

Topic #2: The Chemical Alphabet Fall 2020

Dr. Susan Findlay See Exercises 10.1 to 10.4

- Hydrogen has three isotopes: protium (¹H, 99.985%), deuterium (²D, 0.015%) and tritium (³T, ~10⁻¹⁵%). Of these, only tritium is radioactive.
- While the physical properties of most elements don't change significantly between the isotopes, this is not the case for hydrogen. D₂O melts at 3.8 °C, boils at 101.4 °C and is ~10% denser than H₂O hence the name "heavy water". The main use of D₂O is to slow down neutrons in nuclear reactors.

Approximately 1000 tons of D_2O is also being used as part of a neutrino detector at the Sudbury Neutrino Observatory (SNO) in Ontario.

- ³T is used as a radioactive tracer in medicine as it emits low energy β radiation which does relatively little tissue damage.
- The commercial value of ³T, however, is that it is the fuel for the "hydrogen bomb". As such, it has been aggressively produced from ⁶Li – so much so that commercially available lithium has a slightly higher average atomic mass than naturally occurring lithium!
- ³T decays to ³He, a rare but very useful isotope. It has an even lower boiling point than the common ⁴He – and is therefore of immense value for use in extreme low-temperature apparati for cryogenic physics.

- Hydrogen stands alone! To convey this, some periodic tables leave it floating adrift above the other elements.
- In some respects, it behaves like the alkali metals but, in others, it behaves more like a halogen – and its electronegativity falls between the values for boron and carbon!

1																	18
Hydrogen 1.0079 H 1	2	_	Periodic Table with Element Names (using the 1-18 group nomenclature) Hydrogen H ^{1,0079} H ² 14 15 16													Hydrogen ^{1.0079} H 1	Helium 4.0026 He 2
Lithium	Beryllium							Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon				
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											B	C C	7 N	8 0	F	Ne
Sodium	Magnesium	1										Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.9898	24.3050	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mø		-	5	0	,	0	,	10		12	Al	Si	Р	s	l CI	Ar
11	12											13	14	15	16	17	18
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Cesium	Barium	-	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		-		Description		D	-	-						m c		-	1
		Lanthanum	Cerium	140,908	144 24	(145)	Samarium	Europium	Gadolinium	1 erbium	162 50	Holmium	Erbium 167.26	168 934	Ytterbium	Lutetium	
		158.900	140.115	Pr	Nd	Dm	150.30	151.965	157.25	158.925	Dw	104.950	107.20	Tm	173.04	1/4.90/ T	
		La	Ce	50	. Ita	I III	Sm	Eu	Gđ	10	Dy	Но	Er	I M	x b	Lu	
		57	58	59	00	01	62	63	64	65	00	67	68	09	70	71	
		Actinium	Thorium	Protactinium 231.036	Uranium 238.029	Neptunium 237.048	Plutonium	Americium	Curium	Berkelium	(251)	Einsteinium	Fermium	(258)	Nobelium	(2.62	
		227.028	252.058	Bo	II	Nn	(240)	(245)	(247)	(247) DI	Cf	(252)	(257)	Md	(259)	Lr	
		AC	In		02	1 1P	ru	Am	Cm	BK		Es	rm	101	INO	103	
		Ac	Th	ra	U	NP	Pu	Am	Cm	BK		Es	Fm	Mu	NO		
		80	00	91	92	93	04	0.5	06	07	98	00	100	101	102	103	

4

 Because of its electron configuration (_____), hydrogen can achieve a "noble gas"-like electron configuration by *either* gaining an electron, losing an electron *or* sharing an electron:

The H – H bond in hydrogen is extremely strong (436 kJ/mol), so H₂ is a relatively unreactive molecule. Even thermodynamically favoured reactions of hydrogen often require a catalyst to break the strong H – H bond. Hydrogen does, however, react with exothermically with oxygen and with fluorine:

 Because the H – H bond is so strong, it is not difficult to make hydrogen gas. You have made H₂ several different ways in the Chemistry 1000 lab:

Industrially, most hydrogen is produced by the catalytic steam reformation of hydrocarbons. Methane gas (CH₄ – the main component of natural gas) reacts with steam at 900 to 1000 °C to give carbon monoxide (CO) and hydrogen (H₂):

The carbon monoxide reacts with more steam at 400 to 500 °C in the presence of calcium oxide (CaO):

 The method that gives the purest hydrogen is electrolysis of water, but the electricity required for this process is prohibitively expensive for large-scale production in most countries.

