
Estimating Chemical Shifts for ¹H NMR

Table 13.1 Approximate chemical shift ranges for protons bonded to aliphatic carbon atoms.

Methyl protons	δ	Methylene protons	δ	Methine protons	δ
CH ₃ –C	0.9	-CH ₂ -C	1.3	-CH-C	1.5
CH ₃ -C-C=C	1.1	-CH ₂ -C-C=C	1.7	-CH-C-C=C	1.9
CH ₃ -C-O	1.4	-CH ₂ -C-O	1.9	-CH-C-O	2.0
CH ₃ -C=C	1.6	-CH ₂ -C=C	2.3	-CH-C=C	2.2
CH ₃ -Ar	2.3	-CH ₂ -Ar	2.7	-CH-Ar	3.0
CH ₃ -CO-R	2.2	-CH ₂ -CO-R	2.4	-CH-CO-R	2.7
CH ₃ -CO-Ar	2.6	-CH ₂ -CO-Ar	2.9	-CH-CO-Ar	3.5
CH ₃ -CO-O-R	2.0	-CH ₂ -CO-O-R	2.2	-CH-CO-O-R	2.5
CH ₃ -CO-O-Ar	2.4	-CH ₂ -CO-O-Ar	2.7	-CH-CO-O-Ar	2.9
CH ₃ -O-R	3.3	-CH ₂ -O-R	3.4	-CH-O-R	3.7
CH ₃ -O-H	3.5	-CH ₂ -O-H	3.6	-CH-O-H	3.9
CH ₃ -OAr	3.8	-CH ₂ -OAr	4.3	-CH-OAr	4.5
CH ₃ -O-CO-R	3.7	-CH ₂ -O-CO-R	4.1	-CH-O-CO-R	4.8
CH ₃ -N	2.3	-CH ₂ -N	2.5	-CH-N	2.8
CH ₃ -NO ₂	4.0	-CH ₂ -NO ₂	4.4	-CH-NO ₂	4.7
CH ₃ -C-NO ₂	1.6	-CH ₂ -C-NO ₂	2.2	-CH-C-NO ₂	2.6
CH ₃ -C=C-CO	2.0	-CH ₂ -C=C-CO	2.1	-CH-C=C-CO	2.4
CH ₃ -C-CI	1.4	-CH ₂ -C-CI	1.8	-CH-C-CI	2.0
CH ₃ -C-Br	1.8	-CH ₂ -C-Br	1.8	-CH-C-Br	1.9
CH ₃ -CI	3.0	-CH ₂ -CI	3.4	-CH-CI	4.0
CH ₃ -Br	2.7	-CH ₂ -Br	3.3	-CH-Br	3.9

Copyright 2006, USB

© Copyright 2006, University Science Books

- 1. Sorrel "Organic Chemistry 2nd Edition (2006)
- 2. Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)

Calculating Chemical Shifts for Methylene (CH₂) Groups

$$X - CH_2 - X$$
 or $X - CH_2 - Y$

$$\delta_H = (0.23 + \sum constants) ppm$$

Substituent	Constant
-R (alkyl)	0.47
	1.32
-C≡C-	1.44
-Ar	1.85
-F	4.00
-CI	2.53
-Br	2.33
-l	1.82
-C≡N	1.70
-NO ₂	3.80
-NR ₂	1.57
-OH	2.56
-OR	2.36
-OAr	3.23
-SR	1.64

Substituent	Constant
−c⊂ R	1.70
−c′′ Ar	1.84
_c′′ OR	1.55
_c′′ NR₂	1.59
N-C R	2.27
`o-c ['] ,	3.13

- 1. Sorrel "Organic Chemistry 2nd Edition (2006)
- 2. Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)

