Answers to Exercise 7.5 More Stoichiometry Practice

1.	$CaCO_3(s)$	+ $2 H^{+}(aq)$	\rightarrow	Ca ²⁺ (aq)	+	$H_2O(l)$	+	$CO_2(g)$
М	100.087 g/mol	1.0079 g/mol		40.078 g/mol	18	8.0152 g/mol	4	4.0098 g/mol
Cinitial		1.65 mol/L						
V_{initial}		225 mL						
minital	25.5 g							
Р								92.7 kPa
Т								293.65 K
ninitial	0.255 mol	0.371 mol						0 mol
n _{change}	-0.186 mol	-0.371 mol					+().186 mol
n_{final}	0.069 mol	0 mol					C	.186 mol
V						0	0010	$20 \text{ m}^3 - 4.80 \text{ I}$

V_{final}

 $0.00489 \text{ m}^3 = 4.89 \text{ L}$

Step 1: Write a balanced chemical equation for the reaction

see above

Step 2: Organize all known information

see above; values in grey are not necessary for this calculation

Step 3: Calculate moles of CaCO₃ and H⁺ (n_{initial})

$$\begin{aligned} n_{CaCO_{3}-initial} &= 25.5g \times \frac{1mol}{100.087g} = 0.255mol\\ n_{H^{+}-initial} &= 225mL \times \frac{1L}{1000mL} \times \frac{1.65mol}{1L} = 0.371mol \end{aligned}$$

Step 4: Identify the limiting reagent

 $2(0.255 \text{ mol}) = 0.510 \text{ mol } \text{H}^+$ are required to react with 0.255 mol CaCO₃. Since there is less H⁺ than this, the H⁺ will run out before the CaCO₃. H⁺ is therefore the limiting reagent.

Step 5: Use mole ratio to calculate moles of CO₂ produced (n_{final})

 $n_{CO_2} = 0.371 \ mol \ H^+ \times \frac{1 \ mol \ CO_2}{2 \ mol \ H^+} = 0.186 \ mol \ CO_2$ Step 6: Calculate volume of CO₂ produced in m³ (V_{final}) PV = nRT

$$V_{CO_2-final} = \frac{nRT}{P} = \frac{(0.186mol)\left(8.3145\frac{Pa\cdot m^3}{mol\cdot K}\right)(293.65K)}{(92.7kPa)} \times \frac{1kPa}{1000Pa} = 0.00489m^3$$

Step 7: Calculate volume of CO₂ produced in L (V_{final})

$$V_{CO_2-final} = 0.00489m^3 \times \frac{1000L}{1m^3} = 4.89L$$

Step 8: Check your work

Does your answer seem reasonable? Are sig. fig. correct?

2.								
(a)	$Tl_2O_3(s) \xrightarrow{\Delta} Tl_2O(s) + O_2(g)$							
(b)	$Tl_2O_3(s)$	\rightarrow Tl ₂ O	$O(s) + O_2(g)$					
Μ	456.764 g/mol	424.765	g/mol 31.9988 g/m	ol				
V_{final}			1.6 L					
Р			88100 Pa					
Т			295.65 K					
n _{initial}	0.057 mol	0 mol	0 mol					
n _{change}	-0.057 mol	+0.057 m	+0.057 mol					
n_{final}	0 mol	0.057 n	nol 0.057 mol					
	2.4							

m_{initial} 26 g

~

Step 1: Write a balanced chemical equation for the reaction

see above

Step 2: Organize all known information

see above; values in grey are not necessary for this calculation

Step 3: Calculate moles of O₂ produced (n_{final})

PV = nRT

$$n_{O_2-final} = \frac{PV}{RT} = \frac{(88100Pa)(1.6L)}{\left(8.3145\frac{Pa\cdot m^3}{mol\cdot K}\right)(295.65K)} \times \frac{1m^3}{1000L} = 0.057mol$$

Step 4: Use mole ratio to calculate moles of Tl₂O₃ required for reaction (n_{initial})

 $n_{Tl_2O_3-initial} = 0.057 \ mol \ O_2 \times \frac{1 \ mol \ Tl_2O_3}{1 \ mol \ O_2} = 0.057 \ mol \ Tl_2O_3$

Step 5: Calculate mass of Tl₂O₃ required for reaction (m_{initial})

 $m_{Tl_2O_3-initial} = 0.057 \ mol \ Tl_2O_3 \times \frac{456.764g}{1 \ mol} = 26 \ g \ Tl_2O_3$

Step 6: Check your work

Does your answer seem reasonable? Are sig. fig. correct? The answer is less than 65 g (the maximum amount possible of Tl_2O_3 in the sample).