

Contents lists available at ScienceDirect

### Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt



# Temperature dependences of N<sub>2</sub>-broadening and shift coefficients in the $\nu_6$ perpendicular band of <sup>12</sup>CH<sub>3</sub>D



A. Predoi-Cross <sup>a,\*</sup>, V. Malathy Devi<sup>b</sup>, K. Sung<sup>c</sup>, T. Sinyakova<sup>d</sup>, J. Buldyreva<sup>d</sup>, D. Chris Benner<sup>b</sup>, M.A.H. Smith<sup>e</sup>, A.W. Mantz<sup>f</sup>

<sup>a</sup> Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB, Canada T1K 6R4

<sup>b</sup> Department of Physics, The College of William and Mary, Williamsburg, VA 23187, USA

<sup>c</sup> Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

<sup>d</sup> Institute UTINAM UMR CNRS 6213, University of Franche-Comte, 25030 Besancon, France

<sup>e</sup> Science Directorate, NASA Langley Research Center, Hampton, VA 23681, USA

<sup>f</sup> Department of Physics, Astronomy and Geophysics, Connecticut College, New London, CT 06320, USA

#### ARTICLE INFO

Article history: Received 19 March 2015 Received in revised form 11 May 2015 Accepted 12 May 2015 Available online 22 May 2015

Keywords: Monodeuterated methane Infrared spectra Nitrogen-broadening Temperature dependences of widths and shifts Line mixing Spectral line shapes

#### ABSTRACT

The temperature-dependences of line broadening and shift parameters for many <sup>12</sup>CH<sub>3</sub>D transitions have been determined using six high-resolution, high signal-to-noise ratio, room-temperature CH<sub>3</sub>D (98% purity) and CH<sub>3</sub>D-N<sub>2</sub> spectra recorded with 25 cm path length ( at 0.01 cm<sup>-1</sup> unapodized resolution) using the McMath-Pierce FTS located on Kitt Peak, Arizona, and 17 additional high quality, pure CH<sub>3</sub>D (99% purity) and CH<sub>3</sub>D-N<sub>2</sub> spectra recorded between 79 and 296 K with the 20.38 cm path coolable cell (at  $0.0056 \text{ cm}^{-1}$  unapodized resolution) with the Bruker 125HR FTS at the Jet Propulsion Laboratory (JPL), Pasadena, California. The spectra have been fitted simultaneously applying a multispectrum nonlinear least-squares technique. In the analysis, the Lorentzian N<sub>2</sub>-broadened half-width coefficients and the corresponding pressure-shift coefficients as well as their temperature dependences are extracted for about 400 transitions  $(0 \le J'' \le 19, K'' \le 16)$  in the perpendicular  $(\Delta K = \pm 1) \nu_6$  band. At 296 K, the measured N<sub>2</sub>-broadened half-width coefficients range from 0.0209 to 0.0782 cm<sup>-1</sup> atm<sup>-1</sup> whereas the majority of the associated N<sub>2</sub>-induced shift coefficients are negative, and the values are between -0.016 and 0.005 cm<sup>-1</sup> atm<sup>-1</sup>. The temperature dependence exponents for  $N_2$ -broadened half-widths range between 0.264 and 0.924, whereas the temperature dependence coefficients for N<sub>2</sub>-induced shifts are between 0 and 0.00011 cm<sup>-1</sup> atm<sup>-1</sup> K<sup>-1</sup>. The N<sub>2</sub>-broadened half-width coefficients have been also calculated using a semi-classical approach based on a rigorous treatment of the active molecule as a symmetric top, a model intermolecular potential comprising both shortand long-range interactions, and exact classical trajectories. The role of the various highorder multipoles in the line-broadening at low, middle and high values of the rotational quantum number I'' has been investigated and the main features of the K-dependences analyzed. The calculations performed for 296, 240 and 190 K have allowed to deduce the half-width temperature-dependence exponents, completing the general comparison of our new experimental results with those which are available in the literature.

© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jqsrt.2015.05.006 0022-4073/© 2015 Elsevier Ltd. All rights reserved.

<sup>\*</sup> Corresponding author. Tel.: +1 403 329 2697; fax: +1 403 329 2057. *E-mail address:* adriana.predoicross@uleth.ca (A. Predoi-Cross).

#### 1. Introduction

Methane is a prominent atmospheric trace gas and the third most abundant greenhouse gas in many regions of the world [1,2]. The sources of methane are both natural, such as wetlands and methane-outgassing from oceans [3], and anthropogenic, such as animal husbandry and fossil-fuel extraction [4]. The methane sinks include processes in atmospheric chemistry such as reactions with hydroxyl radicals [5] and natural processes in soil [6].

Besides the main isotopologue  $CH_4$ , the monodeuterated species  $CH_3D$  is highly important for understanding various atmospheric processes. In the Earth's atmosphere, stratospheric profiles of  $CH_3D$  mixing ratios have been retrieved using high-resolution solar occultation infrared spectra from the Atmospheric Trace MOlecule Spectroscopy (ATMOS) satellite instrument [7,8] and references therein.  $CH_3D$  is also an isotopic tracer present (or expected to be present) in many planetary atmospheres such as those of Jupiter, Saturn [9–11], Uranus [12–14], Mars [15–18], Titan [19–23], and subject to transport and chemical effects. It has also been identified in cometary spectra [24,25]. The concentrations of  $CH_3D$  and those of the parent molecule  $CH_4$  are used to calculate the D/H ratios in these celestial bodies [26].

The atmosphere of Titan contains about 5% of methane and mostly nitrogen. The Composite InfraRed Spectrometer (CIRS) instrument on the Cassini spacecraft is monitoring Titan's thermal emission spectrum through three focal planes, one of them covering the spectral range of the CH<sub>3</sub>D  $\nu_6$  band [23]. Knowledge of the temperaturedependence of N2-broadened line widths and shifts over the Titan atmospheric temperature range (70 - 200 K) is needed for correct interpretation of IR spectra of Titan's atmosphere, such as those obtained by the CIRS instrument (for example, [23]). Bands of the three most abundant methane isotopologues (<sup>12</sup>CH<sub>4</sub>, <sup>13</sup>CH<sub>4</sub> and CH<sub>3</sub>D) in the spectral region from 6 to 10 microns are used not only for detection of atmospheric composition, but also for retrievals of Titan atmospheric temperature profiles and determination of <sup>13</sup>C/<sup>12</sup>C and D/H ratios [23,26].

Most of the measured methane line widths happen to increase as a power law when temperature is decreasing. There have been several spectroscopic studies related to the spectral line shapes (e.g., Lorentz widths, pressureshifts) of the  $\nu_6$  band of CH<sub>3</sub>D [27–35]. N<sub>2</sub>-broadened widths and N<sub>2</sub>-induced shifts of <sup>12</sup>CH<sub>3</sub>D lines have been measured at room temperature for transitions in the  $\nu_2$ [36],  $\nu_3$  [37–39],  $\nu_5$  [40],  $\nu_6$  [35], and  $2\nu_4$  [41] bands. For low temperatures, measurements of only 10 N<sub>2</sub>-broadened line-width coefficients of individual CH<sub>3</sub>D lines in the  $\nu_2$ [42],  $\nu_3$  and  $\nu_6$  [43] bands are available in the literature, and spectroscopic databases (e.g., HITRAN [44]) currently list only a constant default value for the temperature dependences of the CH<sub>3</sub>D line widths. Reports of selected room-temperature line mixing via off-diagonal relaxation matrix element coefficients for transitions of CH<sub>3</sub>D broadened by N<sub>2</sub> in the  $\nu_3$  [39],  $\nu_5$  [40], and  $\nu_6$  [35] bands.

In 2002 [35] we reported Lorentz self- and nitrogenbroadened line-width coefficients as well as corresponding line-shift coefficients for more than 480 transitions in six sub-branches (<sup>P</sup>P, <sup>P</sup>Q, <sup>P</sup>R, <sup>R</sup>P, <sup>R</sup>Q, <sup>R</sup>R) of the  $\nu_6$  (E) perpendicular band of <sup>12</sup>CH<sub>3</sub>D. These results were obtained from multispectrum fits of 14–17 spectra recorded at room temperature in the 1035-1270 cm<sup>-1</sup> spectral range using two different Fourier-transform spectrometers, namely the McMath–Pierce FTS formerly located on Kitt Peak, Arizona, and the Bruker IFS 120 HR FTS located at the Pacific Northwest National Laboratory, Richland, Washington. The spectra were recorded using absorption path lengths of 10, 19.95, 25, 150, and 2486 cm, respectively. The gas total pressures ranged from 0.11 to 303 Torr for pure CH<sub>3</sub>D and from 103 to 403 Torr for lean mixtures (~0.01 volume mixing ratios) of CH<sub>3</sub>D and nitrogen.

To retrieve the temperature dependences of line-shape parameters, 17 new spectra of both pure (99%) CH<sub>3</sub>D and dilute mixtures (0.003 - 0.0164 volume mixing ratios) of the same high-purity CH<sub>3</sub>D sample in research grade nitrogen have been recorded from room to low temperatures using the coolable absorption cell with a path length of 20.38 cm (see [45] for its detailed description). The simultaneous multispectrum analysis [46] of the 17 new spectra and the six previous spectra [35] has allowed the determination of N<sub>2</sub>-broadened line-width and N<sub>2</sub>-pressure-induced line-shift coefficients and their temperature dependences for a large number of transitions. In addition, N<sub>2</sub>- line mixing coefficients for 17 pairs of transitions via the off-diagonal relaxation matrix element formalism [46,47] have been also obtained.

However, unlike the line-width and pressure-shift coefficients, the temperature dependences of the relaxation matrix element coefficients could not be determined reliably for all measured mixed pairs. In such instances, a default value of 0.75 has been applied for other line-mixed pairs in the least squares fittings.

#### 2. Experimental details and data analysis

As mentioned above, six of the 23 infrared absorption spectra analyzed in this study were from the set of room-temperature spectra previously used to study N<sub>2</sub>- and self-broadening in <sup>12</sup>CH<sub>3</sub>D transitions in the Triad region [35,36,40]. These spectra were recorded using the Kitt Peak FTS with an unapodized resolution of 0.01 cm<sup>-1</sup> and signal-to-noise (S/N) ratios of about 700 and covered the spectral region 690-2840 cm<sup>-1</sup>. Two of the six spectra recorded at low-pressure (1 – 3 Torr) and high-purity (98% enriched CH<sub>3</sub>D from ICON isotopes) were important in the present study to determine the "zero-pressure" line centers of the <sup>12</sup>CH<sub>3</sub>D transitions.

A set of 17 new high-resolution  $(0.0056 \text{ cm}^{-1})$ , high S/ N (>1000) spectra were recorded in 2010 covering the 1070–1540 cm<sup>-1</sup> spectral region, using the Bruker IFS 125HR Fourier transform spectrometer at the Jet Propulsion Laboratory. For recording these new spectra a specially designed and built 20.38 cm straight-path coolable absorption cell [45] was used. Various CH<sub>3</sub>D and CH<sub>3</sub>D+N<sub>2</sub> gas pressures, temperatures and volume mixing ratios of CH<sub>3</sub>D were used to obtain these experimental spectra. A few low-pressure pure CH<sub>3</sub>D spectra were acquired with the Bruker FTS as well, in order to more accurately

#### Table 1

Details on the experimental setup and physical conditions of spectra.

| Configuration and conditions                | JPL FTS Bruker 125 HR               | McMath-Pierce Kitt Peak FTS         |
|---------------------------------------------|-------------------------------------|-------------------------------------|
| Useable band pass $(cm^{-1})$               | 1000–1540                           | 1050-2400                           |
| Light source                                | Globar                              | Globar                              |
| Beam splitter                               | KBr                                 | KCl                                 |
| Detector                                    | HgCdTe                              | He cooled As:Si                     |
| Resolution (cm <sup>-1</sup> ) (unapodized) | 0.0056                              | 0.01                                |
| Maximum optical path difference (cm)        | 90.00                               | 49.99                               |
| Aperture diameter (mm)                      | 1.5                                 | 8                                   |
| Sample pressure (Torr)                      | See Table 2                         | See Table 2                         |
| Temperature <sup>c</sup> (K)                | 79–296 K                            | 296.0-296.6 K                       |
| Cell path length (cm)                       | 20.38                               | 25 cm                               |
| Cell windows (wedged)                       | KBr                                 | KCl                                 |
| Scanning time (hours)                       | $\sim 2$                            | 1.1 (10 coadds)                     |
| Signal-to-noise                             | $\sim$ 1100–1800                    | ~700                                |
| Calibration standards                       | $\nu_2$ lines H <sub>2</sub> O [48] | $\nu_2$ lines H <sub>2</sub> O [48] |

| Table 2 |
|---------|
|---------|

| Summary of the experimental conditions of the Ch3D spec | Summary | of the | experimental | conditions | of | the | CH <sub>3</sub> D | spectra |
|---------------------------------------------------------|---------|--------|--------------|------------|----|-----|-------------------|---------|
|---------------------------------------------------------|---------|--------|--------------|------------|----|-----|-------------------|---------|

| Temperature (K) | Gas mixture       | CH <sub>3</sub> D VMR | Path (cm) | Pressure (Torr) | Calibration correction <sup>a</sup> | RMS <sup>b</sup> |
|-----------------|-------------------|-----------------------|-----------|-----------------|-------------------------------------|------------------|
| 296.60          | CH₃D              | 1.0                   | 25.0      | 1.013           | 0.9999998059                        | 0.115            |
| 295.45          | CH <sub>3</sub> D | 1.0                   | 25.0      | 3.050           | 0.9999998708                        | 0.113            |
| 296.20          | $CH_3D + N_2$     | 0.0133                | 25.0      | 102.50          | 0.9999997940                        | 0.105            |
| 296.40          | $CH_3D + N_2$     | 0.0133                | 25.0      | 202.10          | 0.9999998054                        | 0.099            |
| 296.40          | $CH_3D + N_2$     | 0.0133                | 25.0      | 302.55          | 0.9999998144                        | 0.104            |
| 296.40          | $CH_3D+N_2$       | 0.0136                | 25.0      | 402.25          | 0.9999998200                        | 0.112            |
|                 |                   |                       |           |                 |                                     |                  |
| 296.00          | $CH_3D+N_2$       | 0.00362               | 20.38     | 250.60          | 1.000002644                         | 0.088            |
| 296.00          | $CH_3D+N_2$       | 0.00365               | 20.38     | 728.94          | 1.000002853                         | 0.093            |
| 239.65          | $CH_3D+N_2$       | 0.00983               | 20.38     | 194.99          | 1.000002702                         | 0.091            |
| 240.15          | $CH_3D+N_2$       | 0.01575               | 20.38     | 444.04          | 1.000002712                         | 0.110            |
| 239.65          | $CH_3D+N_2$       | 0.00990               | 20.38     | 602.23          | 1.000002710                         | 0.098            |
| 189.65          | CH₃D              | 1.0                   | 20.38     | 7.10            | 1.000002625                         | 0.100            |
| 188.65          | $CH_3D+N_2$       | 0.01302               | 20.38     | 152.72          | 1.000002738                         | 0.088            |
| 188.65          | $CH_3D+N_2$       | 0.0037                | 20.38     | 256.82          | 1.000002616                         | 0.079            |
| 189.15          | $CH_3D+N_2$       | 0.0133                | 20.38     | 546.30          | 1.000002669                         | 0.096            |
| 135.15          | CH₃D              | 1.0                   | 20.38     | 2.58            | 1.000002747                         |                  |
| 133.35          | $CH_3D+N_2$       | 0.00512               | 20.38     | 177.67          | 1.000002771                         | 0.085            |
| 133.35          | $CH_3D+N_2$       | 0.01635               | 20.38     | 246.38          | 1.000002758                         |                  |
| 133.35          | $CH_3D+N_2$       | 0.00515               | 20.38     | 503.86          | 1.000002739                         | 0.085            |
| 78.75           | CH₃D              | 1.0                   | 20.38     | 8.5             | 1.000002744                         |                  |
| 77.65           | $CH_3D+N_2$       | 0.0127                | 20.38     | 100.90          | 1.000002796                         | 0.094            |
| 75.15           | $CH_3D+N_2$       | 0.00339               | 20.38     | 295.28          | 1.000002774                         | 0.092            |
| 76.95           | $CH_3D\!+\!N_2$   | 0.0119                | 20.38     | 642.12          | 1.000002788                         |                  |

Note: 760 Torr=1 atm=101.325 kPa.

<sup>a</sup> Wavenumber scales were calibrated relative to  $\nu_2$  water vapor line positions by Toth [48].

 $^{\rm b}$  The RMS values correspond to the multispectrum fit residuals plotted in Fig. 3(b).

determine the zero-pressure line positions (since these spectra had higher resolution than the low-pressure Kitt Peak spectra).

All 23 spectra were simultaneously fitted using a multispectrum nonlinear least-squares technique [46]. Details on the experimental setups for the two sets of measurements are provided in Table 1. The experimental physical conditions of the spectra analyzed are presented in Table 2. Transitions belonging to all bands in the Triad ( $\nu_3$ ,  $\nu_6$  and  $\nu_5$ ) were observed in both sets of spectra. Spectroscopic results pertaining to only the  $\nu_6$  perpendicular band of <sup>12</sup>CH<sub>3</sub>D will be presented in this article. Results for the parallel band  $\nu_3$  and the perpendicular band  $\nu_5$  will be reported in a subsequent article.

#### 3. Retrievals of line parameters

Prior to the multispectrum fittings the wavenumber scales of both datasets were calibrated using reference water vapor line positions [48]. In the case of Kitt Peak data, these water vapor lines had two components, a narrow line due to residual gas in the evacuated FTS chamber as well as a broad feature from atmospheric-pressure optical paths outside the FTS and sample cell purged with dry nitrogen vapor to minimize H<sub>2</sub>O absorptions interfering with the CH<sub>3</sub>D transitions. In the JPL Bruker spectra, the water lines arose only from small amounts of residual gas in the evacuated FTS chamber. The wavenumber calibration factors determined for each

of the fitted spectra are included in Table 2. In both sets of experiments, the sample pressures and temperatures were continually monitored during the measurements using appropriate calibrated pressure gauges and temperature sensors [35,45].

