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Abstract 

Obtaining forest structure data to compute leaf area index (LAI) can be a challenge in remote areas 

like the Canadian boreal forest. Light ranging and detection (LiDAR) data provides a 3-dimensional 

view of the forest that can be calibrated with minimal field data requirements relative to other 

remote sensing data. Our objective is to develop an automated method for combining a limited 

amount of field data with LiDAR to generate estimates of LAI. To accomplish this we used 

geographic information system (GIS) tools to expand upon a physically-based gap fraction model 

by incorporating a process for optimizing extinction coefficient by forest species. In this paper we 

demonstrate a simple, efficient method for optimizing remote sensing-based estimates of canopy 

attributes from limited field data. We were able to reduce the RMSE in modelled effective leaf area 

index by an average of 0.48 across all species. Combining such simple model optimisation 

approaches with other automated LiDAR-based canopy attribute extraction procedures shows 

promise as we move towards ever greater levels of LiDAR forestry operationalisation. 

Keywords: LiDAR, leaf area index, optimization, extinction coefficient, Boreal forest 

 

1. Introduction 

1.1 Rational 

Leaf area index (LAI), which is defined as half of the total leaf area per unit ground area (Chen et 

al., 2006), is an important input parameter used within biogeochemical, biomass, and ecological 

models. Accurate estimates of LAI are therefore important, as small deviations or biases in could 

result in sometimes compounded errors within these models. Several studies have used plot-based 

measurements of gap fraction (used to derive effective LAI (LAIe) and LAI) when scaling to lower 

resolution spectral imagery (e.g. Fernandez et al., 2003; Fernandez et al., 2004). However, plot 

measurements often do not represent the full range of vegetation characteristics found within 

ecosystems, and can be time consuming to acquire. Airborne Light Detection and Ranging (LiDAR) 

data offers an alternative method for continuously mapping LAI at high resolution. LiDAR provides 

a three dimensional representation of the canopy, understory, and ground surface topography 

measured using reflected laser pulses. The basic rationale for LiDAR-based LAI mapping is that the 

vertical distribution of laser pulse returns within the canopy is related to the foliage profile 

(Magnussen and Boudewyn, 1998) such that if only ground-level returns occur in a given area then 

the likelihood of overlaying leaf area is low. Conversely, a greater density of above ground (or 

canopy level) returns in a given area indicates a higher leaf area. From this basic understanding, 

mailto:morrison.h@gmail.com


SilviLaser 2011, October 16-19, 2011 – Hobart, Australia 

2 

 

LAI can be estimated directly as a function of the canopy gaps thus observed (e.g. Solberg et al., 

2006). However, gap fraction-based estimates of LAIe (which must further take into account the 

canopy clumping, woody to total leaf area ratio, and needle to shoot area ratio in order to estimate 

true LAI) requires an estimate of extinction coefficient (k). The objective of this study is to 

investigate model parameter optimization of k to improve LAIe estimates within three boreal forest 

ecosystems: mature black spruce, a jack pine chronosequence of four sites, and a mature aspen 

stand. 

1.2 LiDAR-based LAI models 

A number of LiDAR-based LAIe models have been developed that employ range and echo data 

provided by discrete-return airborne systems. These include mean return elevation methods (e.g. 

Lim et al., 2003), fractional canopy return methods (e.g. Riaño et al., 2004; Solberg et al., 2006), 

and the examination of canopy volume (e.g. Lefsky et al., 1999).  Models were developed and 

tested for a specific forest type but often require calibration. The intensity-based gap fraction (or 

fractional cover) model of Hopkinson and Chasmer (2007), is one LiDAR-based model that has 

been shown to require minimal or no calibration. The model divides LiDAR returns into four echo 

classes (first, single, intermediate, last) and generates grids of intensity by summing returns within a 

cell. It then accounts for a two-way power transmission loss by intermediate and last return hits 

using a square root function. First and single hits at and below 1.3 m from the ground surface are 

subset to represent below-canopy (ground) hits. A ratio of total returns intensity to this below-

canopy subset is used to estimate gap fraction: 
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Subscripts indicate the echo class and subset of each return. This model has been tested on a variety 

of study locations across Canada resulting in estimates comparable to ground based (DHP) 

measures of gap fraction (or fractional cover) without requiring calibration (Hopkinson and 

Chasmer, 2009).  This study uses the intensity-based model of Hopkinson and Chasmer (2007) and 

an automated plot-based optimisation routine to create a more accurate model of LAIe that can be 

applied to a broad range of boreal forest types. 

 

2. Study Area 

The study area is located in the Boreal forest of Saskatchewan, Canada (Fig. 1) on a number of sites 

being monitored as part of Fluxnet-Canada (2002-2007) and the Canadian Carbon Program (2007-

2011) networks. A variety of stand types were sampled including a three stage chronosequence of 

jack pine (mature ~95 years old, harvested in 1975, harvested in 1994); a mature aspen stand and a 

mature black spruce stand (Table 1). The total number of plots examined within each stand type 

were randomly divided into training and testing categories for modeling and validation. 
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Figure. 1. Map showing location of study area within Canada 

 

Table 1.  Forest plot descriptions and stand type 

Stand Description LAIe/DHP  

Training Plots 

LAIe/DHP  

Testing Plots 

JP All Jack Pine Sites 75 56 

OJP Old Jack Pine 25 27 

HJP75 Jack Pine harvested in 1975 25 17 

HJP94 Jack Pine harvested in 1994 25 12 

OBS Old Black Spruce 20 8 

OA Old Aspen 20 11 

 

3. Methods 

3.1 DHP collection and analysis 

Ground-truth data were collected August 10-20, 2005 and July 29-August 3, 2008. Five digital 

hemispheric photos (DHP) were collected per geographically located plot (dGPS), one at the center 

and four located 11.3 m from the center in each cardinal direction (N, E, S, W) using a compass 

bearing and tape measure. All images were captured using a Nikon Coolpix 8.0 Megapixel camera 

positioned 1.3 m off the ground (at mature sites, 0.5 m at HJP94), facing north, fitted with a 180° 

fisheye lens with the exposure set one ‘f stop’ lower than normal exposure to improve contrast 

between foliage and sky. DHPs were processed using CAN_EYE software 

(http://www.avignon.inra.fr/can_eye/) which utilizes user enhanced automated image classification 

to calculate gap fraction and LAIe from two-tone images. 