Calculating Chemical Shifts for Alkenes

$$\delta_{H} = (5.25 + Z_{gem} + Z_{cis} + Z_{trans}) ppm$$

Substituent	Z _{aem}	Z _{cis}	Z _{trans}
-R (alkyl)	0.44	-0.26	-0.29
-CH ₂ -OR	0.67	-0.02	-0.07
-Ar	1.35	0.37	-0.10
-CI	1.00	0.19	0.03
-Br	1.04	0.40	0.55
-C≡N	0.23	0.78	0.58
-NO ₂	1.87	1.30	0.62
-NR ₂	0.69	-1.19	-1.31
-OR	1.18	-1.06	-1.28
_c″_R	1.10	1.13	0.81
о —с′ он	1.00	1.35	0.74
O OR	0.84	1.15	0.56
O-C R	2.09	-0.40	-0.67

Calculating Chemical Shifts for Benzenes

$$\delta_{H} = (7.27 + \sum Z) ppm$$

$$R_{para}$$

Substituent	Z_{ortho}	Z _{meta}	Z _{para}
-H	0	0	0
-R (alkyl)	-0.14	-0.06	-0.17
-CH ₂ -OH	-0.07	-0.07	-0.07
-CI	0.03	-0.02	-0.09
-Br	0.18	-0.08	-0.04
-C≣N	0.36	0.18	0.28
-NO ₂	0.95	0.26	0.38
-NH ₂	-0.75	-0.25	-0.65
-OH	-0.56	-0.12	-0.45
-OCH₃	-0.48	-0.09	-0.44
_c,H	0.56	0.22	0.29
-c' _{`R}	0.62	0.14	0.21
—с _{,,} Он	0.85	0.18	0.27
_c″, OR	0.71	0.10	0.21
о 'о-с ^{''} сн,	-0.25	0.03	-0.13

- Sorrel "Organic Chemistry 2nd Edition (2006)
 Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)

Estimating Coupling Constants for ¹H NMR

TYPICAL PROTON COUPLING CONSTANTS Alkanes and Substituted Alkanes Typical Value Range Type (Hz) ²J geminal 12 - 15(for a 109° H-C-H angle) 3J vicinal 6-8 (depends on HCCH dihedral angle) 8-14 in conformationally rigid systems 0 - 7(in systems undergoing inversion, all $J \approx 7-8$ Hz) H_a ³J cis (H_bH_c) ³J trans (H_aH_c) H_b ²J gem (H_aH_b) 6-12 4-8 3-9 1 - 34-6 0 - 7(W-configuration obligatory-strained systems have the larger values)

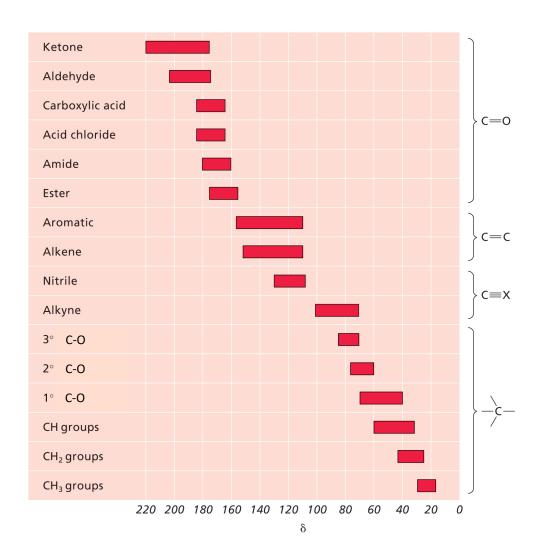
Alkenes and	Cycloalkenes	$(^2J$	and	3J
-------------	--------------	--------	-----	-------

				The state of the s		
Ту	ype	Typical Value (Hz)	Range (Hz)	Туре	Typical Value (Hz)	(Hz)
$\stackrel{H}{\longrightarrow}_{H}$	² J gem	<1	0-5	H 3/	2	0-2
HH	³ J cis	10	6-15	H 3J	4	2-4
H	³ J trans	16	11-18	Н		
\leftarrow	^{3}J	5	4–10	H 3J	6	5-7
С—н }—{ н	^{3}J	10	9–13	$H^{-3}J$	10	8-11