The spectral line parameters in the HITRAN2008 database [49] were used as initial guesses for starting the multispectrum fittings. Before starting the fits, it was also necessary to establish the isotopologue abundances (e.g., <sup>12</sup>CH<sub>4</sub>, <sup>13</sup>CH<sub>4</sub>, <sup>12</sup>CH<sub>3</sub>D and <sup>13</sup>CH<sub>3</sub>D) in the CH<sub>3</sub>D samples. Initial estimates of the isotopologue abundances were made based upon the % D-enrichments stated by the manufacturer (ICON Isotopes). Small adjustments to these isotopologue abundances were needed when the spectra were fit simultaneously. These values were established by fitting several selected regions of each spectrum prior to analyzing all of the fitted regions. Once the isotopologue abundances were determined, they remained the same for the corresponding spectra in all fitted regions.

Low-pressure pure CH<sub>3</sub>D spectra at room temperature were fitted first and N<sub>2</sub>-broadened spectra at room temperature were then added, one spectrum at a time, until all room-temperature spectra were fitted simultaneously. This process allowed the initial determination of room temperature N<sub>2</sub>-broadened width and shift coefficients for the strong, unblended lines. Subsequently, low temperature pure CH<sub>3</sub>D and N<sub>2</sub>-broadened CH<sub>3</sub>D spectra were added one spectrum at a time, as appropriate. The volume mixing ratios of N<sub>2</sub>-broadened spectra were carefully adjusted (when appropriate) while the temperature dependences of Lorentz self- and N2-broadened width and shift coefficients of various lines were adjusted until all the spectra were fit satisfactorily such that the weighted (observed minus calculated) fit residuals from all fitted spectra were minimized and no noticeable features were observed in the residuals.

N<sub>2</sub>- and self-broadened line-width, pressure-shift and the relaxation matrix element coefficients (where appropriate) were retrieved using the multispectrum fitting procedure that has been described in several of our prior studies (for example: [34-36,39-40,46-47]). Spectral intervals of 5-15 cm<sup>-1</sup> wide from each of the 23 spectra were fitted simultaneously. The total number of spectra fitted in each interval varied between 19 and 23, depending upon whether <sup>12</sup>CH<sub>3</sub>D features were apparent at the volume mixing ratios and gas sample pressures of the chosen spectra. For strong CH<sub>3</sub>D transitions the line positions, intensities, N2-broadening coefficients and their temperature dependence exponents, N2-induced shift coefficients and their temperature dependence coefficients were adjusted until the sum of the squares of the weighted fit residuals between the observed and calculated line profiles were minimized.

Line mixing (off-diagonal relaxation matrix element, or ORME) coefficients between selected pairs of transitions were also determined, where possible. Even though the temperatures of the gas samples ranged between 296 K and 75 K, in several cases, it was not possible to measure with confidence the temperature dependences of the relaxation element coefficients. An improved theoretical model for the temperature-dependence of CH<sub>3</sub>D line

mixing is needed to measure these parameters correctly and reliably. Where their values were not determined, the temperature dependence exponents were fixed to a default value of 0.75, similar to the default value applied for the temperature dependence exponents of the linewidth coefficients..

Although several (see Table 2) pure CH<sub>3</sub>D spectra were included in the analysis, the pressures were not high enough to retrieve reliable information on self-broadening and self-shift coefficients for all observed transitions. The pure CH<sub>3</sub>D gas pressures were in an intermediate range so that we could not completely ignore their values. This means that in some instances (e.g., low-temperature spectra) it was necessary to adjust the self-broadening and its temperature dependence exponent to obtain a best fit. However, while many self-broadening coefficients and their temperature dependences could be determined from our spectra, it was not possible to measure any reliable self- pressure-shift coefficients or their temperature dependence coefficients.

As in previous studies using the multispectrum fitting technique, the Lorentz  $N_2$ -broadened line-width coefficients,  $N_2$ -induced line-shift coefficients and their temperature dependences were measured on a line-by-line basis using the following equations:

$$b_{L}(p,T) = p \left[ b_{L}^{0}(N_{2})(p_{0},T_{0})(1-\chi) \left[ \frac{T_{0}}{T} \right]^{n1} + b_{L}^{0}(\operatorname{self})(p_{0},T_{0})\chi \left[ \frac{T_{0}}{T} \right]^{n2} \right]$$
(1)

$$\nu = \nu_0 + p \left[ \delta^0(N_2)(1 - \chi) + \delta^0(\text{self})\chi \right]$$
(2)

$$\delta^{0}(T) = \delta^{0}(T_{0}) + \delta'(T - T_{0})$$
(3)

where  $b_L^0$  and  $\delta^0$  represent pressure broadening and pressure-shift coefficients (in cm<sup>-1</sup> atm<sup>-1</sup> at  $T_0$ =296 K), respectively.  $b_{I}(p,T)$  is the Lorentz half-width (in cm<sup>-1</sup>) of the spectral line at pressure p and temperature T,  $b_1^0$  (Gas)  $(p_0,T_0)$  is the Lorentz half-width coefficient of the line at the reference pressure  $p_0$  (1 atm) and temperature  $T_0$  of the broadening gas (either N<sub>2</sub> or CH<sub>3</sub>D).  $\chi$  is the ratio of the partial pressure of CH<sub>3</sub>D to the total gas pressure in the cell. The temperature dependence coefficients of the Lorentz half-width coefficient are  $n_1$  (for N<sub>2</sub>) and  $n_2$  (for CH<sub>3</sub>D). The temperature dependence of the N<sub>2</sub>-pressureshift coefficients is  $\delta'(N_2)$ . Temperature dependences of N<sub>2</sub>- and self-broadened (in a few cases) half-width and pressure-induced shift coefficients were measured separately for each transition within the same fit. As shown in Eq. (3) a linear law was used for to model the temperature dependences of pressure-induced shift coefficients.

Self- and  $N_2$ -broadened widths and the temperature dependence exponents for the broadening coefficients for all transitions were initially fixed to values in the HITRAN2008 database [49] and depend upon the rotational quantum numbers of the transition. Indeed, in the HITRAN databases ([44,49]) only the self- and air-broadened line-width coefficients are listed and we have assumed that the  $N_2$ -width coefficients for the unmeasured transitions are the same as the air-broadened width coefficients. For parameters not included in HITRAN [44,49], the initial values for all transitions were set at reasonable default values estimated from our previous studies of CH<sub>3</sub>D [35], <sup>12</sup>CH<sub>4</sub> and <sup>13</sup>CH<sub>4</sub> [50–53] in the thermal infrared. The pressure-broadened self- and N<sub>2</sub>-width, self- and N<sub>2</sub>-shift coefficients and their temperature dependence values were  $0.085 \text{ cm}^{-1} \text{ atm}^{-1}$ ,  $0.065 \text{ cm}^{-1} \text{ atm}^{-1}$ ,  $-0.003 \text{ cm}^{-1} \text{ atm}^{-1}$ ,  $-0.002 \text{ cm}^{-1} \text{ atm}^{-1}$ , 0.75 and 0.75, respectively. The temperature-dependence coefficients for self- and N<sub>2</sub>-induced shift for all lines were initially set to default values of  $0.00002 \text{ cm}^{-1} \text{ atm}^{-1} \text{ K}^{-1}$  instead of zero, based upon our previous studies of self- and air-broadening in <sup>12</sup>CH<sub>4</sub> and <sup>13</sup>CH<sub>4</sub> [50–53] in the same spectral region. For unmeasured lines the parameters remained fixed to these default values. This assumption introduced no noticeable residuals in the least squares fits (see Figs. 3 and 4).

For weaker transitions for which broadening and shift coefficients could not be determined, only their line positions and intensities were adjusted in the multispectrum fits. Several weak unidentified features (trace contaminants of unknown origin or <sup>13</sup>CH<sub>3</sub>D transitions) appeared in some of the fitted regions and were included as unidentified transitions in the fit. The broadening and shift parameters of these unidentified features remained fixed to the default values described above.

During the analysis, it was noticed that, in order to minimize the fit residuals, the gas sample temperatures, especially for the lowest temperature ( $\sim$  79 K) dataset, apparently needed adjustments in the range -0.5 to -4.2 K from the ones given by the temperature sensors during the experiments. These adjustments were required in order to fit all of the spectra using the power-law expression (Eq. (1)) for temperature dependence of the line-widths, and the adjusted



**Fig. 1.** Molecular frame and geometry parameters for the CH<sub>3</sub>D molecule:  $|CH| = |CD| = 1.08601 \text{ Å} [60], \angle DCH = 109.46667^{\circ}$ .

temperatures may not necessarily represent the actual physical temperatures of the gas samples. Departures from the power law have been evidenced by others and this confirms that such a law is approximate and that efforts in the theory are needed to derive more elaborate dependences.

At this time, we would like to attribute this need for temperature adjustments to be related to the small departures from the power-law temperature dependence of the Lorentz line-width coefficients that were observed over the same temperature range with the fit of the  ${}^{13}CH_4$  R(2) manifold (See Ref. [45] and references cited therein). With this temperature adjustment we were still able to use Eq. (1) to obtain best-fit residuals in all our fitted intervals (e.g., Figs. 3 and 4). In the present analysis we have not made further efforts to fully characterize this temperature behavior of the Lorentz width coefficients, and our measured line-width coefficients could be characterized as the "effective line-width coefficients" with their temperature dependence exponents still enforced by Eq. (1). The actual temperature values used in the fits are listed in Table 2 rather than the measured temperatures so that the resulting effective line-width parameters can be compared with future experimental studies.

## 4. Theoretical modeling of N<sub>2</sub>-broadening coefficients and their temperature dependences for CH<sub>3</sub>D transitions

Theoretical estimations of pressure-broadened CH<sub>3</sub>D line widths were performed solely for the case of perturbation by nitrogen. Indeed, for this active molecule with a very small electric dipole moment (0.057 D [54]) and a vanishing quadrupole moment, the long-range interactions with an identical partner are very weak whereas the short-range interactions (typically modeled by pairwise atom-atom Lennard–Jones potentials) are determined by atom-atom parameters whose values are available in the literature. We note that the parameter values from different sources are sometimes inconsistent. For collisions with nitrogen, the intermolecular potential is expected to be modeled in a more reliable manner because of stronger electrostatic interactions.

#### Table 4

Atomic distances to the molecular centers of mass (calculated with the geometry of Fig. 1 for CH<sub>3</sub>D and taken from [61] (for N<sub>2</sub>) and atom-atom Lennard–Jones parameters [65] (for CH<sub>3</sub>D-N<sub>2</sub> interactions).

| r <sub>1i</sub> , r <sub>2j</sub> (Å)                                           | $d_{ij}$ (10 <sup>-7</sup> erg Å <sup>12</sup> )                        | $e_{ij}$ (10 <sup>-10</sup> erg Å <sup>6</sup> )            |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|
| $r_{1C} = 0.0641$<br>$r_{1D} = 1.0219$<br>$r_{1H} = 1.1090$<br>$r_{2N} = 0.550$ | $d_{\rm CN} = 0.3234$<br>$d_{\rm HN} = 0.0571$<br>$d_{\rm DN} = 0.0571$ | $e_{CN} = 0.2922$<br>$e_{HN} = 0.0803$<br>$e_{DN} = 0.0803$ |

#### Table 3

Molecular parameters for CH<sub>3</sub>D and N<sub>2</sub> used in the calculations: dipole moments  $\mu$ , quadrupole moments Q, octopole moments  $\Omega$ , mean polarizabilities  $\alpha$ , polarizability anisotropies  $\gamma$  and hyper-polarizabilities  $A_{\parallel}$  and  $A_{\perp}$  ( $\alpha$ ,  $\gamma$ ,  $A_{\parallel}$  and  $A_{\perp}$  for CH<sub>3</sub>D are those of CH<sub>4</sub>).

| Molecule          | μ (D)             | Q (D Å)  | Ω (D Å <sup>2</sup> ) | $\alpha$ (Å <sup>3</sup> ) | γ                 | $A_{\parallel}{=}A_{\perp}$ (Å <sup>4</sup> ) |
|-------------------|-------------------|----------|-----------------------|----------------------------|-------------------|-----------------------------------------------|
| CH <sub>3</sub> D | 0.057 <b>[54]</b> | 0        | 3.10 [62]             | 2.59 [63]                  | 0                 | 0.82 [37]                                     |
| N <sub>2</sub>    | 0                 | 1.3 [61] | 0                     | 1.74 [63]                  | 0.137 <b>[64]</b> | 0                                             |



**Fig. 2.** Two laboratory absorption spectra of  ${}^{12}\text{CH}_3\text{D}$  in the Triad region between 1070 and 1540 cm<sup>-1</sup> recorded at 0.0056 cm<sup>-1</sup> resolution with the Bruker FTS at JPL. The spectrum shown in the top panel (a) corresponds to 99% pure  ${}^{12}\text{CH}_3\text{D}$  sample and the one shown in the bottom panel (b) is a dilute mixture of the 99% high-purity  ${}^{12}\text{CH}_3\text{D}$  sample in nitrogen. Both spectra were taken near 189 K and using the 20.38 cm coolable cell (see text for details).

Calculations of N<sub>2</sub>-broadened line widths in the  $\nu_6$  band of CH<sub>3</sub>D were performed with the standard expression of the semi-classical formalism of Robert and Bonamy [55]:

$$\gamma_{if} = \frac{n_2 \overline{\nu}}{2\pi c} \int_0^\infty 2\pi b db \langle 1 - e^{-\operatorname{Re} S_2} \rangle_{J_2} \tag{4}$$

where  $\gamma_{if}$  (in cm<sup>-1</sup>) is the half-width of the line corresponding to the radiative transition  $i \rightarrow f$ .  $n_2$  is the number density of the perturbing molecules;  $\overline{\nu} = \sqrt{8kT/\pi m^*}$  is the mean relative thermal velocity (k is the Boltzmann constant, T is the temperature in Kelvin and  $m^*$  is the reduced mass of the molecular pair). The real part of the second-order contribution to the scattering matrix  $S_2$  is averaged over the  $J_2$  rotational states of the perturbing gas and integrated over the impact parameter b. We notice that the modified formula suggested by Ma et al. [56] and performing the average over  $J_2$  states as the cumulated average (inside the exponential function) leads to overestimated values, so that we preferred not to employ it for our calculations.

The integration over trajectories required for computations of various  $S_2$  terms was made with the exacttrajectory model [57–59] and the rotationally invariant representation of the interaction potential between the active (indexed by 1) and the perturbing (indexed by 2) molecules:

$$V(1,2,\vec{r}) = \sum_{l_1 l_2 l k_1} V_{l_1 l_2 l}^{k_1}(r) \sum_{m_1 m_2 m} C_{l_1 m_1 l_2 m_2}^{l m} D_{m_1 k_1}^{l_1 \ast} \times (\varphi_1, \theta_1, \chi_1) D_{m_2 0}^{l_2} (\varphi_2, \theta_2, \chi_2) C_{l m}^{\ast}(\theta, \varphi)$$
(5)



**Fig. 3.** A sample fitted interval in the <sup>12</sup>CH<sub>3</sub>D Triad. Transitions belonging to both the  $\nu_3$  and  $\nu_6$  bands appear in this region. The experimental spectra are plotted in the upper panel (a) and the weighted observed minus calculated differences are shown in the lower panel (b). 20 of the possible 23 spectra are included in the fit. Small residuals ( < 1% deep) still persist in one of the spectra that could not completely be fitted out. Some of these could belong to <sup>13</sup>CH<sub>3</sub>D transitions for which assignments were not available when the present analysis was performed. Color codes: room-temperature spectra with the 25 cm cell (black), room-temperature spectra at 20.38 cm cell (pink); spectra at 240 K (red); spectra at 189 K (blue); spectra at ~135 K (dark pink); spectra at ~76 K (dark green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In this equation the products of rotational Wigner matrices and the spherical harmonics  $C^{lm}$  (normalized to  $\sqrt{4\pi/(2l+1)}$ )  $D^{l_1}_{m_1 k_1}(\varphi_1, \theta_1, \chi_1)D^{l_2}_{m_2}$  \*( $\varphi_2, \theta_2, \chi_2$ ) $C^{lm}_{lm}(\theta, \varphi)$  represent the rotationally invariant basis in the laboratory fixed frame (asterisks mark the complex conjugation),  $C^{lm}_{l_1m_l_2m_2}$  are the Clebsch–Gordan coefficients. The radial potential components  $V^{k_1}_{l_1k_2}(r)$  contain contributions from various kinds of intermolecular interactions. We expressed the potential as a sum of electrostatic (*e*), induction (*i*) and dispersion (*d*) long-range terms completed by pairwise atom–atom (*a*) terms accounting for the short-range forces (the explicit forms of radial potential components and second-order contributions to the scattering matrix can be found in [59]).

