
ConstructionofaControlSystemforaSpatialSpectralDouble-FourierTransformInterferometer
Braden B. Gail1, Chris S. Benson, Jeremy P. Scott, Dinula D. Silva, Locke D. Spencer

1braden.gail@uleth.ca
Institute for Space Imaging Science, Department of Physics & Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada

Abstract
This projects focus is on the development of a software interface for a 25 pixel cryogenic Transition-
edge-sensor (TES) detector array, two linear translation stages, and other lab monitoring equip-
ment used in the construction of a spatial spectral double-Fourier interferometer. The primary
purpose of the control system is to assist in the design, calibration, and data acquisition for the
system. This is accomplished by allowing users to quickly and easily interact with individual
parameters or components of the apparatus and allows for the interaction of multiple subsystems
at once.

Linear Translation Stages
The construction of the spatial spectral double-Fourier interferometer involved the acquisition
of two Aerotech ALS20045 linear translation stages which are controlled via ASCII commands.
This enables two way communication to occur over a network between the Ensemble ML stage
controllers and the control interface. The stage positions in relation to the apparatus can be seen
in Figure 1 below.

Figure 1: General double-fourier transform interferometer setup including the two linear translation
stages and the detector system. A few rays from a source are also traced through the system as well.

Detector System
The detector system is comprised of 25 Tran-
sition Edge Sensors (TES) that are all cryo-
genically cooled to around 4K (Figure 2). At
this temperature, individual PID control loops
maintain each TES at their critical supercon-
ducting transition temperature by varying the
voltage bias across each sensor. Each of these
PID control systems are maintained by a Na-
tional Instruments Field Programmable Gate
Array (FPGA) and can be individually tuned.

Although the FPGA was originally controlled
using LabView software, the National Instru-
ments FPGA (NIFPGA) python API allowed
for the interaction between the FPGA and my
interface via the python programming language. Figure 2: 25 pixel transition-edge-sensor array

used as the interferometers detector system.

Construction of the Control Interface
The entire software interface was constructed using python’s PyQt library which allowed for the
development of a graphical control system. Due to the large quantity of features required to man-
age both stage and detector control, a tabular organization scheme was employed to avoid an
oversaturation of graphical elements. Each tab also had a settings button which gave users access
to additional features of the program (Examples of tabs and settings can be seen in Figure 3).

Figure 3: Control interface for the two spatial/spectral linear translation stages. You can see the various
tabs at the top of the program which allow the user to switch between subsystem control screens.

The extensive number of tasks the interface had to deal with also caused issues early on with the
program freezing or lagging. This issue was fixed however through the use of multi-threading which
works by putting each individual task into its own separate thread which could then be run concur-
rently. The user can also adjust the refresh rates of the real time plots depending on their needs,
or turn the active plotting off which would assist in the programs efficiency. Multi-threading was
also used to send the ASCII commands to the stage controllers which allowed multiple commands
to be sent over the network without having to wait for a response from the stages.

Figure 4: This section of the interface was dedicated to tracking stage movement. The refresh rate and
number of data points could be changed by the user depending on their needs. Red line shows the position
of the spectral stage while the cyan line shows the spatial stage.

Features of the Interface
Brief overview of some of the features contained in the control system:

• Can manually control both linear stages
through the use of an external game pad

• Can set the location, speed, or oscillation
path of either stage

• Active warnings when the user attempts to
move the stages outside of their physical
limit

• Real time plotting of both stage positions

• Users can update individual PID parame-
ters from a specific TES pixel in real time

• Start/Stop detector system recording

• Can Specify the allotted direct memory ac-
cess for the FPGA

• Can turn on/off detector multiplexing

• Program checks all user entries before
sending them to the FPGA.

• Individual plotting of each pixels voltage
output

• Entire control system is multi-threaded to
speed up the performance and to minimize
the interfaces lag time

The control systems most important feature is its simplicity and ease of use. For example, all of
the PID parameters for each individual pixel can be accessed and changed by navigating to the
PID tab shown in Figure 5. From here, the user has access to a multitude of settings and can
modify any of them. The program also checks any new entries to ensure that the new parameter
value is within a specific bound and of the right type (float, string, integer, etc).

Figure 5: This tab contains all of the parameters associated with the PID control loop for each TES
pixel.

References
[1] P. Mauskopf. Transition edge sensors and kinetic inductance detectors in astronomical instruments. Publications of the Astronomical Society of the Pacific, 130(990):082001, 2018.

[2] National Instruments. National instruments FPGA interface python API. https://nifpga-python.readthedocs.io/en/latest/, 2017. Maintained by Michael Strain and Mose Gumble.