- There are three general classes of hydrogen compounds:
 - Ionic hydrides in which hydrogen combines with elements from groups 1-2 (except beryllium) to form ionic compounds:

- **Metallic hydrides** (also called *interstitial compounds*) in which elements from groups 3-10 "absorb" hydrogen. The hydrogen atoms fill holes in the metallic lattice, distorting its structure if enough hydrogen is absorbed.
- Covalent hydrogen compounds in which hydrogen combines with elements from groups 11-17 (or beryllium) to form covalent molecules:

Ionic Hydrides

Most ionic hydrides have a crystal structure like either NaCl (for alkali metal hydrides) or CaF₂ (for the metal dihydrides). Unlike most ionic compounds, the cations form the main lattice as they are typically larger than the hydride anions:

 Ionic hydrides are strong bases, reacting with acids (even those as weak as water):

Ionic hydrides are typically sold as grey powders suspended in mineral oil. The oil protects them from reacting with moisture in the air though it must be washed off *(with solvent)* if an accurate amount is to be weighed. If an ionic hydride is not stored properly, it turns white. What has happened?

Metallic Hydrides

The hydrogen in metallic hydrides can act as either "H+" or "H-":

- Transition metals are often used as catalysts for reactions in which hydrogen is added to a double bond (e.g. hydrogenating vegetable oil to make margarine). The hydrogen first reacts with the transition metal to make a metallic hydride (more reactive than hydrogen gas).
- The ratio of hydrogen : metal atoms in a metallic hydride is often fractional – not every hole in the lattice contains a hydrogen atom.

Covalent Hydrogen Compounds

- Most of the "everyday" compounds containing hydrogen are covalent hydrogen compounds.
 - When hydrogen is covalently bonded to a less electronegative element, it has a partial negative charge and may act as a hydride:

 When hydrogen is covalently bonded to an element with similar electronegativity, it is fairly neutral and tends not to be reactive:

When hydrogen is covalently bonded to a more electronegative element, it has a partial positive charge and may act as an acid:

Acids and Bases

- There are three main classification systems for acids and bases.
 - You are already familiar with Arrhenius acids and bases:
 - Arrhenius acid:
 - Arrhenius base:
 - The Brønsted definitions of acids and bases are broader, applying in solvents other than just water:
 - Brønsted acid:
 - Brønsted base:
 - Lewis acids and bases are defined a bit differently:
 - Lewis acid:
 - Lewis base:

Acids and Bases

- The three definitions are not mutually exclusive. Arrhenius acids are often Brønsted acids too. Arrhenius bases are often Brønsted bases too.
- To see how the electron pairs referenced in the Lewis acid/base definitions fit in, consider the electron flow in a reaction between a hydroxide ion (OH⁻) and hydrofluoric acid (HF):

- Why do we call a Lewis acid an acid if it doesn't necessarily generate H⁺?
 - H⁺ is the ultimate Lewis acid. What happens when it reacts with Lewis bases like:
 - Ammonia (*NH*₃)

• Water $(H_2 0)$

• Cyanide (*CN*⁻)

- Now, look at the reactions of those same Lewis bases with a more typical Lewis acid like BCl₃:
 - Ammonia (*NH*₃)

• Water $(H_2 0)$

• Cyanide (*CN*⁻)

• What properties are required for something to be a Lewis base?

• What properties are required for something to be a Lewis acid?