Contrary to a previous simplified semi-classical calculation for the  $\nu_2$  parallel band [36] in which the three hydrogen atoms were projected on the principal molecular symmetry axis to form a linear molecule with CH<sub>3</sub>D, we kept the real geometry of the equilibrium configuration (see Fig. 1), i.e. accurately treating the active molecule as a symmetric top. Because of the important role of the atomatom terms in the quite weakly interacting CH<sub>3</sub>D-N<sub>2</sub> system this more realistic configuration of hydrogen atoms is expected to ensure a better description of intermolecular interactions and more reliable line width values. After

#### Table 5

Experimental and calculated N<sub>2</sub>-broadened line parameters and experimental self-broadened line parameters [see Eqs. (1-3) for the notations] in the  $\nu_6$  band of CH<sub>3</sub>D. S are the symmetry labels and the ' and " refer to the upper and lower states corresponding to each transition.

| <b>Position,</b> cm <sup>-1</sup> | J       | K′     | S′ | J″ | <b>K</b> ″ | <b>S</b> ″ | Assignment               | Int*10 <sup>25a</sup> | $b_L^0(N_2)$ expt, <sup>b</sup> | $b_L^0(N_2)$ calc. <sup>b</sup> | $n_1 \exp t$         | $n_1$ calc.          | $\delta^0(N_2)$ <b>expt</b> <sup>b</sup> | $\delta'(N_2)$ <b>expt</b> <sup>c</sup> | $b_L^0(self)$ <b>expt</b> <sup>b</sup> | $n_2 \exp t$ |
|-----------------------------------|---------|--------|----|----|------------|------------|--------------------------|-----------------------|---------------------------------|---------------------------------|----------------------|----------------------|------------------------------------------|-----------------------------------------|----------------------------------------|--------------|
| 1080.746222(15)                   | 10      | 3      | Е  | 11 | 4          | Е          | <sup>P</sup> P(11,4,E)   | 8.75(2)               | 0.0569(3)                       | 0.0562                          | 0.750(24)            | 0.630(1)             |                                          |                                         |                                        |              |
| 1080.941134(7)                    | 8       | 1      | A1 | 9  | 0          | A2         | <sup>R</sup> P(9,0,A2)   | 18.98(2)              | 0.0635(2)                       | 0.0608                          | 0.811(7)             | 0.678(4)             | -0.00251(16)                             |                                         | 0.0836(9)                              | 0.798(14)    |
| 1082.344848(29)                   | 7       | 4      | A2 | 8  | 3          | A1         | <sup>R</sup> P(8,3,A1)   | 5.34(1)               | 0.0620(2)                       | 0.0597                          | 0.802(5)             | 0.665(4)             | -0.00306(9)                              |                                         | 0.0879(9)                              |              |
| 1082.349885(23)                   | 7       | 4      | A1 | 8  | 3          | A2         | <sup>R</sup> P(8,3,A2)   | 5.22(1)               | 0.0620(2)                       | 0.0597                          | 0.802(5)             | 0.665(4)             | -0.00306(9)                              |                                         | 0.0879(9)                              |              |
| 1082.847607(20)                   | 12      | 8      | A1 | 13 | 9          | A2         | <sup>P</sup> P(13,9,A2)  | 10.18(2)              | 0.0487(3)                       | 0.0558                          | 0.762(30)            | 0.618(1)             | -0.00250(22)                             |                                         |                                        |              |
| 1083.497562(20)                   | 11      | 6      | Е  | 12 | 7          | Е          | <sup>P</sup> P(12.7.E)   | 7.87(2)               | 0.0523(3)                       | 0.0547                          | 0.626(32)            | 0.614(1)             | -0.00310(31)                             |                                         |                                        |              |
| 1084.418423(13)                   | 10      | 4      | Е  | 11 | 5          | Е          | <sup>P</sup> P(11.5.E)   | 10.21(2)              | 0.0537(3)                       | 0.0552                          | 0.807(21)            | 0.620(1)             | -0.00309(25)                             |                                         |                                        |              |
| 1085.228424(9)                    | 7       | 3      | Е  | 8  | 2          | Е          | <sup>R</sup> P(8,2,E)    | 9.04(1)               | 0.0591(3)                       | 0.0602                          | 0.882(11)            | 0.670(4)             |                                          |                                         | 0.0881(6)                              |              |
| 1085.625324(8)                    | 9       | 2      | A2 | 10 | 3          | A1         | <sup>P</sup> P(10,3,A1)  | 10.91(1)              | 0.0633(2)                       | 0.0581                          | 0.832(15)            | 0.649(2)             |                                          | 0.000027(2)                             | 0.0893(8)                              |              |
| 1085.738824(8)                    | 9       | 2      | A1 | 10 | 3          | A2         | <sup>P</sup> P(10,3,A2)  | 10.91(1)              | 0.0633(2)                       | 0.0581                          | 0.832(15)            | 0.649(2)             |                                          | 0.000027(2)                             | 0.0893(8)                              |              |
| 1086.841190(42)                   | 13      | 11     | A2 | 14 | 12         | A1         | <sup>P</sup> P(14,12,A1) | 5.71(2)               | 0.0459(4)                       | 0.0571                          |                      | 0.619(1)             |                                          |                                         | 0.0652(58)                             |              |
| 1087.149109(38)                   | 12      | 9      | E  | 13 | 10         | E          | <sup>P</sup> P(13.10.E)  | 5.03(2)               | 0.0454(4)                       | 0.0572                          |                      | 0.625(1)             |                                          |                                         | 0.0562(48)                             |              |
| 1087.570898(36)                   | 11      | 7      | E  | 12 | 8          | Ē          | $^{P}P(12.8.E)$          | 8.29(5)               | 0.0585(4)                       | 0.0562                          | 0.816(39)            | 0.624(1)             | -0.00374(34)                             | 0.000058(6)                             |                                        |              |
| 1087.887154(20)                   | 6       | 5      | E  | 7  | 4          | Ē          | $^{R}P(7.4.E)$           | 2.26(1)               | 0.0685(8)                       | 0.0636                          |                      | 0.718(7)             |                                          |                                         | 0.0938(15)                             |              |
| 1088 082184(6)                    | 7       | 2      | E  | 8  | 1          | E          | $^{R}P(81E)$             | 15.04(2)              | 0.0633(2)                       | 0.0613                          | 0.812(6)             | 0.682(5)             | -0.00216(19)                             |                                         | 0.0861(4)                              |              |
| 1088.252595(9)                    | 10      | 5      | Ă1 | 11 | 6          | A2         | $^{P}P(11.6.A2)$         | 22.65(3)              | 0.0527(1)                       | 0.0553                          | 0.712(10)            | 0.620(1)             | -0.00307(11)                             |                                         | 0.0001(1)                              |              |
| 1089 248131(10)                   | 9       | 3      | E  | 10 | 4          | E          | $^{P}P(10.4 E)$          | 1336(2)               | 0.0565(2)                       | 0.0569                          | 0.755(13)            | 0.636(1)             | -0.00351(19)                             |                                         |                                        |              |
| 1089 902710(5)                    | 7       | 1      | A2 | 8  | 0          | A1         | $^{R}P(80A1)$            | 23 99(2)              | 0.0647(1)                       | 0.0620                          | 0.827(4)             | 0.690(5)             | -0.00261(12)                             |                                         | 0.0871(3)                              |              |
| 1090 645206(9)                    | 8       | 1      | E  | 9  | 2          | E          | $^{P}P(92E)$             | 1193(2)               | 0.0632(3)                       | 0.0602                          | 0.726(12)            | 0.671(3)             | -0.00279(24)                             | 0.000038(4)                             | 0.0867(7)                              |              |
| 1090 725700(7)                    | 6       | 4      | A1 | 7  | 3          | A2         | $^{R}P(73A2)$            | 9.87(1)               | 0.0656(3)                       | 0.0618                          | 0.792(7)             | 0.689(6)             | 0100270(21)                              | 010000000(1)                            | 0.094(5)                               |              |
| 1091 611499(38)                   | 12      | 10     | E  | 13 | 11         | E          | $^{P}P(13.11E)$          | 521(2)                | 0.0462(4)                       | 0.0580                          | 01.02(7)             | 0.630(1)             |                                          |                                         | 0.00 1(0)                              |              |
| 1091 797634(12)                   | 11      | 8      | A2 | 12 | 9          | A1         | <sup>P</sup> P(12.9.A1)  | 17.08(2)              | 0.0510(2)                       | 0.0500                          | 0.675(16)            | 0.635(1)             | -0.00280(14)                             |                                         |                                        |              |
| 1092 239570(12)                   | 10      | 6      | E  | 11 | 7          | E          | $^{P}P(11.7 E)$          | 12.47(2)              | 0.0510(2)                       | 0.0565                          | 0.727(18)            | 0.631(1)             | 0.00200(11)                              |                                         |                                        |              |
| 1092 986295(9)                    | 9       | 4      | F  | 10 | 5          | F          | $^{P}P(10.5 F)$          | 15.69(2)              | 0.0557(2)                       | 0.0562                          | 0.751(12)            | 0.628(1)             | -0.00245(16)                             | 0.000036(3)                             |                                        |              |
| 1093 662989(7)                    | 6       | 3      | F  | 7  | 2          | F          | $^{R}P(72F)$             | 8 98(1)               | 0.0620(2)                       | 0.0616                          | 0.813(7)             | 0.682(5)             | 0100210(10)                              | 01000000(0)                             | 0.0878(5)                              |              |
| 1093.002303(7)<br>1094.044024(5)  | 8       | 2      | A1 | 9  | 3          | A2         | <sup>P</sup> P(93A2)     | 16.06(1)              | 0.0642(2)                       | 0.0590                          | 0.774(6)             | 0.658(3)             | -0.00214(11)                             | 0.000023(1)                             | 0.0893(4)                              |              |
| 1094 117524(5)                    | 8       | 2      | A2 | 9  | 3          | A1         | <sup>P</sup> P(93A1)     | 16.06(1)              | 0.0642(2)                       | 0.0590                          | 0.774(6)             | 0.658(3)             | -0.00214(11)                             | 0.000023(1)                             | 0.0893(4)                              |              |
| 1095 705469(8)                    | 7       | 0      | F  | 8  | 1          | F          | $^{P}P(81F)$             | 9 59(2)               | 0.0652(3)                       | 0.0620                          | 0.792(9)             | 0.689(5)             | -0.00381(25)                             | 0.000023(1)                             | 0.0055(1)<br>0.0858(14)                | 0 788(18)    |
| 1096 184869(20)                   | 11      | g      | F  | 12 | 10         | F          | $^{P}P(1210F)$           | 8 71(2)               | 0.0507(2)                       | 0.0588                          | 0.752(5)             | 0.643(1)             | -0.00110(0)                              |                                         | 0.0000(11)                             | 0.700(10)    |
| 1096 378207(12)                   | 10      | 7      | F  | 11 | 8          | F          | $^{P}P(118F)$            | 1336(2)               | 0.0527(2)                       | 0.0582                          | 0.677(15)            | 0.645(1)             | -0.00340(15)                             |                                         |                                        |              |
| 1096.631621(5)                    | 6       | 2      | F  | 7  | 1          | F          | $^{R}P(71F)$             | 15.86(2)              | 0.0522(2)                       | 0.0502                          | 0.872(4)             | 0.693(6)             | -0.00160(14)                             |                                         | 0.0846(6)                              | 0.772(7)     |
| 1096.879089(6)                    | 9       | 5      | A1 | 10 | 6          | A2         | $^{P}P(10.6A2)$          | 35.63(3)              | 0.0032(1)<br>0.0545(1)          | 0.0569                          | 0.022(1)<br>0.762(5) | 0.635(0)             | -0.00271(6)                              | 0.000012(1)                             | 0.0010(0)                              | 0.696(23)    |
| 1097 713516(7)                    | 8       | 3      | F  | 9  | 4          | F          | PP(94F)                  | 199(2)                | 0.0574(1)                       | 0.0505                          | 0.801(6)             | 0.633(1)             | -0.00264(11)                             | 0.000012(1)                             | 0.0788(9)                              | 0.763(19)    |
| 1098 725853(5)                    | 6       | 1      | A1 | 7  | 0          | A2         | $R_{P(70A2)}$            | 28 66(2)              | 0.0650(1)                       | 0.0633                          | 0.829(2)             | 0.013(2)             | -0.0023(8)                               | 0.000015(1)                             | 0.0753(3)                              | 0.788(4)     |
| 1098,933992(6)                    | 7       | 1      | F  | 8  | 2          | F          | PP(8.2F)                 | 1710(2)               | 0.0030(1)                       | 0.0613                          | 0.823(2)             | 0.681(4)             | -0.00223(0)<br>-0.00207(14)              | 0.000010(1)                             | 0.0032(4)<br>0.0820(7)                 | 0.784(12)    |
| 1090.005454(7)                    | 5       | 4      | A2 | 6  | 3          | A1         | $^{R}P(63A1)$            | 732(1)                | 0.0693(3)                       | 0.0643                          | 0.804(6)             | 0.001(4)<br>0.720(7) | -0.00207(14)<br>-0.00294(20)             | 0.000024(2)<br>0.000051(5)              | 0.0020(7)<br>0.0894(13)                | 0.761(12)    |
| 1000.000404(7)<br>1100.672437(8)  | 10      | 8      | A2 | 11 | 9          | A1         | $PP(11 \ 9 \ A1)$        | 7.52(1)<br>27.42(3)   | 0.0000(0)                       | 0.0596                          | 0.304(0)             | 0.720(7)             | -0.00254(20)                             | 0.000031(3)                             | 0.0767(6)                              | 0.701(12)    |
| 1100.072407(0)                    | 11      | 10     | F  | 12 | 11         | F          | PP(12.11F)               | 8 80(2)               | 0.0312(1)<br>0.0434(2)          | 0.0550                          | 0.660(29)            | 0.635(1)             | -0.00255(0)                              | 0.000024(2)                             | 0.0707(0)                              |              |
| 1100.743440(20)                   | 0       | 6      | E  | 12 | 7          | E          | PD(10.7E)                | 10.25(2)              | 0.0434(2)<br>0.0545(1)          | 0.0587                          | 0.000(23)            | 0.653(2)             | -0.00202(10)                             | 0.000032(2)                             | 0.0815(7)                              |              |
| 1100.521805(8)                    | 8       | 1      | E  | 0  | 5          | E          | $P_{P}(0.5 E)$           | 13.23(2)              | 0.0543(1)                       | 0.0577                          | 0.705(5)             | 0.033(2)             | -0.00220(10)                             | 0.000032(2)                             | 0.0013(7)                              | 0.771(18)    |
| 1101.00000000                     | 5       | 2      | E  | 6  | 2          | E          | $R_{P(6,2,E)}$           | 795(1)                | 0.0505(1)                       | 0.0633                          | 0.775(0)             | 0.699(6)             | -0.00247(3)                              | 0.000021(2)                             | 0.0787(8)                              | 0.771(10)    |
| 1107.723080(7)                    | 7       | 2      | Δ2 | 8  | 2          | Δ1         | $PD(83 \Delta 1)$        | 7.55(1)<br>22.84(1)   | 0.0042(2)                       | 0.0600                          | 0.034(3)             | 0.055(0)             | 0.00215(7)                               | 0.000025(1)                             | 0.0859(3)                              | 0.796(26)    |
| 1102.425505(4)                    | 7       | 2      | Δ1 | 8  | 3          | Δ2         | $PD(83 \Delta 2)$        | 22.04(1)              | 0.0055(2)                       | 0.0600                          | 0.779(8)             | 0.666(4)             | -0.00215(7)                              | 0.000025(1)                             | 0.0859(2)                              | 0.796(20)    |
| 1102.400732(4)                    | 6       | Ô      | F  | 7  | 1          | F          | $^{P}P(71F)$             | 13.84(2)              | 0.0655(2)                       | 0.0633                          | 0.816(5)             | 0.000(4)<br>0.701(6) | -0.00213(7)                              | 0.000023(1)                             | 0.0890(8)                              | 0.750(20)    |
| 1105.032601(5)                    | 5       | 2      | E  | 6  | 1          | E          | RD(61E)                  | 15 20(2)              | 0.0645(2)                       | 0.0630                          | 0.832(3)             | 0.703(6)             | -0.00105(17)                             | 0.000021(3)                             | 0.0861(6)                              | 0.767(6)     |
| 1105.052001(5)                    | 0       | ∠<br>7 | E  | 10 | 1<br>Q     | E          | PD(10.8 E)               | 13.20(2)              | 0.0043(2)<br>0.0537(3)          | 0.0039                          | 0.032(3)             | 0.703(0)             | -0.00270(10)                             |                                         | 0.0001(0)                              | 0.007(0)     |
| 1105.113047(14)                   | 9<br>10 | 0      | E  | 10 | 0<br>10    | E          | PD(1110E)                | 20.04(4)              | 0.0337(3)                       | 0.0500                          | 0.755(19)            | 0.009(2)             | -0.00230(20)                             |                                         | 0.0772(25)                             | 0.912(23)    |
| 1105.150058(21)                   | 10      | Э      | E  | 11 | 10         | E          | P(11,10,E)               | 14.10(4)              | 0.0460(3)                       | 0.0399                          | 0.710(37)            | 0.000(1)             |                                          |                                         | 0.0773(23)                             |              |

