Answers to Exercise 1.4 Stoichiometry Basics

1.	$C_{3}H_{8}(g)$	+ $5 O_2(g$	\rightarrow	$4 H_2O(g)$	+	3 CO ₂ (g)
М	44.096 g/mol	31.9988 g	/mol 1	8.0152 g/mol		44.010 g/mol
minitial	25 g					
n _{initial}	0.57 mol	2.8 mo	l	0 mol		0 mol
n _{change}	-0.57 mol	-2.8 mo	1	+2.3 mol		+1.7 mol
n _{final}	0 mol	0 mo	l	2.3 mol		1.7 mol
minitial	25 g	91 g		0 g		0 g
m_{final}	0 g	0 g		41 g		75 g

Tables like the ones in this answer key are enormously helpful at keeping you organized! Sometimes, they even suggest the next logical step in a calculation...

Step 1: Write a balanced chemical equation for the reaction

see above

Step 2: Organize all known information

see above; this involves reporting masses, concentrations, pressures, etc. as well as calculating molar masses, checking the data sheet for relevant densities, etc.

Step 3: Calculate moles of C₃H₈ reacted (n_{initial})

 $n_{C_3H_8-initial} = 25 \ g \ C_3H_8 \times \frac{1mol}{44.096g} = 0.57 \ mol \ C_3H_8$

Step 4: Use mole ratio to calculate moles of O₂ required for reaction (n_{initial})

$$n_{O_2-initial} = 0.57 \ mol \ C_3 H_8 \times \frac{5 \ mol \ O_2}{1 \ mol \ C_3 H_8} = 2.8 \ mol \ O_2$$

Step 5: Calculate mass of O₂ required for reaction (m_{initial})

$$m_{O_2-initial} = 2.8 \ mol \ O_2 \times \frac{31.9988g}{1 \ mol} = 91 \ g \ O_2 \qquad answer \ to \ (a)$$

Step 6: Use mole ratio to calculate moles of H₂O and CO₂ produced (n_{final})

$$\begin{aligned} n_{H_2O-final} &= 0.57 \ mol \ C_3H_8 \times \frac{4 \ mol \ H_2O}{1 \ mol \ C_3H_8} = 2.3 \ mol \ H_2O \\ n_{CO_2-final} &= 0.57 \ mol \ C_3H_8 \times \frac{3 \ mol \ CO_2}{1 \ mol \ C_3H_8} = 1.7 \ mol \ CO_2 \end{aligned}$$

Step 7: Calculate masses of H₂O and CO₂ produced (m_{final})

$$m_{H_2O-final} = 2.3 \ mol \ H_2O \times \frac{18.0152g}{1 \ mol} = 41 \ g \ H_2O \qquad answer \ to \ (b)$$

$$m_{CO_2-final} = 1.7 \ mol \ CO_2 \times \frac{44.010g}{1 \ mol} = 75 \ g \ CO_2$$
 answer to (c)

Step 8: Check your work

Does your answer seem reasonable? Are sig. fig. correct?

25 g + 91 g = 41 g + 75 g = 116 g so the Law of Conservation of Mass is obeyed. Therefore, this seems like a reasonable set of answers. *answer to* (d)

2.	4 Fe(s)	+	$3 O_2(g)$	\rightarrow	$2 \operatorname{Fe}_2 O_3(s)$
М	55.847 g/mol		31.9988 g/mol		159.692 g/mol
minitial	25 g		25 g		0 g
n _{initial}	0.45 mol		0.78 mol		0 mol
n _{change}	-0.45 mol		-0.34 mol		+ 0.22 mol
n _{final}	0 mol		0.45 mol		0.22 mol
m _{final}	0 g		14 g		36 g

Step 1: Write a balanced chemical equation for the reaction

see above

Step 2: Organize all known information

see above

Step 3: Calculate moles of Fe and O₂ available to react (n_{initial})

$$n_{Fe-initial} = 25 \ g \ Fe \times \frac{1 \ mol}{55.847 g} = 0.45 \ mol \ Fe$$
$$n_{O_2-initial} = 25 \ g \ O_2 \times \frac{1 \ mol}{31.9988 g} = 0.78 \ mol \ O_2$$

Step 4: Identify the limiting reagent

Either calculate the moles of O₂ required to fully react with 0.45 mol Fe:

 $n_{O_2} = 0.45 \text{ mol Fe} \times \frac{3 \text{ mol } O_2}{4 \text{ mol Fe}} = 0.34 \text{ mol } O_2 \text{ There is more } O_2 \text{ than this; Fe runs out first.}$

Or calculate the moles of Fe required to fully react with 0.78 mol O₂:

 $n_{Fe} = 0.78 \text{ mol } O_2 \times \frac{4 \text{ mol } Fe}{3 \text{ mol } O_2} = 1.0 \text{ mol } Fe$ There is less Fe than this; Fe runs out first.

Or calculate the maximum moles of Fe_2O_3 that can be produced from each reactant:

$$\begin{aligned} n_{Fe_2O_3} &= 0.45 \ mol \ Fe \times \frac{2 \ mol \ Fe_2O_3}{4 \ mol \ Fe} = 0.22 \ mol \ Fe_2O_3 \\ n_{Fe_2O_3} &= 0.78 \ mol \ O_2 \times \frac{2 \ mol \ Fe_2O_3}{3 \ mol \ O_2} = 0.52 \ mol \ Fe_2O_3 \end{aligned} \qquad This is the smaller amount; \\ Fe \ runs \ out \ first. \end{aligned}$$

Regardless of the method chosen, Fe is the limiting reagent.

Step 5: Calculate moles of Fe₂O₃ produced (n_{final}) (*if not already done in Step* 4)

$$n_{Fe_2O_3-final} = 0.45 \ mol \ Fe \times \frac{2 \ mol \ Fe_2O_3}{4 \ mol \ Fe} = 0.22 \ mol \ Fe_2O_3$$

Step 6: Calculate mass of Fe₂O₃ produced (m_{final})

 $m_{Fe_2O_3-final} = 0.22 \ mol \ Fe_2O_3 \times \frac{159.6982 \ g}{1 \ mol} = 36 \ g \ Fe_2O_3$

Step 7: Calculate moles of O₂ left unreacted (n_{final})

 $n_{O_2-final} = n_{O_2-initial} - n_{O_2-reacted} = 0.78 \text{ mol } O_2 - 0.34 \text{ mol } O_2 = 0.45 \text{ mol } O_2$

Step 8: Calculate mass of O2 left unreacted (mfinal)

 $m_{O_2-final} = 0.45 \ mol \ O_2 \times \frac{31.9988g}{1 \ mol} = 14 \ g \ O_2$ Step 9: Check your work Does your answer seem reasonable? Are sig. fig. correct? 25 g + 25 g + 0 g = 0 g + 14 g + 36 g = 50 g so this seems like a reasonable set of answers.