 As such, all transition metal cations act as Lewis acids when they are dissolved in water:

hydrated metal cation = "aqua complex"

- Since H⁺ is the ultimate Lewis acid, it acts as a Lewis acid in water. As such, there isn't really such a thing as H⁺_(aq). It's much closer to H(OH₂)⁺₄ or H₉O⁺₄.
- To remind us that $H^+_{(aq)}$ is <u>always</u> surrounded by water molecules, we often write $H_3O^+_{(aq)}$.
- Thus, when we write a chemical equation for the reaction between a strong acid and a strong base, we get:

We can see that H_3O^+ is serving as a proton donor and OH^- is serving as a proton acceptor – just like in the Brønsted definition of acid-base chemistry.

A "strong acid" is any acid that is fully converted to H₃O⁺ in water:

A "strong base" is any base that is fully converted to OH⁻ in water.

- When comparing strengths of acids, we refer to their pK_a values.
- $pK_a = -logK_a$ where K_a is the equilibrium constant for the dissociation of the acid into H^+ and its conjugate base:

- Acids with lower pK_a values are stronger while acids with higher pK_a values are weaker.
- "Strong acids" have pK_a values that are negative.

$$pK_{a} = \frac{H_{2}O(pK_{a} = 14)}{HCO_{3}^{-1}(pK_{a} = 10.3)}$$

$$HCO_{3}^{-1}(pK_{a} = 10.3)$$

$$H_{2}CO_{3}(pK_{a} = 6.4)$$

$$CH_{3}CO_{2}H(pK_{a} = 4.7)$$

$$HF(pK_{a} = 3.1)$$

$$Citric acid (pK_{a} = 3.1)$$

$$H_{3}PO_{4}(pK_{a} = 2.15)$$

$$HF(pK_{a} = 3.1)$$

$$Citric acid (pK_{a} = 3.1)$$

$$H_{3}O^{+}(pK_{a} = 0) \leftarrow This includes all aqueous solutions of HCl, HBr, HI, HNO_{3}, HClO_{4} and H_{2}SO_{4}$$

$$Pure HNO_{3}(pK_{a} = -1)$$

$$Pure HNO_{3}(pK_{a} = -1)$$

$$Pure HI(pK_{a} = -10)$$

$$Pure HCl(pK_{a} = -7)$$

With a pK_a of 0, a hydrated proton is an excellent acid, defining the line between the strong and weak acids. How do the other aqua complexes compare?

Cation	рК _а	Approximate pH of a 1 M solution
Na(OH ₂) ₆ +	14.2	7
$Ag(OH_2)_6^+$	12	6.0
$Mg(OH_2)_6^{2+}$	11.4	5.7
$AI(OH_2)_6^{3+}$	5	2.5
Ti(OH ₂) ₆ ⁴⁺	-4	0

• What factors affect how easily the aqua complex gives up H^+ ?

• If we plot pK_a versus $\frac{Z^2}{r}$ for a variety of aqua complexes, we see that there is a correlation. If we only look at those metals with low electronegativity values (\Box 1.5), we can approximate:

$$pK_a = 15.14 - 88.16 \, pm \frac{z^2}{r}$$

 If we introduce an empirical "fudge factor", we get a more accurate – if more complex – formula:

$$pK_a = 15.14 - 88.16 pm \left(\frac{z^2}{r} + 0.0960 pm^{-1} (\chi_{Pauling} - 1.50) \right)$$

 pK_a

 $\frac{Z^2}{r}$

- Recall what happens when a metal cation is hydrated:
 - The cation accepts electrons from oxygen (Lewis acid-base rxn).
 - This aqua complex will give up H⁺ if reacted with a strong enough base (Brønsted acid-base rxn).

- In aqueous solutions, the most abundant if weak base is water. Aqua complexes with *pK_a* values below 14 will react to some extent with water, giving an acidic solution.
- At higher pH values, OH⁻ will also be available in significant concentrations and can further deprotonate the aqua complex.