| 1105.447409(6)  | 8  | 5  | A1 | 9  | 6  | A2 | <sup>P</sup> P(9,6,A2)   | 52.73(4)  | 0.057(1)   | 0.0591 | 0.765(3)  | 0.659(3) | -0.00284(6)  | 0.000014(1) | 0.0778(5)  | 0.804(11) |
|-----------------|----|----|----|----|----|----|--------------------------|-----------|------------|--------|-----------|----------|--------------|-------------|------------|-----------|
| 1105.490676(14) | 11 | 11 | A1 | 12 | 12 | A2 | <sup>P</sup> P(12,12,A2) | 17.12(3)  | 0.0269(1)  | 0.0558 | 0.375(19) | 0.634(1) | -0.00514(7)  | 0.000029(2) |            |           |
| 1106.132104(6)  | 7  | 3  | Е  | 8  | 4  | Е  | <sup>P</sup> P(8,4,E)    | 28.56(2)  | 0.0593(1)  | 0.0591 | 0.812(4)  | 0.653(3) | -0.0033(8)   | 0.000017(1) | 0.0781(5)  | 0.809(9)  |
| 1107.190909(20) | 4  | 4  | A1 | 5  | 3  | A2 | $^{R}P(5,3,A2)$          | 3.62(2)   | 0.0760(14) | 0.0669 |           | 0.748(7) |              | 0.000030(2) |            |           |
| 1107.196929(12) | 6  | 1  | Е  | 7  | 2  | Е  | <sup>P</sup> P(7,2,E)    | 22.91(4)  | 0.0627(2)  | 0.0624 | 0.801(5)  | 0.691(6) | -0.00258(11) | 0.000019(2) | 0.0879(7)  | 0.738(7)  |
| 1107.406665(5)  | 5  | 1  | A2 | 6  | 0  | A1 | <sup>R</sup> P(6,0,A1)   | 32.60(2)  | 0.0665(1)  | 0.0647 | 0.841(1)  | 0.711(6) | -0.00288(7)  | 0.000019(1) | 0.0861(3)  | 0.775(3)  |
| 1109.465904(7)  | 9  | 8  | A1 | 10 | 9  | A2 | <sup>P</sup> P(10,9,A2)  | 43.05(4)  | 0.0500(1)  | 0.0609 | 0.726(5)  | 0.676(2) | -0.00207(6)  | 0.000023(1) | 0.0750(9)  | 0.753(26) |
| 1109.536457(7)  | 8  | 6  | Е  | 9  | 7  | Е  | <sup>P</sup> P(9,7,E)    | 29.08(4)  | 0.0565(1)  | 0.0610 | 0.768(6)  | 0.680(3) | -0.00218(9)  | 0.000019(2) | 0.0788(8)  | 0.804(18) |
| 1109.761551(14) | 10 | 10 | Е  | 11 | 11 | Е  | <sup>P</sup> P(11,11,E)  | 14.36(2)  | 0.0301(1)  | 0.0568 | 0.510(14) | 0.647(1) | -0.00435(9)  | 0.000041(2) |            |           |
| 1109.967774(6)  | 7  | 4  | Е  | 8  | 5  | Е  | <sup>P</sup> P(8,5,E)    | 33.02(3)  | 0.0588(1)  | 0.0598 | 0.790(3)  | 0.664(3) | -0.00137(8)  | 0.000028(1) | 0.0821(5)  | 0.761(8)  |
| 1110.192698(6)  | 4  | 3  | Е  | 5  | 2  | Е  | $^{R}P(5,2,E)$           | 5.81(1)   | 0.0741(2)  | 0.0654 |           | 0.724(6) | -0.00362(36) |             | 0.0908(4)  |           |
| 1110.754522(7)  | 6  | 2  | A1 | 7  | 3  | A2 | <sup>P</sup> P(7,3,A2)   | 30.93(1)  | 0.0645(1)  | 0.0612 | 0.805(1)  | 0.675(5) | -0.00218(4)  | 0.000026(1) | 0.0871(1)  | 0.787(1)  |
| 1110.779654(12) | 6  | 2  | A2 | 7  | 3  | A1 | <sup>P</sup> P(7,3,A1)   | 30.93(1)  | 0.0645(1)  | 0.0612 | 0.805(1)  | 0.675(5) | -0.00218(4)  | 0.000026(1) | 0.0871(1)  | 0.787(1)  |
| 1111.988897(5)  | 5  | 0  | Е  | 6  | 1  | Е  | <sup>P</sup> P(6,1,E)    | 18.51(2)  | 0.0656(1)  | 0.0647 | 0.849(2)  | 0.711(6) | -0.00204(14) | 0.000016(2) | 0.0870(5)  | 0.772(5)  |
| 1113.297730(5)  | 4  | 2  | Е  | 5  | 1  | E  | $^{R}P(5,1,E)$           | 12.88(2)  | 0.0645(2)  | 0.0655 | 0.861(2)  | 0.717(6) | -0.00314(17) |             | 0.0896(6)  | 0.755(5)  |
| 1113.776358(7)  | 8  | 7  | Е  | 9  | 8  | Е  | <sup>P</sup> P(9,8,E)    | 31.26(3)  | 0.0540(1)  | 0.0618 | 0.730(5)  | 0.691(4) | -0.00262(8)  |             |            |           |
| 1113.948879(5)  | 7  | 5  | A2 | 8  | 6  | A1 | <sup>P</sup> P(8,6,A1)   | 75.51(5)  | 0.0594(1)  | 0.0616 | 0.781(2)  | 0.688(4) | -0.00259(6)  | 0.000009(1) | 0.0803(3)  | 0.795(5)  |
| 1113.979823(10) | 9  | 9  | Е  | 10 | 10 | Е  | <sup>P</sup> P(10,10,E)  | 22.52(5)  | 0.0342(1)  | 0.0578 | 0.534(12) | 0.660(1) | -0.00467(9)  | 0.000031(2) | 0.0539(19) | 0.669(65) |
| 1114.493311(5)  | 6  | 3  | Е  | 7  | 4  | Е  | $^{P}P(7,4,E)$           | 38.27(2)  | 0.0609(1)  | 0.0609 | 0.816(2)  | 0.672(4) | -0.00270(7)  | 0.000015(1) | 0.0816(3)  | 0.779(4)  |
| 1115.420049(5)  | 5  | 1  | Е  | 6  | 2  | Е  | $^{P}P(6,2,E)$           | 29.34(2)  | 0.0634(1)  | 0.0638 | 0.835(2)  | 0.701(6) | -0.00214(8)  | 0.000021(1) | 0.0848(4)  | 0.786(4)  |
| 1115.940928(5)  | 4  | 1  | A1 | 5  | 0  | A2 | <sup>R</sup> P(5,0,A1)   | 33.58(2)  | 0.0669(1)  | 0.0663 | 0.856(1)  | 0.723(6) | -0.00241(8)  | 0.000011(1) | 0.0878(3)  | 0.774(3)  |
| 1118.076223(5)  | 7  | 6  | Е  | 8  | 7  | Е  | <sup>P</sup> P(8,7,E)    | 41.80(3)  | 0.0568(1)  | 0.0627 | 0.760(3)  | 0.703(5) | -0.00215(6)  | 0.000014(1) | 0.0793(4)  | 0.766(9)  |
| 1118.172377(5)  | 8  | 8  | A1 | 9  | 9  | A2 | <sup>P</sup> P(9,9,A2)   | 65.54(3)  | 0.0385(0)  | 0.0588 | 0.547(3)  | 0.675(2) | -0.00374(3)  | 0.000033(1) | 0.0588(5)  | 0.697(16) |
| 1118.304501(7)  | 3  | 3  | Е  | 4  | 2  | Е  | $^{R}P(4,2,E)$           | 2.87(0)   | 0.0782(10) | 0.0677 | 0.770(15) | 0.749(7) | -0.00730(61) |             | 0.0873(26) | 0.806(23) |
| 1118.363421(4)  | 6  | 4  | Е  | 7  | 5  | Е  | $^{P}P(7,5,E)$           | 45.26(3)  | 0.0610(1)  | 0.0623 | 0.822(3)  | 0.694(5) | -0.00233(6)  | 0.000015(1) | 0.0838(3)  | 0.773(4)  |
| 1119.025382(8)  | 5  | 2  | A2 | 6  | 3  | A1 | <sup>P</sup> P(6,3,A1)   | 40.05(1)  | 0.0675(0)  | 0.0627 | 0.814(1)  | 0.688(5) | -0.00210(3)  | 0.000023(2) | 0.0925(1)  | 0.761(1)  |
| 1119.038034(12) | 5  | 2  | A1 | 6  | 3  | A2 | <sup>P</sup> P(6,3,A2)   | 40.05(1)  | 0.0675(0)  | 0.0627 | 0.814(1)  | 0.688(5) | -0.00210(3)  | 0.000023(2) | 0.0925(1)  | 0.761(1)  |
| 1120.103181(4)  | 4  | 0  | Е  | 5  | 1  | Е  | <sup>P</sup> P(5,1,E)    | 22.67(2)  | 0.0663(1)  | 0.0663 | 0.850(2)  | 0.722(6) | -0.00250(11) | 0.000013(1) | 0.0887(4)  | 0.761(3)  |
| 1121.441410(5)  | 3  | 2  | Е  | 4  | 1  | Е  | $^{R}P(4,1,E)$           | 9.24(1)   | 0.0662(2)  | 0.0671 | 0.853(4)  | 0.734(6) | -0.00233(14) |             | 0.0911(8)  | 0.739(6)  |
| 1122.353699(6)  | 7  | 7  | Е  | 8  | 8  | Е  | <sup>P</sup> P(8,8,E)    | 44.77(7)  | 0.0426(1)  | 0.0599 | 0.629(6)  | 0.690(3) | -0.00319(8)  | 0.000026(1) | 0.0638(5)  | 0.745(14) |
| 1122.376165(4)  | 6  | 5  | A2 | 7  | 6  | A1 | <sup>P</sup> P(7,6,A1)   | 105.06(7) | 0.0604(1)  | 0.0636 | 0.789(2)  | 0.714(6) | -0.00207(5)  | 0.000017(1) | 0.0806(2)  | 0.784(3)  |
| 1122.788184(4)  | 5  | 3  | Е  | 6  | 4  | Е  | $^{P}P(6,4,E)$           | 49.73(2)  | 0.0634(1)  | 0.0631 | 0.825(2)  | 0.699(5) | -0.00273(5)  | 0.000010(1) | 0.0835(3)  | 0.781(3)  |
| 1123.589807(4)  | 4  | 1  | Е  | 5  | 2  | Е  | $^{P}P(5,2,E)$           | 35.43(2)  | 0.0640(1)  | 0.0652 | 0.842(2)  | 0.713(6) | -0.00308(7)  | 0.000014(1) | 0.0857(3)  | 0.772(3)  |
| 1124.325714(4)  | 3  | 1  | A2 | 4  | 0  | A1 | <sup>R</sup> P(4,0,A1)   | 31.36(2)  | 0.0673(1)  | 0.0679 | 0.860(1)  | 0.735(6) | -0.00284(8)  | 0.000010(1) | 0.0896(3)  | 0.765(3)  |
| 1126.534176(6)  | 6  | 6  | Е  | 7  | 7  | Е  | <sup>P</sup> P(7,7,E)    | 58.571(4) | 0.0488(1)  | 0.0611 | 0.680(2)  | 0.704(5) | -0.00313(4)  | 0.000030(1) | 0.0706(6)  | 0.668(18) |
| 1126.684492(6)  | 5  | 4  | Е  | 6  | 5  | Е  | <sup>P</sup> P(6,5,E)    | 59.77(3)  | 0.0623(1)  | 0.0645 | 0.805(2)  | 0.721(6) | -0.00243(5)  | 0.000009(1) | 0.0807(6)  | 0.871(18) |
| 1127.227037(20) | 4  | 2  | A1 | 5  | 3  | A2 | <sup>P</sup> P(5,3,A2)   | 48.64(1)  | 0.0643(0)  | 0.0645 | 0.822(1)  | 0.709(6) | -0.00251(4)  | 0.000015(2) | 0.0737(9)  |           |
| 1127.232695(14) | 4  | 2  | A2 | 5  | 3  | A1 | <sup>P</sup> P(5,3,A1)   | 48.64(1)  | 0.0643(0)  | 0.0645 | 0.822(1)  | 0.709(6) | -0.00251(4)  | 0.000015(2) | 0.0737(9)  |           |
| 1128.174506(6)  | 3  | 0  | Е  | 4  | 1  | Е  | $^{P}P(4,1,E)$           | 25.18(2)  | 0.0674(1)  | 0.0679 | 0.836(2)  | 0.734(6) | -0.00224(10) | 0.000013(1) | 0.0839(2)  |           |
| 1129.139102(28) | 10 | 9  | Е  | 10 | 8  | Е  | $^{R}Q(10,8,E)$          | 3.84(1)   | 0.0615(5)  | 0.0611 |           | 0.684(4) | -0.00498(40) |             |            |           |
| 1129.476960(11) | 2  | 2  | Е  | 3  | 1  | Е  | <sup>R</sup> P(3,1,E)    | 4.62(1)   | 0.0762(3)  | 0.0689 |           | 0.753(7) | -0.00189(17) |             |            |           |
| 1130.486989(25) | 11 | 8  | Е  | 11 | 7  | Е  | <sup>R</sup> Q(11,7,E)   | 4.89(2)   | 0.0558(5)  | 0.0576 | 0.522(43) | 0.644(1) |              |             |            |           |
| 1130.561033(30) | 13 | 7  | A2 | 13 | 6  | A1 | <sup>R</sup> Q(13,6,A1)  | 5.63(2)   | 0.0509(4)  | 0.0532 | 0.549(51) | 0.605(1) |              | 0.000065(6) |            |           |
| 1130.721975(5)  | 5  | 5  | A2 | 6  | 6  | A1 | <sup>P</sup> P(6,6,A1)   | 140.05(4) | 0.0537(1)  | 0.0623 | 0.724(1)  | 0.716(5) | -0.00289(3)  | 0.000024(2) | 0.0707(3)  | 0.806(11) |
| 1131.008024(20) | 4  | 3  | Е  | 5  | 4  | Е  | <sup>P</sup> P(5,4,E)    | 62.37(2)  | 0.0647(1)  | 0.0653 | 0.822(1)  | 0.728(6) | -0.00228(6)  | 0.000010(1) | 0.0837(6)  | 0.828(17) |
| 1131.434300(19) | 10 | 8  | Е  | 10 | 7  | Е  | <sup>R</sup> Q(10,7,E)   | 6.00(2)   | 0.0597(4)  | 0.0598 | 0.558(29) | 0.669(3) | -0.00477(38) |             |            |           |
| 1131.693962(6)  | 3  | 1  | Е  | 4  | 2  | Е  | $^{P}P(4,2,E)$           | 40.36(2)  | 0.0644(1)  | 0.0668 | 0.846(1)  | 0.727(6) | -0.00292(7)  | 0.000014(1) | 0.0836(9)  | 0.818(24) |
| 1131.766548(18) | 12 | 7  | A2 | 12 | 6  | A1 | <sup>R</sup> Q(12,6,A1)  | 8.54(2)   | 0.0521(3)  | 0.0543 | 0.748(31) | 0.614(1) | -0.00291(25) |             |            |           |
| 1132.557787(6)  | 2  | 1  | A1 | 3  | 0  | A2 | <sup>R</sup> P(3,0,A2)   | 24.95(2)  | 0.0667(1)  | 0.0695 | 0.869(2)  | 0.749(6) | -0.00335(16) | 0.000012(1) | 0.0919(2)  |           |
| 1132.858722(13) | 11 | 7  | A2 | 11 | 6  | A1 | <sup>R</sup> Q(11,6,A1)  | 12.16(3)  | 0.0561(5)  | 0.0559 | 0.582(26) | 0.629(1) |              |             |            |           |
| 1133.033465(17) | 8  | 8  | Е  | 8  | 7  | Е  | <sup>R</sup> Q(8,7,E)    | 4.79(1)   | 0.0695(5)  | 0.0628 |           | 0.719(6) | -0.00978(64) |             |            |           |
| 1133.841173(10) | 10 | 7  | A2 | 10 | 6  | A1 | <sup>R</sup> Q(10,6,A1)  | 15.93(3)  | 0.0571(3)  | 0.0580 | 0.714(16) | 0.650(2) |              |             |            |           |
| 1134.717981(8)  | 9  | 7  | A1 | 9  | 6  | A2 | <sup>R</sup> Q(9,6,A2)   | 19.06(3)  | 0.0597(3)  | 0.0603 | 0.748(11) | 0.677(3) |              |             |            |           |
| 1134.923731(6)  | 4  | 4  | Е  | 5  | 5  | Е  | <sup>P</sup> P(5,5,E)    | 76.54(3)  | 0.0582(1)  | 0.0635 | 0.747(2)  | 0.727(6) | -0.00182(7)  | 0.000027(1) | 0.0354(7)  |           |

| Table 5 | continued | ) |
|---------|-----------|---|
|         |           |   |

