
Exercise 2.4 
Energy of Nuclear Reactions 

 
Calculating the Energy Change for a Nuclear Reaction 
In any nuclear reaction, the exact masses of the products and reactants differ.  If the products have 
a smaller total mass than the reactants, energy is released.  The convention is to subtract the mass 
of the reactants from the mass of the products such that a negative value for ∆𝑚𝑚 corresponds to a 
mass defect: 

∆𝑚𝑚 = �𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −�𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 

Einstein’s equation describes the relationship between energy and mass.  As such, the mass defect 
can be used to calculate the energy change for a nuclear reaction.  A negative ∆𝑚𝑚 results in a 
negative ∆𝐸𝐸 and a release of energy: 

∆𝐸𝐸 = ∆𝑚𝑚𝑐𝑐2 
This means that in order to calculate the energy change for a nuclear reaction, you must first have 
a balanced nuclear equation so that you include all products and reactants except electrons and 
positrons (see below). 
 
Why We Don’t Include Electrons or Positrons When Calculating the Energy Change for a 
Nuclear Reaction (courtesy of Prof. Marc Roussel) 
…in Beta Emission Reactions (Beta Decay)  
The first thing to be aware of is that, when we balance nuclear reactions, we focus on the nuclei. 
We don’t think at all about what happens to the electrons in these processes.  So let’s properly 
account for those electrons in an example of a beta emission reaction and see what this tells us.  
For the beta decay of 99Mo, we would write the following nuclear reaction: 

Mo42
99 → Tc43

99𝑚𝑚 + 𝛽𝛽−1
0  

(The m in 99mTc stands for “metastable”.  It designates a particular nuclear state.  It’s not relevant 
to balancing, so just ignore it.)  A neutral molybdenum atom has 42 electrons to balance the nuclear 
charge of +42.  A neutral Tc atom, whose mass would be given in a table of isotopic masses, would 
have 43 electrons.  That’s not what we make in the nuclear decay process, which releases a 
negatively charged beta particle (i.e. an electron).  What we actually make is a 𝑇𝑇𝑇𝑇+ ion, with 42 
electrons and 43 protons.  So, really, we should write: 

Mo42
99 → Tc+43

99𝑚𝑚 + 𝛽𝛽−1
0  

The mass of the Tc+99𝑚𝑚  ion would be the mass of a 99mTc atom minus the mass of an electron (and 
a small correction for the binding energy of that electron, but that’s really small compared to the 
mass defect due to the nuclear process).  ∆m for this beta decay is therefore really: 

∆𝑚𝑚 = �𝑚𝑚� Tc99𝑚𝑚 � − 𝑚𝑚𝑒𝑒� + 𝑚𝑚𝑒𝑒 −𝑚𝑚� Mo99 � 

The quantity in the square brackets is the mass of the Tc+99𝑚𝑚  ion.  You can see that the mass of 
the electron cancels, and we’re left with: 

∆𝑚𝑚 = 𝑚𝑚� Tc99𝑚𝑚 � − 𝑚𝑚� Mo99 � 



…in Electron Capture Reactions 
Let’s now think about an electron capture process.  Potassium-40 decays by electron capture: 

K19
40 + e−1

0 → Ar18
40  

Again, think about the electrons.  A neutral atom of potassium has 19 electrons; a neutral atom of 
argon has 18 electrons.  On the surface, it looks like there are 20 electrons on the left-hand side of 
this equation (the 19 in the potassium atom, plus the electron that will be captured) but that’s not 
what we’re trying to represent here.  What we’re trying to show is that a potassium-40 nucleus 
captures an electron.  That electron is one of the electrons in the atomic orbitals of the potassium 
atom. So really, the reaction is just: 

K19
40 → Ar18

40  

The equation for ∆m is obvious once you write the reaction this way.  So why don’t we?  Because 
the nuclear balancing method allows us to connect reactant nuclei to product nuclei, with particles 
that are captured or emitted to effect the nuclear changes explicitly shown. 
 
…in Positron Emission Reactions 
The last case to consider is positron emission.  Phosphorus-30 decays by positron emission: 

P15
30 → Si14

30 + 𝛽𝛽10  

A neutral atom of phosphorus has 15 electrons, and those 15 electrons remain after the reaction, 
so we actually make a 𝑆𝑆𝑆𝑆− ion given that the product has 14 protons and 15 electrons.  This case 
seems worse than the other ones: the mass on the right-hand side is the mass of the 30Si atom, plus 
the extra electron it carries, plus the positron.  So how can we ignore the electron and positron 
masses?  The assumption is that the positron, being the antiparticle of the electron, will meet an 
electron somewhere and annihilate it: 

𝛽𝛽+ + e− → energy 
It won’t be the extra electron carried by the silicon atom, but overall, we’ll have destroyed an 
electron (somewhere) with our positron.  The energy of that annihilation is included in the overall 
∆m calculation when we leave out the masses of the electron carried by the silicon-30 atom and of 
the positron. 
 
 
As a side note, if you think about these processes and the fact that beta particles and positrons tend 
to escape from their respective radioactive materials, you will realize that beta emission and 
positron emission tend to leave behind a charged sample.  In fact, one of the characteristics of 
highly radioactive beta or positron emitters is that they tend to build up large static charges. 
 
 
 
 
 
  



1. One of the many different fusion reactions occurring in stars such as our sun is “carbon 
burning” – the fusion of two 12C to give 20Ne (emitting 4He).  Calculate the energy released 
by this reaction.   

(a) Report your answer in J/mol.  (This refers to J per mole of 20Ne produced.) 
(b) Report your answer in J.  (This refers to J per molecule of 20Ne produced.) 
 
 
2. 26Mg is produced when 26Al undergoes electron capture. 
(a) Write a balanced equation for this nuclear reaction.   
(b) Count the electrons on each side of your balanced equation.  It should appear that one of 

them have “gone missing”!  What happened to it?  What effect will this have on how we 
calculate the energy released by this reaction? 

(c) Calculate the energy released by this reaction.  Report your answer in J/mol and in J 
 
 
3. While many different fusion reactions occur in stars such as our sun, the main one is the 

proton-proton chain reaction.  In this reaction, four 1H combine (in multiple steps) to give 
4He, two positrons, two neutrinos and gamma radiation. 

(a) Write a balanced equation for this nuclear reaction.   
You do not need to include the neutrinos or the gamma radiation in your equation. 

(b) Count the electrons in the atoms on each side of your balanced equation.  It should appear 
that two of them have “gone missing”!  What happened to them?  What effect will this 
have on how we calculate the energy released by this reaction? 

(c) Calculate the energy released by this reaction.  Report your answer in J/mol and in J. 
 

𝑀𝑀 𝛽𝛽+1
0 = 0.000 548 580 u 

𝑀𝑀 𝛽𝛽−1
0 = 0.000 548 580 u 

𝑀𝑀 𝐻𝐻11 = 1.007 825 032 u 
𝑀𝑀 𝐻𝐻𝐻𝐻2

4 =  4.002 603 254 u 
𝑀𝑀 𝐶𝐶612 =  12.000 000 000 u 
𝑀𝑀 𝑁𝑁𝑁𝑁10

20 =  19.992 440 176 u 
𝑀𝑀 𝑀𝑀𝑀𝑀12

26 =  25.982 592 968 u 
𝑀𝑀 𝐴𝐴𝐴𝐴13

26 =   25.986 891 904 u 


