8 cm) and -4 cm ( -2 cm). While the means and standard deviations are all within 13 cm, the 

variable level of bias and noise at each site (Figure 2) requires investigation. The alpine comparison was 

most favourable and this is likely due to the terrain being the closest to the sensor platform (i.e. reduced 

propagation of sensor calibration and platform error) and minimal ground vegetation cover. The valley 

transects were predominantly in open canopy over variable relief terrain. However, due to nearby forest 

cover and steep surrounding terrain, the GPS data associated with the validation transects were of variable 

quality. Consequently, the increased noise and slightly elevated bias was likely due to a combination of: i) 

calibration- and platform positioning-related error propagation (Goulden & Hopkinson, 2010); ii) 

mismatch between the DEM and SSM; iii) mismatch between the SDM and field data due to GPS errors. 

The correlation between SDM and field data is lowest at the intermediate elevation forested sites. While 

the canopy and understory likely play a significant role in introducing noise into the SDM (Hopkinson et 

al., 2004) it must be noted that the field GPS data collected in the forested and small clearing hillslope 

locations were the lowest quality of all with many points having a float solution. Consequently, there is 

little confidence in the registration of the field and SDM data resulting in a weak correlation. When the 

field and SDM data at the forest sites are grouped into localized spatial clusters we find an offset in 

standard deviation of ~9 cm but there is a clear correlation (Figure 2D). This shows that even in the 

forested areas, localized SDM variability could be used as an index for actual snow depth variability and 

therefore, offers potential for SCA depletion simulations (e.g. DeBeer & Pomeroy, 2010). 

 
Figure 2. Regression plots of LiDAR snow depth against field measurements for: A) alpine sites; B) valley sites near the 

highway; C) intermediate elevation forested sites. D) Grouped snow depth standard deviations for the forested sites.  

The SDM illustrated a peak in snow depth (by elevation-band and SCA) at treeline (Figure 3A), with a 

systematic increase in depth and cover up to this zone, and decrease above (Figure 3B). Snowpack above 

treeline is ablated by blowing snow and at lower elevations by canopy interception in evergreens 

(Pomeroy and Gray, 1995). However, the treeline is dominated by deciduous larch trees which trap 

blowing snow and do not have significant interception losses (Fisera, 1977). Overall, LiDAR intensity 
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values had no better than a random association with SCA at the basin scale with only 44% spatial 

correspondence. It was found that canopy cover exerted a stronger control on intensity than snowcover, 

with 84% of low intensity returns corresponding with canopy covered areas, and 68% of high intensity 

returns corresponding with open areas. Above treeline, high intensities had a 76% spatial correspondence 

with SCA, suggesting LiDAR intensity imagery does have potential for mountain SCA mapping as long 

as there is no forest canopy to attenuate or split the laser pulse signal. This needs to be further examined, 

as it is possible that intensity is actually a better indicator of true SCA than SDM>0cm, given: i) the SDM 

is known to contain some bias and noise (Figure 2); and ii) a thin dusting of snow can raise the surface 

albedo sufficiently to produce a high intensity while not changing the surface elevation appreciably. 
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Figure 3. A) LiDAR SDM near treeline (dashed line) and on high elevation alpine slopes at the western extremity of Marmot 

Creek Research Basin (see Figure 1). SDM is visibly greatest in gulleys, foot of slopes, along corniced ridges and at treeline. B) 

Distribution of LiDAR snow depth with elevation both as an average for the elevation band and only within SCA.  
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