| 135.84232/2         3         2         A         4         P         A14         P         A14(73)         0.0654(1)         0.053(1)         0.0644         0.821(1)         0.037(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.0057(1)         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Position, cm <sup>-2</sup> | <sup>1</sup> J' | K′     | S′      | J″     | <b>K</b> ″ | <b>S</b> ″ | Assignment                                       | Int*10 <sup>25a</sup> | $b_L^0(N_2)$ expt, <sup>b</sup> | $b_L^0(N_2)$ calc. <sup>b</sup> | $n_1 \operatorname{expt}$ | $n_1$ calc.          | $\delta^0(N_2) \operatorname{expt^b}$ | $\delta'(N_2) \operatorname{expt}^{c}$ | $b_L^0(self)$ <b>expt</b> <sup>b</sup> | <i>n</i> <sub>2</sub> <b>expt</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|--------|---------|--------|------------|------------|--------------------------------------------------|-----------------------|---------------------------------|---------------------------------|---------------------------|----------------------|---------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|
| 133.492768)         8         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7        7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1135.352143(22             | 2) 3            | 2      | A2      | 4      | 3          | A1         | <sup>P</sup> P(4,3,A1)                           | 114.47(3)             | 0.0653(1)                       | 0.0664                          | 0.852(1)                  | 0.733(6)             | -0.00225(13)                          | 0.000012(1)                            | 0.0857(1)                              |                                   |
| 135.1708(19)         7         8         7         6         A2         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1135.493275(8)             | ) 8             | 7      | A2      | 8      | 6          | A1         | <sup>R</sup> Q(8,6,A1)                           | 19.18(5)              | 0.0628(3)                       | 0.0626                          | 0.821(10)                 | 0.705(5)             | -0.0036(36)                           |                                        | 0.0841(6)                              |                                   |
| 113.83372.14         2         0         E         3         1         E         P         125.207.25         0.06882         0.05482         0.05433         -         0.0753125         0.058         0.05422         0.03311         -         0.0753125         0.058         0.05422         0.03311         -         0.0753125         0.058         0.05421         0.03311         -         0.0753125         0.058         0.03311         -         0.000201         0.000201         0.000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.0000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.00000201         0.000000000000000         0.00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1136.171086(19             | ) 7             | 7      | A1      | 7      | 6          | A2         | <sup>R</sup> Q(7,6,A2)                           | 14.28(5)              | 0.0697(6)                       | 0.0638                          | 0.764(17)                 | 0.728(7)             |                                       |                                        | 0.0868(16)                             |                                   |
| 1135.259725(3)       0       6       E       10       6       E       10       5       E       1052(3915)(4)       0.0552(2)       0.037(1)       0.0002(1)       0.0059(2)         1137.26931(2)       1       8       6       E       1       4       E       10(1)       0.0002(1)       0.0059(2)       0.027(1)       0.0002(1)       0.00074(2)       0.0075(2)         1138.07579(2)       7       5       E       10(1)       11(1)       0.0002(1)       0.00002(1)       0.00002(1)       0.00074(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.0075(2)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00001(2)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1136.185383(14             | 4) 2            | 0      | Е       | 3      | 1          | E          | <sup>P</sup> P(3,1,E)                            | 25.02(2)              | 0.0668(2)                       | 0.0695                          | 0.855(3)                  | 0.748(6)             |                                       |                                        | 0.0910(5)                              |                                   |
| 1132.2691/10       9       6       E       9       5       E       V[0]22, 0       0.0581/4       0.0581/4       0.0582/1       -0.00187(13)       0.0002(1)       0.0753(2)         1138.089709(9)       8       6       E       8       5       E       V[0]24, 0       0.0670(1)       0.0681/4       0.0281/1       -0.00187(13)       0.0002(1)       0.0869(6)         1138.0707738       3       3       5       E       V[0]44, 0       1.0482(2)       0.0574(2)       0.0532       0.0141/4       0.0281/1       0.0002(1)       0.0079(1)       0.0002(1)       0.0095(1)       0.00002(1)       0.0095(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00001(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00002(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)       0.00001(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1136.350725(13             | 3) 10           | 6      | Е       | 10     | 5          | Е          | <sup>R</sup> Q(10,5,E)                           | 9.78(2)               | 0.0572(5)                       | 0.0563                          | 0.642(25)                 | 0.633(1)             |                                       |                                        |                                        |                                   |
| 1135.8694/2.0       16       6       6       7       6       6       7       6       6       7       6       7       6       7       6       7       6       7       6       7       7       6       7       7       6       7       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1137.263915(10             | )) 9            | 6      | Е       | 9      | 5          | Е          | <sup>R</sup> Q(9,5,E)                            | 12.53(2)              | 0.0585(4)                       | 0.0584                          | 0.818(16)                 | 0.655(2)             |                                       |                                        |                                        |                                   |
| 113.87.007.98       8       6       E       8       7       5       E       %0.65.21       0.04600[6]       0.04600[6]       0.04600[6]         113.87.007.87       3       3       5       E       10       0.04600[6]       0.0757[14]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.00002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000002[1]       0.000000[1]       0.00000[1]       0.00000[1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1137.869412(20             | 0) 11           | 5      | Е       | 11     | 4          | Е          | <sup>R</sup> Q(11,4,E)                           | 7.64(2)               | 0.0546(3)                       | 0.0550                          | 0.739(23)                 | 0.620(1)             |                                       |                                        | 0.0753(25)                             |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1138.068790(9              | ) 8             | 6      | E       | 8      | 5          | E          | <sup>R</sup> Q(8,5,E)                            | 14.15(2)              | 0.0620(1)                       | 0.0608                          |                           | 0.683(4)             | -0.00187(13)                          |                                        | 0.0869(6)                              |                                   |
| 1138.94494(1)       10       5       E       10       4       E       P       4.81(2)       0.0539(4)       0.0539(4)       0.0531(4)       0.0521(4)       0.00401(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00001(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00002(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)       0.00001(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1138.770173(8)             | 7               | 6      | E       | 7      | 5          | E          | <sup>R</sup> Q(7,5,E)                            | 14.16(2)              | 0.0664(1)                       | 0.0633                          |                           | 0.712(6)             | -0.00255(13)                          | 0.000020(1)                            | 0.0874(5)                              |                                   |
| 1139.11227(3)         3         8         6         4         6         6         7         (6, 5)         995(2)         0.067(3)         0.097(3)         0.077(6)         0.00004(2)         0.0096(2)         0.00002(1)         0.098(1)           1139.7227075(6)         2         1         6         9         2         6 <sup>7</sup> (2,2,6)         9.34(2)         0.067(3)         0.0284(1)         0.745(5)         -0.0003(2)         0.0082(1)         0.0086(3)           1139.9015(0)(1)         1         4         A         1         3         A <sup>7</sup> (1,1,2,1)         0.005(2)         0.057(2)         0.057(3)         0.528(1)         -0.0022(13)         0.0084(2)         0.0384(2)           1140.42731(0)         1         4         A         1         7         1         7<(2, 1, 1, 1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1138.949449(1)             | 3) 10           | 5      | E       | 10     | 4          | E          | <sup>R</sup> Q(10,4,E)                           | 11.08(2)              | 0.0574(2)                       | 0.0559                          | 0.651(14)                 | 0.628(1)             |                                       |                                        | 0.0795(14)                             |                                   |
| 1159.722767         2         1         6         6         6         5         6         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1139.112237(35             | 5) 3            | 3      | E       | 4      | 4          | E          | <sup>P</sup> P(4,4,E)                            | 4.81(2)               | 0.0529(4)                       | 0.0649                          | 0.830(8)                  | 0.737(6)             |                                       |                                        |                                        |                                   |
| 1159.22075(c)         2         1         E         3         2         E <sup>1</sup> (2,2)         3.44(2)         0.064(1)         0.085(2)         0.0203(6)         0.00203(6)         0.00203(6)         0.00868(3)           1140.3231(6)         1         4         1         1         3         A2 <sup>6</sup> (1),3,3         0.0578(2)         0.0578(2)         0.0578(3)         0.028(1)         0.008648(2)           1140.4233(0)         1         4         1         1         A2         1         3         A2 <sup>6</sup> (1),3,1         7.5(2)         0.0559(1)         0.0559(1)         0.0021(3)         0.00848(2)         0.00848(2)           1140.5232(1)         1         1         A2         1         3         A2 <sup>6</sup> (1),4,1         0.0633(1)         0.0566         0.697(1)         0.0057(2)         0.0001(1)         0.086(3)           1141.56232(1)         1         4         A         1         6         3,4 <sup>6</sup> (1),3,2         1,44(2)         0.0566         0.697(1)         0.635(1)         -00022(1)         0.0001(2)         0.0096(3)           1142.19757(2)         4         4         7         1,43(2)         0.055(1)         0.055(1)         0.055(1)         0.055(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1139.372679(12             | 2) 6            | 6      | E       | 6      | 5          | E          | <sup>R</sup> Q(6,5,E)                            | 9.95(2)               | 0.0679(3)                       | 0.0647                          | 0.844(7)                  | 0.735(7)             | -0.00491(26)                          | 0.000042(4)                            | 0.096(13)                              | 0.707(12)                         |
| 1199.09156(1)         9         5         E         9         4         E         %[0][0][0][0][0][0][0][0][0][0][0][0][0][                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1139.722075(6              | ) 2             | 1      | E       | 3      | 2          | E          | <sup>P</sup> P(3,2,E)                            | 43.46(2)              | 0.0649(1)                       | 0.0682                          | 0.854(1)                  | 0.745(6)             | -0.00203(6)                           | 0.000022(1)                            | 0.0883(1)                              |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1139.909156(11             | l) 9            | 5      | E       | 9      | 4          | Е          | $^{R}Q(9,4,E)$                                   | 14.64(2)              | 0.0578(2)                       | 0.0572                          | 0.716(9)                  | 0.639(1)             |                                       |                                        | 0.0866(8)                              |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1140.391680(2)             | 1) 11           | 4      | A1      | 11     | 3          | A2         | <sup>R</sup> Q(11,3,A2)                          | 7.11(2)               | 0.0602(4)                       | 0.0559                          | 0.760(35)                 | 0.628(1)             | 0.00427(41)                           |                                        | 0.0850(27)                             |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1140.427310(20             | D) 11           | 4      | A2      | 11     | 3          | A1         | <sup>R</sup> Q(11,3,A1)                          | 7.50(2)               | 0.0598(4)                       | 0.0559                          | 0.707(33)                 | 0.628(1)             | -0.00522(38)                          |                                        | 0.0848(26)                             |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1140.634587(6              | ) 1             | 1      | A2      | 2      | 0          | A1         | <sup>R</sup> P(2,0,A1)                           | 14.39(1)              | 0.0664(1)                       | 0.0710                          | 0.839(2)                  | 0.764(6)             | -0.00318(15)                          | 0.000024(1)                            | 0.0919(1)                              |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1140.752289(8              | ) 8             | 5      | Е       | 8      | 4          | E          | $^{R}Q(8,4,E)$                                   | 18.20(2)              | 0.0603(1)                       | 0.0590                          |                           | 0.659(3)             | -0.00082(8)                           |                                        | 0.0819(4)                              |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1141.483940(6)             | 7               | 5      | E       | 7      | 4          | E          | $^{R}Q(7,4,E)$                                   | 20.29(3)              | 0.0638(1)                       | 0.0615                          | 0.786(4)                  | 0.687(5)             | -0.00220(13)                          | 0.000011(1)                            | 0.0866(3)                              |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1141.562032(14             | 4) 10           | 4      | A2      | 10     | 3          | A1         | <sup>K</sup> Q(10,3,A1)                          | 10.67(2)              | 0.0623(3)                       | 0.0566                          | 0.699(21)                 | 0.635(1)             |                                       |                                        |                                        |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1141.597406(13             | 3) 10           | 4      | A1      | 10     | 3          | A2         | <sup>K</sup> Q(10,3,A2)                          | 11.42(2)              | 0.0598(3)                       | 0.0566                          | 0.780(19)                 | 0.635(1)             | -0.00574(26)                          |                                        |                                        |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1142.109752(6)             | 6               | 5      | E       | 6      | 4          | E          | $^{R}Q(6,4,E)$                                   | 19.43(2)              | 0.0663(1)                       | 0.0640                          | 0.819(4)                  | 0.718(6)             | -0.00323(12)                          | 0.000016(2)                            | 0.0909(3)                              |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1142.582166(11             | 1) 9            | 4      | A1      | 9      | 3          | A2         | <sup>R</sup> Q(9,3,A2)                           | 14.07(3)              | 0.0634(2)                       | 0.0575                          | 0.801(9)                  | 0.642(2)             | 0.00366(9)                            |                                        | 0.0819(13)                             | 0.850(19)                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1142.628435(19             | 9) 9            | 4      | A2      | 9      | 3          | A1         | <sup>K</sup> Q(9,3,A1)                           | 15.86(6)              | 0.0634(2)                       | 0.0575                          | 0.801(9)                  | 0.642(2)             | 0.00366(9)                            |                                        | 0.0819(13)                             | 0.850(19)                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1142.635080(9              | ) 5             | 5      | E       | 5      | 4          | E          | <sup>k</sup> Q(5,4,E)                            | 13.68(4)              | 0.0680(3)                       | 0.0657                          | 0.87(8)                   | 0.742(7)             | -0.01596(25)                          |                                        | 0.0935(4)                              |                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1143.391181(6)             | 2               | 2      | A1      | 3      | 3          | A2         | <sup>r</sup> P(3,3,A2)                           | 131.69(3)             | 0.0656(0)                       | 0.0665                          | 0.832(1)                  | 0.746(6)             | -0.00248(4)                           | 0.000017(2)                            | 0.0853(2)                              | 0.787(2)                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1143.527523(7              | ) 8             | 4      | A1      | 8      | 3          | A2         | <sup>R</sup> Q(8,3,A2)                           | 20.88(2)              | 0.0653(1)                       | 0.0586                          | 0.785(3)                  | 0.652(3)             | -0.00174(6)                           |                                        | 0.0878(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1143.571633(8)             | ) 8             | 4      | A2      | 8      | 3          | AI         | <sup>R</sup> Q(8,3,A1)                           | 19.27(3)              | 0.0653(1)                       | 0.0586                          | 0.785(3)                  | 0.652(3)             | -0.00174(6)                           | 0.000000(4)                            | 0.0878(2)                              | 0.544(4)                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1144.1214/6(6)             | 1               | 0      | E       | 2      | 1          | E          | $^{1}P(2,1,E)$                                   | 22.36(2)              | 0.0662(1)                       | 0.0709                          | 0.861(2)                  | 0.763(6)             | -0.0029(10)                           | 0.000020(1)                            | 0.0924(4)                              | 0.741(4)                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1144.218243(14             | 4) 10           | 3      | E       | 10     | 2          | E          | <sup>N</sup> Q(10,2,E)                           | 9.88(2)               | 0.0602(3)                       | 0.0578                          | 0.829(18)                 | 0.646(1)             | -0.00249(24)                          | 0.00007(1)                             | 0.0000(0)                              | 0.700(5)                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1144.302129(14             | 4) /            | 4      | A2      | /      | 3          | AI         | <sup>AQ</sup> (7,3,AT)                           | 25.11(2)              | 0.0619(1)                       | 0.0602                          | 0.811(1)                  | 0.667(4)             | -0.00107(5)                           | 0.000007(1)                            | 0.0838(6)                              | 0.762(5)                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1144.30/543(14             | 4) /            | 4      | AI      | /      | 3          | A2         | <sup>A</sup> Q(7,3,A2)<br><sup>B</sup> Q(6,2,A2) | 25.11(2)              | 0.0619(1)                       | 0.0602                          | 0.811(1)                  | 0.667(4)             | -0.00107(5)                           | 0.000007(1)                            | 0.0838(6)                              | 0.762(5)                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1144.960590(5              | ) 6             | 4      | AI<br>F | 6      | 3          | A2<br>F    | $R_{Q}(6,3,A2)$                                  | 54.31(3)              | 0.0641(1)                       | 0.0624                          | 0.825(2)                  | 0.692(6)             | -0.001/0(5)                           |                                        | 0.08/3(5)                              | 0.816(12)                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1145.300402(8              | ) 9             | <br>⊿  | E<br>AD | 9      | 2          | E<br>41    | $R_{Q}(9,2,E)$                                   | 14.55(3)              | 0.0607(2)                       | 0.0580                          | 0.750(9)                  | 0.055(2)             | -0.00201(15)                          | 0.000015(1)                            | 0.0841(7)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1145.506601(5              | ) 3             | 4      | A2      | 3      | 2          | A1<br>42   | Q(3,3,A1)                                        | 24 E C(2)             | 0.0071(1)                       | 0.0048                          | 0.642(1)                  | 0.722(0)             | -0.00221(0)                           | 0.000013(1)                            | 0.0908(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1145.955000(5              | ) 4             | 4      | E       | 4      | с<br>С     | AZ<br>E    | Q(4,3,AZ)                                        | 34.30(2)              | 0.0703(1)                       | 0.0008                          | 0.804(1)                  | 0.747(7)             | -0.00373(8)                           | 0.000024(1)                            | 0.0950(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1140.550405(0              | ) 0             | 2<br>2 | E       | 0      | 1          | E          | Q(0,2,E)                                         | 20.22(2)              | 0.0591(1)                       | 0.0595                          | 0.012(3)                  | 0.005(3)             | -0.00155(10)                          |                                        | 0.0602(4)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1140.304007(10             | 5) 10           | 2      | E       | 10     | 1          | E          | Q(10,1,E)                                        | 3.12(1)               | 0.0016(4)                       | 0.0567                          | 0.015(20)                 | 0.055(2)             | 0.00072(6)                            | 0.000011(1)                            | 0.0950(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1147.190047(0)             | 1               | 1      | E       | 2      | 2          | E          | $P_{\mathbf{D}(2,2,\mathbf{E})}$                 | 20.37(2)<br>45.26(2)  | 0.0000(1)                       | 0.0007                          | 0.813(3)                  | 0.072(4)             | -0.00073(0)                           | 0.000011(1)                            | 0.0830(3)                              | 0.755(10)                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1147.005855(5)             |                 | 2      | E       | 6      | 2          | E          | $R_{O}(6.2 \text{ F})$                           | 43.20(2)<br>32.07(3)  | 0.0003(1)                       | 0.0084                          | 0.839(1)                  | 0.737(0)             | -0.00221(0)                           | 0.000017(1)                            | 0.0933(3)                              | 0.733(10)                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1147.500520(8)             | ) 5             | 2      | E       | 5      | 2          | E          | $R_{O}(5.2 E)$                                   | 32.07(3)              | 0.0033(1)                       | 0.0021                          | 0.834(3)                  | 0.084(3)             | 0.00182(7)                            | 0.000000(1)                            | 0.0893(10)                             | 0.703(20)                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1140.492390(3              | ) 1             | 2      | E       | 1      | 2          | E          | $R_{O}(4.2E)$                                    | 20.82(2)              | 0.0031(1)                       | 0.0039                          | 0.832(2)                  | 0.703(0)             | -0.00182(7)                           | 0.000009(1)                            | 0.0808(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1140.903333(3              | ) 4             | ר<br>ר | E       | 4<br>0 | 1          | E          | Q(4,2,E)<br>RO(8.1 E)                            | 12.82(2)              | 0.0000(1)                       | 0.0000                          | 0.849(2)                  | 0.728(0)             | -0.00184(8)                           | 0.000014(1)                            | 0.0897(2)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11/0 328526(5)             | ) 2             | 2      | E       | 2      | 2          | E          | $R_{O(3,2,E)}$                                   | 13.07(2)              | 0.0044(2)<br>0.0697(1)          | 0.0678                          | 0.700(0)                  | 0.752(6)             | 0.00275(12)                           | 0.000018(1)                            | 0.0079(0)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1149.320330(3              | ) J             | ר<br>ר | E       | 7      | ∠<br>1     | E          | $R_{O}(71F)$                                     | 20.73(2)              | 0.0037(1)<br>0.0631(1)          | 0.0078                          | 0.073(2)                  | 0.752(0)<br>0.686(5) | -0.00275(12)                          | 0.000018(1)                            | 0.0950(3)                              |                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1150.055628(0              | ) 6             | ∠<br>ว | E       | 6      | 1          | F          | $R_{O}(61F)$                                     | 20.43(2)              | 0.0031(1)<br>0.0632(1)          | 0.0631                          | 0.835(2)                  | 0.000(0)             | -0.00147(8)                           | 0.000011(2)                            | 0.0883(2)                              |                                   |
| $\frac{115(972417(6)}{115(972417(6))} = 0.007(1) + \frac{1}{10} + \frac{1}{10$ | 1151 547989(5)             | , 5             | 2      | F       | 5      | 1          | F          | $R_{O}(5.1F)$                                    | 33 79(2)              | 0.0645(1)                       | 0.0646                          | 0.83(2)                   | 0.707(6)             | -0.00147(8)                           |                                        | 0.0881(2)                              |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1151 972417(6)             | 0               | 0      | Ē       | 1      | 1          | Ē          | $^{P}P(11E)$                                     | 1639(2)               | 0.0657(1)                       | 0.0720                          | 0.834(2)                  | 0.773(6)             | -0.00267(13)                          | 0.000021(1)                            | 0.0957(3)                              |                                   |