So, this tells us what, exactly? Consider what happens when we add a base to a solution of an acidic aqua complex:

As more base is added, more protons are removed. Which of the species in the diagram above would you expect to be soluble in water, and which will be more stable as solid lattices? 27

 We can see from this diagram that the dominant species of aluminum (hydrated cation, hydroxide or oxide) depends on how much base is present in solution – as determined by the pH. This is true of most elements; the diagram below shows the predominant species of each element in 0.001 M aqueous solutions of varying pH (but fixed oxidation state).

- In nature, water is never completely pure. It always contains some dissolved ions which keep it within a constant pH range. Looking at the distribution diagram, we can see which elements are soluble (and therefore bioavailable) in different pH ranges:
 - Titanium is never soluble, so remains fixed in the soil or minerals.
 - Sodium is always soluble, so is always bioavailable as are phosphates which are essential nutrients for plants.
 - Calcium is soluble under all but the most basic conditions.
 - Aluminum is soluble at low and high pH, but not between 3 and 11. This means that when a lake becomes acidified (pH 2 to 4), it dissolves significantly more aluminum than normal. It is believed that this is why fish die in acid lakes. When they absorb lake water through their gills, its pH is raised to the physiological pH of 7.5. The $Al(OH_2)_6^{3+}$ which had been soluble at low pH reacts with the hydroxide ions available at the higher pH, forming a gelatinous gel of hydrated aluminum hydroxide. This gel precipitates on the gills, and the fish can no longer breathe, so it dies.

 Most aerated fresh water (except for that polluted by acid rain) has a pH between 5.5 and 7. The table below shows the dominant species of each element within that pH range:

1																
H ₂ O	2											13	14	15	16	17
Li ⁺	Be(OH) ₂	El Shading indicates the form indicated is insoluble											CO ₂ HCO ₃	NO ₃ ⁻	H ₂ O	F-
Na ⁺	Mg ²⁺	3	4	5	6	7	8	9	10	11	12	Al(OH)3	SiO ₂	$\frac{H_2PO_4^-}{HPO_4^{2-}}$	SO4 ²⁻	Cl⁻
\mathbf{K}^*	Ca ²⁺	Se(OFI),	TIO ₂	$\frac{\mathrm{H_{3}V_{2}O_{7}}^{-}}{\mathrm{H_{2}VO_{4}}^{-}}$	Cr(OH),	Mn ² MnO ₂	Fe(OH) ₃	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺	Ga(OH);	GeO ₂	$\frac{H_2AsO_4^-}{HAsO_4^{2-}}$	SeO ₄ ²⁻	Br
Rb⁺	Sr ²⁺	Y ³⁺ Y(OH)	ZrO ₂	Nb ₂ O ₅	MoO4_	TcO ₄ -	Ra(OH);	Rh ₂ O ₃	Pd(OH) ₂	Ag ⁺	Cd ²⁺	In(OH) ₃	SuO ₂	Sb ₂ O ₃	HTeO ₃ -	103
Cs	Ba ²⁺	La-Lu	HfO ₂	Ta ₂ O ₅	WO WO4 ⁻	Re	O5O2	hO ₂	PtO ₂	Au metal	HgO	Tl⁺	Pb ²⁺	Bi ₂ O ₃	?	?
Fr	Ra ²⁺	Ac-Lr														
Lantha	anides	La ³⁺	Ce ³⁺	Pr ³⁺	Nd ³⁺	Pm ³⁺	Sm ³⁺	Eu ³⁺	Gd ³⁺	Tb ³⁺	Dy ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	Lu ³⁺
Actinides		Ac ³⁺	ThO_2	Pa ₂ O ₅	UO2 ²⁺	NpO ₂ ⁺	PuO ₂	Am ³⁺								

Main Forms of the Elements in Moderately Aerated Water at pH 5.5 to 7.0

Recognize that many environmental scientists, nutritionists, etc. refer to all compounds containing an element by the element's name. When you're told that calcium is good for your bones, it's not actually intended that you should eat calcium metal!
 "Calcium levels" in the blood are a combination of the aqua complex, other complexes and calcium salts.