3.2 LiDAR data collection and preparation 

LiDAR data were collected by the Applied Geomatics Research Group (AGRG) coincident with 

DHP collection on August 12, 2005 and August 2, 2008 using an ALTM 3100 laser scanner. The 

2005 LiDAR data collection was flown at a height of 950 m a.g.l, with a laser pulse repetition 

frequency (PRF) of 70 kHz, and a scan angle of ±19
o
 (with 50% overlap of scan lines). The 2008 

LiDAR data collection was flown using the same sensor at a height of 700 m a.g.l., with a PRF of 

70 kHz and a scan angle of ±20
o
 (with 50% overlap of scan lines).  The point data were classified 

using Terrascan (Terrasolid, Finland) into ground, canopy and echo code classes then gridded using 

Surfer 8 (Golden Software Inc., USA) by assigning summed intensity values to each cell based on 

points that fell within 2.5 m to generate 1 m resolution grids. Classification and gridding was also 

performed by the AGRG in preparation for modeling (Hopkinson and Chasmer, 2009).  

http://www.avignon.inra.fr/can_eye/
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3.3 Optimization process 

Gap fraction (P) grids were calculated using the intensity-based model published by Hopkinson and 

Chasmer (2007) described above. If the canopy is assumed to be a turbid medium with randomly 

distributed foliage then the Beer-Lambert Law can be applied: 

          ( )   ⁄       (2) 

where extinction coefficient (k) is a function of leaf angle distribution, radiation type and direction, 

and canopy structure and clumping (Bréda, 2003). Initially, a mid-value k of 0.5 is used in this 

study because it represents a spherical (random) projection coefficient for leaves of any shape, 

(Chen et al., 1997) and is an accepted alternative to species specific values (Richardson et al., 

2009). 

               ( )     ⁄      (3) 

The k term in equation (3) is then optimized for each species by rearranging the general equation (2) 

using measurements of LAIe from captured DHPs (LAIeDHP), to train new estimates for k based on 

species (kNEW): 

                (         )⁄     (4) 

LAIe raster layers were generated for the entire study area by equation (3) using an automated GIS-

based tool as a baseline for optimization. Mean LAIe values were extracted for 11.3 m radius plots 

at the geo-located photo positions and the training subset were compared to coincident LAIe 

measured using DHPs to generate kNEW for each species (4). LAIe raster layers were then 

regenerated using the P layers and substituting kNEW for 0.5 in equation (3). Model quality was 

determined using the testing subset of plots for each species (Table 1).  

 

4. Results 

LAIe estimated using a generic 0.5 extinction coefficient (equation 3) resulted in means that were 

significantly different from DHP LAIe (p < 0.05) across all species. The generic model 

underestimated LAIe for both conifer species while overestimating the broad-leaved aspen 

compared with measurements gathered in the field (Fig. 2). These results are comparable to those 

published by Bréda (2002) who indicated that coniferous stands trended towards extinction 

coefficients less than 0.5. The need for a more specific k for predicting LAIe from LiDAR is also 

highlighted by these results. 

 

Including kNEW improved LAIe model fit, reducing the RMSE by an average of 0.48 across all 

species (Fig. 2, Table 2). The greatest improvement was observed in the OBS model which 

translates to a shift in average LAIe values from 1.17 to 2.42. The lowest RMSE occurred across the 

JP stands at 0.35 after optimization. The average absolute shift in LAIe across all species is 0.79, 

which is greater than the difference observed between coniferous and deciduous species, signifying 

a change in canopy structure. 
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Figure. 2. LAIeLiDAR compared to LAIeDHP for all data (n=190). k=0.5 represents pre-optimization 

results (left) and optimized (right) represents estimates using kNEW . Dashed line is 1:1. 

LAIe for plots set aside for testing calculated using kNEW revealed no significant difference at the 

95% confidence level between LiDAR modelled and DHP measured LAIe for all species, indicating 

a significant improvement over the generic model.  

Table 2.  Pre and Post-optimization statistics 

Stand Pre-optimized 

mean  

LAIeLiDAR 

Post-optimized  

mean  

LAIeLiDAR 

kNEW RMSE 

pre-optimized 

Training plots 

 RMSE 

post-optimized 

Training plots 

RMSE 

post-optimized 

Testing plots 

JP 0.57 1.17 0.24  0.71  0.35  0.32 

OBS 1.17 2.42 0.24 1.34 0.49 0.56 

OA 2.17 1.71 0.63 0.67 0.44 0.42 

 

5. Conclusion 

An automated optimization model such as the one presented here creates opportunities to gain 

knowledge of forest structure over large areas using limited field data. The adjustment of k when 

modelling LAIe from LiDAR intensity data will improve results that will be reflected in 

environmental applications based on remote sensing data. Further investigation including more 

species and age classes would benefit from model optimization of this type including investigating 

optimal intensity gridding parameters (Morrison et al., 2011). This work is part of a larger effort to 

operationalize forest structure modelling routines through the generation of automated tools. 
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