| 1152.45800(5)         3         2         E         3         1         E         "03.16         337.72         0.063(1)         0.063(1)         0.073(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.00001(1)         0.000001(1)         0.00001(1)         0.00001(1)                                                                                                                                                                                                                | 1152.072139(5)                   | 4  | 2      | Е        | 4  | 1 | E        | <sup>R</sup> Q(4,1,E)   | 36.78(2)                | 0.0649(1)              | 0.0662 | 0.855(1)  | 0.721(6) | -0.00191(7)  |             | 0.0883(2)              |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----|--------|----------|----|---|----------|-------------------------|-------------------------|------------------------|--------|-----------|----------|--------------|-------------|------------------------|-----------|
| Integers/is         2         2         2         2         1         A         2         2         1         A         2         2         1         A         2         1         A         2         1         A         2         1         A         2         1         A         2         1         A         2         1         A         3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td>1152.468500(5)</td><td>3</td><td>2</td><td>Е</td><td>3</td><td>1</td><td>E</td><td><math>^{R}Q(3,1,E)</math></td><td>33.77(2)</td><td>0.0653(1)</td><td>0.0678</td><td>0.850(1)</td><td>0.739(6)</td><td>-0.00241(7)</td><td>0.000014(1)</td><td>0.0889(2)</td><td></td></th<>                                                                                                                                                                                                                     | 1152.468500(5)                   | 3  | 2      | Е        | 3  | 1 | E        | $^{R}Q(3,1,E)$          | 33.77(2)                | 0.0653(1)              | 0.0678 | 0.850(1)  | 0.739(6) | -0.00241(7)  | 0.000014(1) | 0.0889(2)              |           |
| 1154.4394(1)         13         1         A1         13         0         A2 <sup>16</sup> (12,012)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.00018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.000018(2)         0.0000018(2)         0.0000018(2)                                                                                                                                                                                                    | 1152.751674(5)                   | 2  | 2      | Е        | 2  | 1 | Е        | $^{R}Q(2,1,E)$          | 22.87(1)                | 0.0663(1)              | 0.0692 | 0.864(1)  | 0.757(6) | -0.0023(10)  | 0.000019(1) | 0.0930(2)              |           |
| 1154.7137(12)         12         1         A.2         12         0         A1         \$\[\colsymbol{C1}\) (21)         0.0537(1)         0.0537(1)         0.033(1)         0.00013(2)         0.0661(9)           1155.07967(12)         13         0         A.2         \$\[\colsymbol{C1}\)         0.0367(3)         0.0567(1)         0.00013(2)         0.00013(2)         0.00013(2)         0.0677(4)         0.052(1)         0.000147(1)         0.000013(2)         0.000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1)         0.0000147(1                                                                                                                                                                                      | 1154.43943(16)                   | 13 | 1      | A1       | 13 | 0 | A2       | <sup>R</sup> Q(13,0,A2) | 15.64(3)                | 0.0590(2)              | 0.0564 | 0.84(19)  | 0.623(1) | -0.00186(12) | 0.000018(3) | 0.0891(21)             |           |
| 1154.056.0769/07         11         1         A         1         1         A         2         2(13,12)         0.058/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0681/21         0.0001/21         0.0001/21         0.0001/21         0.0001/21         0.0001/21         0.0001/21         0.0001/21         0.0001/21         0.00001/21         0.0001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/21         0.00001/2                                                                                                                                                                                                                    | 1154.713917(12)                  | 12 | 1      | A2       | 12 | 0 | A1       | <sup>R</sup> O(12,0,A1) | 22.1(3)                 | 0.0591(2)              | 0.0573 | 0.87(12)  | 0.634(1) | -0.00135(11) | . ,         | 0.0661(9)              |           |
| 1155.079670(2)       13       0       E       13       1       A.2       (01.0.4)       A.34       0.066(2)       0.0564(1)       0.072(4)       0.022(1)        0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.00000(7)                                                                                                                                                                                                                                                                                                             | 1154.966470(9)                   | 11 | 1      | A1       | 11 | 0 | A2       | <sup>R</sup> O(11,0,A2) | 32.63(5)                | 0.0603(1)              | 0.0582 | 0.769(7)  | 0.646(1) | -0.00158(9)  | 0.000013(2) | 0.0843(6)              |           |
| 1155.1967(8)       0       1       A2       0       A       *Q:00.04;1       44.82[4]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0618[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0628[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0626[1]       0.0625[2]       0.0012[1]       0                                                                                                                                                                                                                                                                                           | 1155.070691(21)                  | 13 | 0      | Е        | 13 | 1 | Е        | PO(13.1.E)              | 10.78(3)                | 0.0606(3)              | 0.0564 | 0.634(30) | 0.623(1) |              |             | 0.0774(28)             |           |
| 1155.422427)       9       1       A1       9       0       A2       "Q[3,A22]       55.81(5)       0.0663       0.792(5)       0.6071(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0001(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7)       0.0000(7) <td>1155,199670(8)</td> <td>10</td> <td>1</td> <td>A2</td> <td>10</td> <td>0</td> <td>A1</td> <td><sup>R</sup>O(10.0.A1)</td> <td>44.83(4)</td> <td>0.0618(1)</td> <td>0.0592</td> <td>0.776(4)</td> <td>0.659(2)</td> <td>-0.00110(7)</td> <td>0.000016(1)</td> <td>0.0826(4)</td> <td></td> | 1155,199670(8)                   | 10 | 1      | A2       | 10 | 0 | A1       | <sup>R</sup> O(10.0.A1) | 44.83(4)                | 0.0618(1)              | 0.0592 | 0.776(4)  | 0.659(2) | -0.00110(7)  | 0.000016(1) | 0.0826(4)              |           |
| 1155.21847/7)       8       1       2.2       8       0       A.4       *(0,0,0,1)       0.648(5)       0.065(7)       0.0626(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.000007(7)       0.00007(7)       0.000007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.00007(7)       0.000007(7)       0.000007(7                                                                                                                                                                                                                                                                | 1155.422423(7)                   | 9  | 1      | A1       | 9  | 0 | A2       | <sup>R</sup> O(9.0.A2)  | 55.81(5)                | 0.0625(1)              | 0.0603 | 0.790(3)  | 0.672(3) | -0.00116(7)  | (-)         | 0.0833(3)              |           |
| 1155349481(2)       12       0       E       12       1       E       "Q12LED"       2125(4)       0.0061(2)       0.0573       0.0581(7)       0.0634(1)       0.0063(1)       0.00805(1)       0.00805(1)       0.00805(1)       0.00805(1)       0.00805(1)       0.00805(1)       0.00805(1)       0.0053(1)       0.0053(1)       0.0053(1)       0.0053(1)       0.0053(1)       0.0053(1)       0.0057(1)       0.0076(0)       0.00900(7)       0.0087(2)       0.00805(2)       0.0053(1)       0.0070       0.0387(2)       0.00806(1)       0.0070       0.0387(2)       0.0076(2)       0.00900(7)       0.0087(2)       0.0377(2)       0.0056(1)       0.0070       0.0387(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0076(2)       0.0060(7)       0.0487(2)       0.058(2)       0.0016(1)       0.0088(8)       0.041(2)       0.0552(2)       0.0016(4)       0.0083(4)       0.0016(1)       0.0083(3)       0.014(2)       0.0582(3)       0.0016(1)       0.0016(1)       0.0083(3)       0.014(3)       0.0222(1)       0.0016(1)       0.0033(3)       0.0164(1)       0.0255(3)       0.0016(1)       0.0033(3)       0.0175(3)       0.0016(1)       0.0033(3)       0.0175(3)       0.0016(1)       0.0033(3)                                                                                                                                                                                                                                                                                                 | 1155 521843(7)                   | 8  | 1      | A2       | 8  | 0 | A1       | $R_{0}(80 \text{ A1})$  | 64 88(5)                | 0.0650(1)              | 0.0614 | 0.822(3)  | 0.684(4) | -0.00267(7)  | 0.000018(1) | 0.0855(3)              |           |
| 1155/23731/7)         7         1         A1         7         0         2         2         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1155 594148(12)                  | 12 | 0      | E        | 12 | 1 | E        | PO(12.1E)               | 2125(4)                 | 0.0601(2)              | 0.0573 | 0.768(17) | 0.634(1) | -0.00133(10) | 01000010(1) | 0.0806(12)             |           |
| 1155       1155       11       A2       6       0       A1       *Q(6,A)       102.7(c)       0.0653(1)       0.0639       0.831(1)       0.705(6)       -0.0030(6)       0.0080(2)         1156.00485(17)       3       1       A2       4       0       A1       V(5,A)       0.0772(1)       0.066(1)       0.0670       0.837(1)       0.727(6)       -0.0030(6)       0.0000(7)       0.0887(2)         1156.00485(17)       1       1       1       3       1       0       2       V(3,0,A)       776(6)       0.0057(1)       0.0716       0.735(2)       0.0000(9)(1)       0.0887(2)         1156.2395(2)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       2       V(1,D)       38.81(1)       0.0702       0.032(2)       0.0706(0.0034(9)       0.00000(1)       0.088(2)       0.088(2)       0.014(1)       0.055(2)       -0.0014(7)       0.0014(1)       0.088(3)       0.032(1)       0.066(1)       0.055(2)       -0.0014(7)       0.0000(7)       0.083(3)       0.021(1)       0.073(1)       0.071(1)       0.071(1)       0.071(1)       0.071(1)       0.071(1)       0.071(1)       0.072(1) <t< td=""><td>1155 728731(7)</td><td>7</td><td>1</td><td>A1</td><td>7</td><td>0</td><td>A2</td><td><math>R_{0}(70A2)</math></td><td>89.9(5)</td><td>0.0649(1)</td><td>0.0626</td><td>0.824(2)</td><td>0.695(5)</td><td>-0.00203(5)</td><td>0.000016(1)</td><td>0.0851(2)</td><td></td></t<>                                                                                                                                 | 1155 728731(7)                   | 7  | 1      | A1       | 7  | 0 | A2       | $R_{0}(70A2)$           | 89.9(5)                 | 0.0649(1)              | 0.0626 | 0.824(2)  | 0.695(5) | -0.00203(5)  | 0.000016(1) | 0.0851(2)              |           |
| 1156.042437(13)         5         1         A.1         5         0         A.2         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1155.879355(7)                   | 6  | 1      | A2       | 6  | 0 | A1       | $R_{O}(60 \text{ A1})$  | 102 37(6)               | 0.0015(1)              | 0.0639 | 0.821(2)  | 0.705(6) | -0.00146(6)  | 0.000013(1) | 0.0001(2)              |           |
| 1156         156         157         167         16         167         0.06770         0.06770         0.06770         0.06770         0.0000571         0.0000711         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000771         0.0000711         0.0000771         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.0000711         0.00000711         0.0000711         0.0000711                                                                                                                                                                                                                                  | 1156.004835(13)                  | 5  | 1      | A1       | 5  | 0 | A2       | RO(50A2)                | 102.37(0)<br>107.72(10) | 0.0659(1)              | 0.0654 | 0.828(1)  | 0.715(6) | -0.00186(6)  | 0.000013(1) | 0.0841(3)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1156 108540(7)                   | 1  | 1      | Δ2       | 1  | 0 | Δ1       | $R_{O}(40  1)$          | 107.72(10)<br>107.76(7) | 0.0000(1)              | 0.0670 | 0.825(1)  | 0.713(0) | 0.00206(6)   | 0.000007(1) | 0.0872(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1150.108549(7)<br>1156.101029(7) | 2  | 1      | A1       | 2  | 0 | A1<br>A2 | $R_{O(2,0,A2)}$         | 107.70(7)               | 0.0000(1)              | 0.0070 | 0.833(1)  | 0.727(0) | -0.00200(0)  | 0.000000(1) | 0.0872(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1150.191026(7)                   | 2  | 1      | AI       | 2  | 0 | AZ       | Q(3,0,AZ)               | 97.04(8)<br>77.02(0)    | 0.0000(1)              | 0.0007 | 0.840(2)  | 0.740(6) | -0.00190(7)  | 0.000000(1) | 0.0870(2)              | 0.014(20) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1156.252680(8)                   | 2  | 1      | AZ       | 2  | 0 | AI       | Q(2,0,AT)               | 77.66(9)                | 0.0666(1)              | 0.0702 | 0.820(2)  | 0.755(6) | -0.00248(9)  | 0.000009(1) | 0.0869(8)              | 0.814(20) |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1156.293622(11)                  | 1  | 1      | AI       | 1  | 0 | A2       | PO(1,0,AZ)              | 49.68(7)                | 0.0671(1)              | 0.0716 | 0.758(2)  | 0.770(6) | -0.00354(9)  | 0.000014(1) | 0.0892(3)              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1156.424297(8)                   | 10 | 0      | E        | 10 | 1 | E        | <sup>•</sup> Q(10,1,E)  | 39.85(4)                | 0.0614(1)              | 0.0592 | 0.802(6)  | 0.659(2) | -0.00164(7)  |             | 0.0830(4)              |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1156.658/62(37)                  | 14 | l      | E        | 14 | 2 | E        | <sup>1</sup> Q(14,2,E)  | 8.40(4)                 | 0.0582(3)              | 0.0553 | 0.00.000  | 0.612(1) | 0.00100/0    |             | 0.0794(46)             |           |
| 11572273716(7)       7       0       E       1       1       E       "Q(8,1,E)       60.80(7)       0.0654(1)       0.0614       0.807(3)       0.6644(4)       -0.001(10)       0.0049(3)         1157272717(27)       7       0       E       7       1       E       "Q(7,1,E)       68.21(4)       0.0664(1)       0.0652(1)       0.0612(1)       0.00021(1)       0.00007(1)       0.00007(1)       0.00007(1)       0.00007(1)       0.0821(2)       0.883(4)         1155.09435(2)       5       0       E       5       1       E       "Q(1,E)       71.8(4)       0.0667(1)       0.0639       0.07(2)       0.0016(5)       0.000007(1)       0.0821(2)       0.0827(2)       0.075(6)       -0.00186(5)       0.00002(2)       0.0772(3)       0.0827(2)       0.0772(6)       -0.00186(5)       0.00013(1)       0.0874(2)       0.0874(2)       0.0874(2)       0.0874(2)       0.0002(2)       0.0772(4)       0.0440(1)       0.771(6)       -0.00186(5)       0.00013(1)       0.0874(2)       0.0874(2)       0.0672(4)       0.0404(1)       0.771(6)       -0.00236(7)       0.00022(1)       0.0874(2)       0.0672(4)       0.0404(1)       0.771(6)       0.00226(7)       0.00027(1)       0.0874(2)       0.0672(4)       0.0664(1)       0.771                                                                                                                                                                                                                                                                                                                                               | 1156.836955(8)                   | 9  | 0      | E        | 9  | 1 | E        | <sup>P</sup> Q(9,1,E)   | 50.63(4)                | 0.0623(1)              | 0.0603 | 0.804(3)  | 0.672(3) | -0.00168(6)  | 0.000007(1) | 0.0836(3)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1157.255809(11)                  | 8  | 0      | E        | 8  | 1 | E        | <sup>P</sup> Q(8,1,E)   | 60.80(7)                | 0.0632(1)              | 0.0614 | 0.807(3)  | 0.684(4) | -0.0016(10)  |             | 0.0849(3)              |           |
| $      155.75916(7)  7  0  E  7  1  E  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1157.272717(28)                  | 13 | 1      | E        | 13 | 2 | E        | <sup>P</sup> Q(13,2,E)  | 13.02(5)                | 0.0612(4)              | 0.0561 | 0.865(50) | 0.622(1) |              |             | 0.0783(36)             |           |
| 1157.885370(4)       12       1       E       12       2       E       12(12,2)       15.83(9)       0.059(2)       0.053(1)       0.031(1)       -0.00221(14)         1158.09945(2)       5       0       E       6       0       16(4)(1)       0.0657(1)       0.063(1)       0.72(1)       0.715(6)       -0.0018(5)       0.000007(1)       0.081(1)       0.082(2)         1158.97568(7)       4       0       E       4       1       E       17(1,1)       0.0663(1)       0.067(1)       0.055(2)       -0.0018(5)       0.00002(1)       0.082(2)         1159.16825(9)       10       I       E       10       1       E       17(2,1)       3.41(5)       0.0662(1)       0.0687(1)       0.0847(1)       0.740(7)       0.655(2)       -0.0023(6)       0.00001(1)       0.087(2)       0.848(1)       0.740(1)       0.740(6)       -0.0022(6)       0.00001(1)       0.087(2)       0.557(2)       0.0663(1)       0.057(1)       0.0612(1)       0.057(2)       0.0002(7)       0.0002(7)       0.0002(7)       0.0067(2)       0.0672(4)       0.657(5)       0.101(1)       0.557(2)       0.0677(1)       0.0002(1)       0.057(2)       0.057(4)       0.0002(7)       0.00027(1)       0.0657(2)       0.0007(2)                                                                                                                                                                                                                                                                                                                                                                                   | 1157.679116(7)                   | 7  | 0      | E        | 7  | 1 | Е        | $^{P}Q(7,1,E)$          | 68.21(4)                | 0.0646(1)              | 0.0626 | 0.815(2)  | 0.695(5) | -0.00171(5)  | 0.000010(1) | 0.0802(8)              | 0.883(24) |
| 1158.09455(8)       6       0       E       6       1       E $^{1}$ (6,1,E)       7.1.64(4)       0.0657(1)       0.0705(6)       -0.00196(5)       0.000008(1)       0.081(9)       0.837(2)         1158.04362(9)       5       0       E       5       0       E       5       0       0.00007(1)       0.0821(2)       0.837(3)         1158.94362(9)       1       E       P       Q(1,2,E)       34.05(5)       0.0063(1)       0.0657       0.830(1)       0.727(6)       -0.00248(9)       0.000022(2)       0.072(4)         1159.20150(8)       3       0       E       3       1       E $^{1}$ (2,1,E)       4.165(2)       0.0662(1)       0.0657       0.840(1)       0.770(6)       -0.00236(7)       0.00024(7)       0.0587(2)         1159.543193(2)       14       2       Z       1       1       E $^{10}$ (1,4,3,1)       7.37(3)       0.0572(4)       0.0567(3)       0.00024(1)       0.770(6)       -0.00236(7)       0.00024(1)       0.0937(2)       0.656(3)         1159.540103(2)       1       2       A2       17(1,3,4,1)       11.23(3)       0.0604(1)       0.0575       0.924(1)       0.77(4)       -0.0024(6)       0.0001(1)       0.0577(1)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1157.885570(41)                  | 12 | 1      | E        | 12 | 2 | E        | <sup>P</sup> Q(12,2,E)  | 18.58(3)                | 0.0596(2)              | 0.0569 | 0.720(14) | 0.631(1) | -0.00221(14) |             |                        |           |