Aromatics	and	Heterocycles	
-----------	-----	--------------	--

Type			Typical Value (Hz)	Range (Hz)	Туре		Range (Hz)
H	^{3}J	ortho	8	6-10	H_{β} $H_{\beta'}$	$^{3}J \alpha \beta$	4.6-5.8
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4J	meta	3	1-4		$^4J \alpha \beta'$	1.0 - 1.5
Н	^{5}J	para	<1	0-2		4J $\alpha\alpha'$	2.1-3.3
					H_{α} S $H_{\alpha'}$	^{3}J $\beta\beta'$	3.0-4.2
$H_{\beta_{s}}$ $H_{\beta'}$	^{3}J	αβ		1.6-2.0	Η̈́ν	^{3}J $\alpha\beta$	4.9-5.7
118	4J	αβ'		0.3-0.8	H_{β} $H_{\beta'}$	4J $\alpha\gamma$	1.6 - 2.0
	^{4}J	αα'			Y	$^{5}J \alpha \beta'$	0.7 - 1.1
H_{α} O $H_{\alpha'}$	3J			1.3-1.8		4J $\alpha\alpha'$	0.2-0.5
u 0u	J	$\beta\beta'$		3.2-3.8	H_{α} N $H_{\alpha'}$	3J $\beta\gamma$	7.2-8.5
H_{β} $H_{\beta'}$	3J	αβ		2.0-2.6		4J $\beta\beta'$	1.4-1.9
	4J	$\alpha\beta'$		1.0-1.5			
	4J	$\alpha\alpha'$		1.8-2.3			
H_{α} N $H_{\alpha'}$	^{3}J	$\beta\beta'$		2.8-4.0			
Н		200					

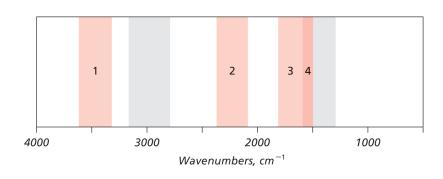
5	4-10
)	
)


Aldehydes					
Туре	Typical Value (Hz)	Range (Hz)			
H C H	2	1-3			
$\stackrel{\text{H}}{=}$	6	5-8			

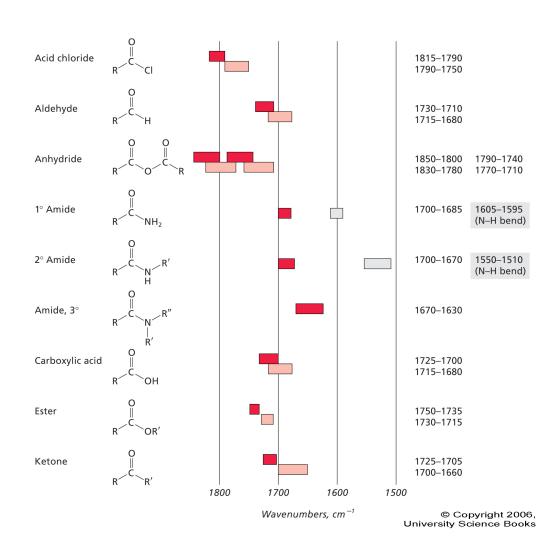
⁴J for terminal alkynes (H-C≡C-C-H) typically 2 Hz (range 2-3 Hz)

⁵J for other alkynes (H-C-C≡C-C-H) typically 2 Hz (range 2-3 Hz)

2. Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)


¹³C NMR

© Copyright 2006, University Science Books


2. Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)

IR

Region	Frequency range, (cm ⁻¹)	Bond types	Functional groups
1	3500 – 3200	O—H N—H	Alcohol, phenol Amine, amide
2	2300 – 2100	C≡C C≡N	Alkyne Nitrile
3	1800 – 1650	C=0	Aldehyde Amide Anhydride (2 bands) Carboxylic acid Acid chloride Ester
4	1650 – 1500	C=C C=C C=N N=O	Alkene Arene Imine Nitro compound

- 1. Sorrel "Organic Chemistry 2nd Edition (2006)
- 2. Pavia, Lampman and Kriz "Introduction to Spectroscopy" 2nd Edition (1996)