| 1158.504362(9)       5       0       E       5       1       E       PQ(1,E)       71.38(3)       0.0690(1)       0.0654(1)       0.071(7)       0.651(2)       -0.00186(5)       0.00007(1)       0.0821(2)       0.0826(9)       0.882(24)         1158.977568(7)       4       0       E       4       PQ(1,LE)       34.05(5)       0.0663(1)       0.0670       0.839(1)       0.727(6)       -0.00248(9)       0.00002(2)       0.079(2)       0.882(24)         1159.01508(8)       3       0       E       3       1       E       PQ(1,LE)       54.72(3)       0.0662(1)       0.0687       0.840(1)       0.75(6)       -0.0023(7)       0.0892(2)       0.0672(4)         1159.540170(8)       1       0       E       7       1       7.77(7)       0.651(2)       -0.0037(13)       0.0002(1)       0.0672(4)       0.0664(1)       0.0579       0.827(4)       0.656(3)       -0.0023(7)       0.0002(1)       0.0937(22)       0.656(53)         1159.540170(7)       8       1       E       8       1       12       8       8.31       0.0564(1)       0.0571       0.827(4)       0.601(1)       0.0002(1)       0.0937(13)       0.0002(1)       0.0852(1)       0.0002(1)       0.0852(1)                                                                                                                                                                                                                                                                                                                                                                                                         | 1158.099455(8)                   | 6  | 0      | E        | 6  | 1 | E        | <sup>P</sup> Q(6,1,E)   | 71.64(4)                | 0.0657(1)              | 0.0639 | 0.807(2)  | 0.705(6) | -0.00196(5)  | 0.000008(1) | 0.0810(9)              | 0.898(25) |
| 1158.77568(7)       4       0       E       4       1       E $^0Q(1,E)$ 64.98(3)       0.0667(1)       0.0670       0.839(1)       0.727(6)       -0.0013(5)       0.00022(2)       0.0702(4)         1159.1682(52)       10       E       3       1       E $^0Q(1,2,E)$ 3.405(5)       0.0662(1)       0.0687       0.840(1)       0.757(6)       -0.00236(6)       0.00002(2)       0.0672(4)         1159.1682(54)       14       5       1       E $^0Q(1,4,E)$ 5.472(3)       0.0662(1)       0.0687       0.840(1)       0.757(6)       -0.00236(6)       0.00002(2)       0.0672(4)         1159.513193(2)       14       5       1       1       E $^0Q(1,4,E)$ 7.37(3)       0.0572(4)       0.0697(5)       0.666(3)       -0.00236(7)       0.00022(1)       0.097(2)       0.656(3)         1159.72824(3)       9       1       E       9       1       1.49(1)       1.133(1)       1.13(3)       0.0604(1)       0.0697(5)       0.666(3)       -0.0024(6)       0.0001(1)       0.085(2)       0.67(1)       1.0635(2)       0.666(3)       -0.0024(6)       0.0001(1)       0.085(2)       0.67(1)       1.0635(2)       0.666(3)       -0.0025(6)       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1158.504362(9)                   | 5  | 0      | Е        | 5  | 1 | E        | <sup>P</sup> Q(5,1,E)   | 71.38(3)                | 0.0690(1)              | 0.0654 | 0.792(1)  | 0.715(6) | -0.00186(5)  | 0.000007(1) | 0.0821(12)             | 0.877(33) |
| 1159.116825(9)       10       1       E       10       2       E <sup>P</sup> Q(1,2,E)       34.05(5)       0.0667(1)       0.087       0.740(6)       -0.00224(6)       0.000021(2)       0.0792(4)         1159.201560(8)       2       0       E       2       1       E <sup>P</sup> Q(1,1,2,1)       34.05(5)       0.0662(1)       0.0672(4)       0.840(1)       0.775(6)       -0.00226(6)       0.000011()       0.0879(2)         1159.513193(3)       14       2       A2       14       3       A1 <sup>P</sup> Q(1,1,2)       25.71(2)       0.0664(1)       0.0792       0.832(1)       0.770(6)       -0.00236(7)       0.00002(1)       0.0876(1)       0.0672(45)         1159.40105(2)       1       1       E       PQ(1,2,1,2)       4149(4)       0.0604(1)       0.0555       0.924(1)       0.661(1)       0.00026(7)       0.00026(7)       0.00001(1)       0.087(13)       0.670(3)         1159.40303(2)       1       E       8       2       E <sup>P</sup> Q(1,2,3,A2)       1619(2)       0.0611(1)       0.0667       0.82(2)       0.677(4)       -0.0024(6)       0.00015(1)       0.0852(12)       1.0833(2)       1.0832(2)       0.671(4)       -0.0025(6)       0.00015(1)       0.0852(12)       1.0636(3)                                                                                                                                                                                                                                                                                                                                                                       | 1158.877568(7)                   | 4  | 0      | E        | 4  | 1 | E        | <sup>P</sup> Q(4,1,E)   | 64.98(3)                | 0.0663(1)              | 0.0670 | 0.839(1)  | 0.727(6) | -0.00183(5)  |             | 0.0826(9)              | 0.882(24) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1159.116825(9)                   | 10 | 1      | E        | 10 | 2 | E        | <sup>P</sup> Q(10,2,E)  | 34.05(5)                | 0.0612(1)              | 0.0587 | 0.770(7)  | 0.655(2) | -0.00248(9)  | 0.000022(2) | 0.0792(4)              |           |
| 1159.460170(8)       2       0       E       2       1       E       PQ(1,1E)       41.65(2)       0.068(1)       0.7702       0.849(1)       0.755(6)       -0.0023(7)        0.0683(2)         1159.451105(8)       1       0       E       1       1       E       PQ(1,1E)       23.7(3)       0.0572(4)       0.067(6)       0.610(1)        0.00026(7)       0.00002(1)       0.037(23)       0.0576(3)       0.677(3)       0.00026(7)       0.00002(1)       0.0877(13)       0.00026(1)       0.0877(13)       0.00002(1)       0.087(23)       0.657(3)         1159.450103(2)       13       A       PQ(1,2,3,4)       11.49(4)       0.0604(1)       0.0597       0.827(4)       0.666(3)       -0.00247(7)       0.00001(1)       0.0840(2)         1160.368984(13)       12       2       A       1       2       A       PQ(1,2,3,4)       1619(2)       0.061(1)       0.0661       0.813(2)       0.866(5)       -0.00244(6)       0.00014(1)       0.849(2)       0.857(2)       0.858(2)       1649(3)       0.862(1)       0.666(3)       -0.0024(6)       0.00014(1)       0.849(2)       0.813(3)       0.767(4)       -0.00244(6)       0.00014(1)       0.849(2)       0.857(2)       0.858(2)                                                                                                                                                                                                                                                                                                                                                                                                  | 1159.201560(8)                   | 3  | 0      | E        | 3  | 1 | E        | <sup>P</sup> Q(3,1,E)   | 54.72(3)                | 0.0662(1)              | 0.0687 | 0.840(1)  | 0.740(6) | -0.00226(6)  | 0.000013(1) | 0.0879(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1159.460170(8)                   | 2  | 0      | Е        | 2  | 1 | E        | PQ(2,1,E)               | 41.65(2)                | 0.0664(1)              | 0.0702 | 0.840(1)  | 0.755(6) | -0.00236(7)  |             | 0.0883(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1159.513193(34)                  | 14 | 2      | A2       | 14 | 3 | A1       | PO(14,3,A1)             | 7.37(3)                 | 0.0572(4)              | 0.0549 | 0.697(56) | 0.610(1) |              |             | 0.0672(45)             |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1159.640105(8)                   | 1  | 0      | Е        | 1  | 1 | Е        | <sup>P</sup> O(1.1.E)   | 25.71(2)                | 0.0668(1)              | 0.0716 | 0.832(1)  | 0.770(6) | -0.00377(13) | 0.000026(1) | 0.0937(22)             | 0.656(53) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1159.728243(8)                   | 9  | 1      | Е        | 9  | 2 | Е        | <sup>P</sup> O(9.2.E)   | 41.49(4)                | 0.0604(1)              | 0.0597 | 0.827(4)  | 0.666(3) | -0.00260(7)  | 0.000021(1) | 0.0876(13)             | 0.670(34) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1159.810303(21)                  | 13 | 2      | A2       | 13 | 3 | A1       | PO(13.3.A1)             | 11.23(3)                | 0.0604(3)              | 0.0555 | 0.924(31) | 0.619(1) |              |             |                        |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1160.326721(7)                   | 8  | 1      | Е        | 8  | 2 | Е        | PO(8.2.E)               | 49.84(4)                | 0.0618(1)              | 0.0607 | 0.805(2)  | 0.677(4) | -0.00244(6)  | 0.000014(1) | 0.0840(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1160 638984(13)                  | 12 | 2      |          | 12 | 3 | A2       | PO(12.3 A2)             | 1619(2)                 | 0.0611(1)              | 0.0562 | (-)       | 0.627(1) |              |             | 0.0852(12)             |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1160 901607(7)                   | 7  | 1      | F        | 7  | 2 | F        | $P_{O}(72F)$            | 56 15(3)                | 0.0627(1)              | 0.0618 | 0.813(2)  | 0.686(5) | -0.00259(6)  | 0.000015(1) | 0.0839(2)              |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1160.958662(14)                  | 12 | 2      | A2       | 12 | 2 | A1       | $P_{O}(123 \text{ A1})$ | 1619(2)                 | 0.0627(1)              | 0.0562 | 0.013(2)  | 0.627(1) | 0.00233(0)   | 0.000015(1) | 0.0055(2)              |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1161 440596(8)                   | 6  | 1      | F        | 6  | 2 | F        | $P_{O}(6.2 \text{ F})$  | 59.47(3)                | 0.0640(1)              | 0.0631 | 0.818(2)  | 0.696(6) | -0.00153(6)  | 0.000018(1) | 0.0052(12)             |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1161 685867(0)                   | 10 | 1      | E        | 10 | 5 | E        | $P_{O}(10.5 \text{ F})$ | 22 04(3)                | 0.0040(1)              | 0.0559 | 0.766(0)  | 0.030(0) | -0.00133(0)  | 0.000013(1) | 0.0838(2)<br>0.0871(8) |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1161.083807(9)                   | 5  | 1      | E        | 5  | 2 | E        | $P_{O}(5,2,E)$          | 58.61(3)                | 0.0017(2)<br>0.0645(1) | 0.0555 | 0.700(9)  | 0.028(1) | -0.00299(13) | 0.000041(3) | 0.0871(8)              | 0.007(22) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1162 220712(0)                   | 10 | 1<br>2 | L<br>A 1 | 10 | 2 | 10       | $P_{O}(10.2, A2)$       | 30.01(2)                | 0.0043(1)              | 0.0040 | 0.833(1)  | 0.707(0) | -0.00229(0)  | 0.000014(1) | 0.0811(8)              | 0.907(23) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1102.259715(9)                   | 10 | 1      | RI<br>F  | 10 | 2 | AZ<br>F  | Q(10, 5, AZ)            | 29.32(3)                | 0.0028(1)              | 0.0578 | 0.767(4)  | 0.040(1) | -0.00217(7)  | 0.000010(1) | 0.0828(4)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1162.360469(7)                   | 4  | 1      | E        | 4  | 2 | E<br>A 1 | $P_{Q(4,2,E)}$          | 53.94(3)                | 0.0649(1)              | 0.0662 | 0.860(1)  | 0.721(6) | -0.00289(6)  | 0.000010(1) | 0.0869(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1162.406376(8)                   | 10 | 2      | A2       | 10 | 3 | AI       | <sup>1</sup> Q(10,3,A1) | 29.52(3)                | 0.0628(1)              | 0.0578 | 0.787(4)  | 0.646(1) | -0.00217(7)  | 0.000040(4) | 0.0839(2)              |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1162./18028(7)                   | 3  | I      | E        | 3  | 2 | E        | <sup>•</sup> Q(3,2,E)   | 43.17(2)                | 0.0660(1)              | 0.0678 | 0.857(1)  | 0.739(6) | -0.00155(7)  | 0.000013(1) | 0.0878(2)              |           |
| 1162.997143(10)       9       2       A2       9       3       A1 <sup>2</sup> Q(9,3,A1)       36.84(5)       0.0639(1)       0.0586       0.778(2)       0.655(2)       -0.00124(4)       0.000014(1)       0.0878(2)         1163.110746(7)       9       2       A1       9       3       A2 <sup>p</sup> Q(9,3,A2)       35.93(5)       0.0639(1)       0.0586       0.778(2)       0.655(2)       -0.00124(4)       0.000014(1)       0.0878(2)         1163.110746(7)       9       2       A1       1       0       A2 <sup>p</sup> Q(9,3,A2)       0.56(0)       0.0768(15)         1163.714357(8)       8       2       A1       8       3       A2 <sup>p</sup> Q(8,3,A1)       42.83(3)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.714357(8)       8       2       A1       8       3       A1 <sup>p</sup> Q(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.714357(8)       8       2       A2       8       3       A1 <sup>p</sup> Q(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3) <td>1162.994624(9)</td> <td>2</td> <td>1</td> <td>E</td> <td>2</td> <td>2</td> <td>E</td> <td><sup>1</sup>Q(2,2,E)</td> <td>26.68(2)</td> <td>0.0672(1)</td> <td>0.0692</td> <td>0.871(2)</td> <td>0.757(7)</td> <td></td> <td>0.000020(1)</td> <td>0.0909(4)</td> <td></td>                                                                                                                  | 1162.994624(9)                   | 2  | 1      | E        | 2  | 2 | E        | <sup>1</sup> Q(2,2,E)   | 26.68(2)                | 0.0672(1)              | 0.0692 | 0.871(2)  | 0.757(7) |              | 0.000020(1) | 0.0909(4)              |           |
| 1163.110746(7)       9       2       A1       9       3       A2 <sup>P</sup> Q(9,3,A2)       35.93(5)       0.0639(1)       0.0586       0.778(2)       0.655(2)       -0.00124(4)       0.000014(1)       0.0878(2)         1163.474647(54)       2       1       A1       1       0       A2 <sup>P</sup> R(1,0,A2)       0.56(1)       0.0768(15)       -       -       -       0.000124(4)       0.000014(1)       0.0878(2)         1163.714357(8)       8       2       A1       8       3       A2 <sup>P</sup> Q(8,3,A2)       43.63(3)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.714357(8)       8       2       A2       8       3       A1 <sup>P</sup> Q(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.713919(7)       1       1       A2       0       0       A1 <sup>P</sup> R(0,0,A1)       35.40(2)       0.0646(1)       0.786(2)       -0.00096(8)       0.000007(1)       0.0913(14)       0.749(33)         1164.049765(15)       12       3       E       12       4       E <sup>P</sup> Q(12,4,E)                                                                                                                                                                                                                                                                                                                                                                                                       | 1162.997143(10)                  | 9  | 2      | A2       | 9  | 3 | A1       | <sup>P</sup> Q(9,3,A1)  | 36.84(5)                | 0.0639(1)              | 0.0586 | 0.778(2)  | 0.655(2) | -0.00124(4)  | 0.000014(1) | 0.0878(2)              |           |
| 1163.474647(54)       2       1       A1       1       0       A2 <sup>K</sup> R(1,0,A2)       0.56(0)       0.0768(15)         1163.714357(8)       8       2       A1       8       3       A2 <sup>P</sup> Q(8,3,A2)       43.63(3)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.787924(8)       8       2       A2       8       3       A1 <sup>P</sup> Q(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.913919(7)       1       1       A2       0       0       A1 <sup>R</sup> R(0,0,A1)       35.40(2)       0.0646(1)       0.786(2)       -0.00096(8)       0.00007(1)       0.0913(14)       0.749(33)         1164.049765(15)       12       3       E       12       4       E <sup>P</sup> Q(12,4,E)       14.48(4)       0.0559(2)       0.0553       0.621(1)       -0.00255(16)       0.0768(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1163.110746(7)                   | 9  | 2      | A1       | 9  | 3 | A2       | <sup>•</sup> Q(9,3,A2)  | 35.93(5)                | 0.0639(1)              | 0.0586 | 0.778(2)  | 0.655(2) | -0.00124(4)  | 0.000014(1) | 0.0878(2)              |           |
| 1163.714357(8)       8       2       A1       8       3       A2       PQ(8,3,A2)       43.63(3)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.787924(8)       8       2       A2       8       3       A1       PQ(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.913919(7)       1       1       A2       0       0       A1       R(0,0,A1)       35.40(2)       0.0646(1)       0.786(2)       -0.6009(8)       0.00007(1)       0.0913(14)       0.749(33)         1164.049765(15)       12       3       E       12       4       E       PQ(12,4,E)       14.48(4)       0.0559(2)       0.0553       0.621(1)       -0.00255(16)       0.0768(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1163.474647(54)                  | 2  | 1      | A1       | 1  | 0 | A2       | <sup>K</sup> R(1,0,A2)  | 0.56(0)                 | 0.0768(15)             |        |           |          |              |             |                        |           |
| 1163.787924(8)       8       2       A2       8       3       A1       PQ(8,3,A1)       42.83(4)       0.0645(1)       0.0595       0.826(2)       0.663(3)       -0.00212(4)       0.000026(1)       0.0869(1)         1163.913919(7)       1       1       A2       0       0       A1       R(0,0,A1)       35.40(2)       0.0646(1)       0.786(2)       -0.00212(4)       0.000026(1)       0.0913(14)       0.749(33)         1164.049765(15)       12       3       E       12       4       E       PQ(12,4,E)       14.48(4)       0.0559(2)       0.0553       0.621(1)       -0.00255(16)       0.0768(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1163.714357(8)                   | 8  | 2      | A1       | 8  | 3 | A2       | <sup>P</sup> Q(8,3,A2)  | 43.63(3)                | 0.0645(1)              | 0.0595 | 0.826(2)  | 0.663(3) | -0.00212(4)  | 0.000026(1) | 0.0869(1)              |           |
| 1163.913919(7)       1       1       A2       0       0       A1 <sup>R</sup> R(0,0,A1)       35.40(2)       0.0646(1)       0.786(2)       -0.00096(8)       0.00007(1)       0.0913(14)       0.749(33)         1164.049765(15)       12       3       E       12       4       E <sup>P</sup> Q(12,4,E)       14.48(4)       0.0559(2)       0.0553       0.621(1)       -0.00255(16)       0.0768(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1163.787924(8)                   | 8  | 2      | A2       | 8  | 3 | A1       | <sup>P</sup> Q(8,3,A1)  | 42.83(4)                | 0.0645(1)              | 0.0595 | 0.826(2)  | 0.663(3) | -0.00212(4)  | 0.000026(1) | 0.0869(1)              |           |
| 1164.049765(15) 12 3 E 12 4 E <sup>P</sup> Q(12,4,E) 14.48(4) 0.0559(2) 0.0553 0.621(1) -0.00255(16) 0.0768(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1163.913919(7)                   | 1  | 1      | A2       | 0  | 0 | A1       | <sup>R</sup> R(0,0,A1)  | 35.40(2)                | 0.0646(1)              |        | 0.786(2)  |          | -0.00096(8)  | 0.000007(1) | 0.0913(14)             | 0.749(33) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1164.049765(15)                  | 12 | 3      | Е        | 12 | 4 | Е        | <sup>P</sup> Q(12,4,E)  | 14.48(4)                | 0.0559(2)              | 0.0553 |           | 0.621(1) | -0.00255(16) |             | 0.0768(16)             |           |

| iable o (continued ) |
|----------------------|
|----------------------|

| Position, cm <sup>-1</sup> | J  | K′ | S′ | J″ | <b>K</b> ″ | <b>S</b> ″ | Assignment             | Int*10 <sup>25a</sup> | $b_L^0(N_2)$ expt, <sup>b</sup> | $b_L^0(N_2)$ calc. <sup>b</sup> | $n_1 \text{ expt}$ | $n_1$ calc. | $\delta^0(N_2)$ <b>expt</b> <sup>b</sup> | $\delta'(N_2)$ <b>expt</b> <sup>c</sup> | $b_L^0(self)$ <b>expt</b> <sup>b</sup> | <i>n</i> <sub>2</sub> <b>expt</b> |
|----------------------------|----|----|----|----|------------|------------|------------------------|-----------------------|---------------------------------|---------------------------------|--------------------|-------------|------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|
| 1164.381569(5)             | 7  | 2  | A2 | 7  | 3          | A1         | <sup>P</sup> Q(7,3,A1) | 48.71(4)              | 0.0672(1)                       | 0.0607                          | 0.828(2)           | 0.672(4)    | -0.00239(3)                              | 0.000024(2)                             | 0.0876(4)                              | 0.750(13)                         |
| 1164.426483(5)             | 7  | 2  | A1 | 7  | 3          | A2         | <sup>P</sup> Q(7,3,A2) | 47.97(5)              | 0.0672(1)                       | 0.0607                          | 0.828(2)           | 0.672(4)    | -0.00239(3)                              | 0.000024(2)                             | 0.0876(4)                              | . ,                               |
| 1164.934109(10)            | 11 | 3  | Е  | 11 | 4          | Е          | <sup>P</sup> Q(11,4,E) | 19.32(4)              | 0.0553(2)                       | 0.0559                          | 0.902(15)          | 0.628(1)    |                                          |                                         | 0.0955(33)                             | 0.41(37)                          |
| 1164.989362(4)             | 6  | 2  | A1 | 6  | 3          | A2         | PQ(6,3,A2)             | 50.48(1)              | 0.0696(1)                       | 0.0621                          | 0.843(2)           | 0.685(5)    | -0.00232(3)                              | 0.000025(2)                             | 0.0906(1)                              | 0.715(1)                          |
| 1165.014728(4)             | 6  | 2  | A2 | 6  | 3          | A1         | <sup>P</sup> Q(6,3,A1) | 50.48(1)              | 0.0696(1)                       | 0.0621                          | 0.843(2)           | 0.685(5)    | -0.00232(3)                              | 0.000025(2)                             | 0.0906(1)                              | 0.715(1)                          |
| 1165.528810(6)             | 5  | 2  | A2 | 5  | 3          | A1         | <sup>P</sup> Q(5,3,A1) | 48.03(1)              | 0.0641(0)                       | 0.0639                          | 0.845(1)           | 0.703(6)    | -0.00205(4)                              | 0.000015(2)                             | 0.0896(2)                              |                                   |
| 1165.541406(6)             | 5  | 2  | A1 | 5  | 3          | A2         | <sup>P</sup> Q(5,3,A2) | 48.03(1)              | 0.0641(0)                       | 0.0639                          | 0.845(1)           | 0.703(6)    | -0.00205(4)                              | 0.000015(2)                             | 0.0896(2)                              |                                   |
| 1165.788102(8)             | 10 | 3  | Е  | 10 | 4          | E          | <sup>P</sup> Q(10,4,E) | 25.47(4)              | 0.0570(1)                       | 0.0566                          | 0.737(7)           | 0.635(1)    | -0.00289(11)                             | 0.000026(2)                             | 0.0788(5)                              |                                   |
| 1165.991512(12)            | 4  | 2  | A1 | 4  | 3          | A2         | <sup>P</sup> Q(4,3,A2) | 40.25(1)              | 0.0667(0)                       | 0.0660                          | 0.853(0)           | 0.728(6)    | -0.00141(4)                              | 0.000010(2)                             | 0.0891(2)                              |                                   |
| 1165.996906(12)            | 4  | 2  | A2 | 4  | 3          | A1         | <sup>P</sup> Q(4,3,A1) | 40.25(1)              | 0.0667(0)                       | 0.0660                          | 0.853(0)           | 0.728(6)    | -0.00141(4)                              | 0.000010(2)                             | 0.0891(2)                              |                                   |
| 1166.370334(12)            | 3  | 2  | A2 | 3  | 3          | A1         | <sup>P</sup> Q(3,3,A1) | 25.32(1)              | 0.0703(1)                       | 0.0678                          | 0.864(1)           | 0.751(7)    |                                          | 0.000005(2)                             | 0.0927(2)                              |                                   |
| 1166.508093(33)            | 13 | 4  | Е  | 13 | 5          | E          | <sup>P</sup> Q(13,5,E) | 8.56(6)               | 0.0536(3)                       | 0.0539                          | . ,                | 0.609(1)    |                                          | . ,                                     | 0.0711(36)                             |                                   |
| 1166.602608(7)             | 9  | 3  | Е  | 9  | 4          | Е          | PQ(9,4,E)              | 30.78(4)              | 0.0566(1)                       | 0.0575                          | 0.796(5)           | 0.642(2)    | -0.00242(9)                              | 0.000026(2)                             | 0.0824(4)                              |                                   |
| 1167.368139(6)             | 8  | 3  | Е  | 8  | 4          | Е          | PQ(8,4,E)              | 36.36(3)              | 0.0586(1)                       | 0.0586                          | 0.799(3)           | 0.652(3)    | -0.00315(7)                              | 0.000012(1)                             | 0.0820(2)                              |                                   |
| 1167.522215(12)            | 12 | 4  | Е  | 12 | 5          | Е          | PO(12,5,E)             | 12.37(2)              | 0.0535(2)                       | 0.0544                          | 0.695(17)          | 0.614(1)    | -0.00321(16)                             |                                         | . ,                                    |                                   |
| 1168.075586(6)             | 7  | 3  | Е  | 7  | 4          | Е          | <sup>P</sup> O(7,4,E)  | 39.93(3)              | 0.0613(1)                       | 0.0602                          | 0.796(3)           | 0.667(4)    | -0.00246(7)                              | 0.000018(1)                             |                                        |                                   |
| 1168.270282(5)             | 2  | 2  | Е  | 1  | 1          | Е          | $^{R}R(1.1.E)$         | 51.87(2)              | 0.0654(1)                       | 0.0684                          | 0.844(1)           | 0.757(6)    | -0.00139(5)                              |                                         | 0.0881(0)                              |                                   |
| 1168.500905(9)             | 11 | 4  | Е  | 11 | 5          | Е          | <sup>P</sup> O(11.5.E) | 16.89(2)              | 0.0549(1)                       | 0.0550                          | 0.709(11)          | 0.620(1)    | -0.00322(13)                             | 0.000021(3)                             |                                        |                                   |
| 1168.715933(5)             | 6  | 3  | Е  | 6  | 4          | Е          | <sup>P</sup> O(6.4.E)  | 39.82(2)              | 0.0639(1)                       | 0.0624                          | 0.828(2)           | 0.692(6)    | -0.00242(7)                              |                                         |                                        |                                   |
| 1168.909810(22)            | 14 | 5  | A1 | 14 | 6          | A2         | PO(14,6,A2)            | 9.98(2)               | 0.0517(2)                       | 0.0528                          | 0.512(28)          | 0.601(2)    | -0.00303(19)                             |                                         | 0.0688(30)                             |                                   |
| 1169.280994(5)             | 5  | 3  | Е  | 5  | 4          | Е          | PO(5.4.E)              | 34.79(2)              | 0.0671(1)                       | 0.0648                          | 0.849(2)           | 0.722(6)    | -0.00152(8)                              |                                         | 0.0880(2)                              |                                   |
| 1169.435777(7)             | 10 | 4  | Е  | 10 | 5          | Е          | <sup>P</sup> O(10.5.E) | 21.72(3)              | 0.0556(1)                       | 0.0559                          | 0.733(8)           | 0.628(1)    | -0.00389(11)                             |                                         |                                        |                                   |
| 1169,763499(6)             | 4  | 3  | Е  | 4  | 4          | Е          | PO(4.4.E)              | 22.23(2)              | 0.0700(1)                       | 0.0668                          | 0.861(2)           | 0.747(7)    | -0.00187(11)                             |                                         | 0.0931(2)                              |                                   |
| 1170.060167(13)            | 13 | 5  | A2 | 13 | 6          | A1         | PO(13.6.A1)            | 14.88(2)              | 0.0514(2)                       | 0.0532                          | 0.686(16)          | 0.605(1)    | -0.00345(13)                             |                                         |                                        |                                   |
| 1170 318393(6)             | 9  | 4  | E  | 9  | 5          | E          | PO(95E)                | 2623(2)               | 0.0566(1)                       | 0.0572                          | 0.772(5)           | 0.639(1)    | -0.00334(8)                              | 0.000014(2)                             |                                        |                                   |
| 1171 140276(6)             | 8  | 4  | E  | 8  | 5          | E          | PO(85E)                | 29.90(4)              | 0.0593(1)                       | 0.0590                          | 0.774(5)           | 0.659(3)    | -0.00279(12)                             | 0.000020(2)                             | 0.0820(3)                              |                                   |
| 1171.170415(11)            | 12 | 5  | A1 | 12 | 6          | A2         | PO(12.6.A2)            | 21.32(5)              | 0.0512(2)                       | 0.0539                          | 0.754(16)          | 0.611(1)    | -0.00337(14)                             |                                         | 0.0721(10)                             |                                   |
| 1171.352383(5)             | 2  | 1  | A1 | 1  | 0          | A2         | $^{R}R(1.0.A2)$        | 52.75(2)              | 0.0659(0)                       | 0.0709                          | 0.843(1)           | 0.763(6)    | -0.00072(5)                              | 0.000004(1)                             | 0.0903(1)                              |                                   |
| 1171.893414(6)             | 7  | 4  | E  | 7  | 5          | E          | PO(7.5.E)              | 30.81(2)              | 0.0614(1)                       | 0.0614                          | 0.822(3)           | 0.687(5)    | -0.00197(8)                              | 0.000012(1)                             | 0.0847(2)                              |                                   |
| 1172.232987(7)             | 11 | 5  | A1 | 11 | 6          | A2         | PO(11.6.A2)            | 28.2(3)               | 0.0524(1)                       | 0.0549                          | 0.720(7)           | 0.619(1)    | -0.00364(7)                              | 0.000020(2)                             |                                        |                                   |
| 1172.570194(6)             | 6  | 4  | E  | 6  | 5          | E          | PO(6.5.E)              | 27.99(5)              | 0.0655(2)                       | 0.0640                          | 0.858(7)           | 0.718(6)    | -0.00196(15)                             | 0.000020(2)                             | 0.0870(3)                              |                                   |
| 1172.601008(5)             | 3  | 3  | E  | 2  | 2          | Ē          | $^{R}R(2,2,E)$         | 77.51(4)              | 0.0653(1)                       | 0.0663                          | 0.851(1)           | 0.744(6)    | -0.00111(6)                              | 0.000004(2)                             | 0.0874(1)                              |                                   |
| 1173.163727(6)             | 5  | 4  | E  | 5  | 5          | Ē          | PO(5.5.E)              | 18.56(3)              | 0.0695(2)                       | 0.0657                          | 0.854(3)           | 0.742(7)    | (-)                                      |                                         | 0.0907(3)                              |                                   |
| 1173.240002(6)             | 10 | 5  | A1 | 10 | 6          | A2         | PO(10.6.A2)            | 35.79(4)              | 0.0544(1)                       | 0.0563                          | 0.750(5)           | 0.633(1)    | -0.00318(7)                              | 0.000016(1)                             | 0.0768(3)                              |                                   |
| 1173.771460(25)            | 13 | 6  | Е  | 13 | 7          | Е          | <sup>P</sup> O(13.7.E) | 6.35(2)               | 0.0500(3)                       | 0.0532                          | 0.647(37)          | 0.605(1)    | -0.00477(31)                             | ,                                       | 0.0601(32)                             |                                   |
| 1174.183837(6)             | 9  | 5  | A1 | 9  | 6          | A2         | PO(9.6.A2)             | 42.51(3)              | 0.0570(1)                       | 0.0584                          | 0.754(4)           | 0.655(2)    | -0.00303(6)                              | 0.000014(1)                             |                                        |                                   |
| 1174.973264(42)            | 12 | 6  | Е  | 12 | 7          | Е          | <sup>P</sup> O(12.7.E) | 8.89(3)               | 0.0505(4)                       | 0.0543                          | 0.587(35)          | 0.614(1)    | -0.00560(45)                             | 0.000068(8)                             | 0.0594(32)                             |                                   |
| 1174,978732(18)            | 2  | 0  | Е  | 1  | 1          | Е          | ${}^{P}R(1.1.E)$       | 7.98(2)               | 0.0671(5)                       | 0.0710                          | 0.843(7)           | 0.764(6)    |                                          |                                         | 0.0952(9)                              |                                   |
| 1175,743244(6)             | 3  | 2  | Е  | 2  | 1          | Е          | $^{R}R(2.1.E)$         | 57.05(2)              | 0.0634(1)                       | 0.0679                          | 0.836(1)           | 0.743(6)    | -0.00086(5)                              | 0.000009(2)                             | 0.0835(8)                              | 0.784(23)                         |
| 1175.852436(6)             | 7  | 5  | A1 | 7  | 6          | A2         | PO(7.6.A2)             | 42.70(3)              | 0.0638(1)                       | 0.0633                          | 0.817(3)           | 0.712(6)    | -0.00102(6)                              | (_)                                     | 0.0852(2)                              |                                   |
| 1176.115511(13)            | 11 | 6  | E  | 11 | 7          | E          | PO(11.7.E)             | 11.51(2)              | 0.0514(2)                       | 0.0559                          | 0.744(17)          | 0.629(1)    | -0.00429(16)                             |                                         | 0.0748(16)                             |                                   |
| 1176.563597(6)             | 6  | 5  | A1 | 6  | 6          | A2         | PO(6.6.A2)             | 28.76(2)              | 0.0666(1)                       | 0.0647                          | 0.858(3)           | 0.735(7)    |                                          |                                         | 0.0893(3)                              |                                   |
| 1176.974032(5)             | 4  | 4  | A1 | 3  | 3          | A2         | $^{R}R(3.3.A2)$        | 186.38(3)             | 0.0630(0)                       | 0.0647                          | 0.822(1)           | 0.734(6)    | -0.00108(3)                              | 0.000004(2)                             | 0.0814(4)                              | 0.801(11)                         |
| 1177.191505(10)            | 10 | 6  | E  | 10 | 7          | E          | PO(10.7.E)             | 14.55(2)              | 0.0556(2)                       | 0.0580                          | 0.692(12)          | 0.650(2)    | -0.00307(14)                             |                                         | 0.0768(10)                             |                                   |
| 1178,194155(9)             | 9  | 6  | E  | 9  | 7          | E          | PO(9.7.E)              | 16.24(2)              | 0.0598(2)                       | 0.0603                          | 0.742(9)           | 0.677(3)    | -0.00225(13)                             |                                         | 0.0798(7)                              |                                   |
| 1178.629294(6)             | 3  | 1  | A2 | 2  | 0          | A1         | $^{R}R(2.0.A1)$        | 67.23(2)              | 0.0667(0)                       | 0.0695                          | 0.845(1)           | 0.748(6)    | -0.00159(4)                              | 0.000010(2)                             | 0.0889(2)                              |                                   |
| 1178.921575(23)            | 12 | 7  | E  | 12 | 8          | E          | PO(12.8.E)             | 7.19(2)               | 0.0498(3)                       | 0.0556                          |                    | 0.624(1)    | -0.00413(22)                             |                                         | 0.0683(28)                             |                                   |
| 1179.116925(8)             | 8  | 6  | Ē  | 8  | 7          | Ē          | PO(8.7.E)              | 15.21(2)              | 0.0608(2)                       | 0.0626                          | 0.801(8)           | 0.705(5)    | 5.00 1.0(22)                             |                                         | 0.0878(7)                              |                                   |
| 1179.953709(9)             | 7  | 6  | Е  | 7  | 7          | Е          | <sup>P</sup> Q(7,7,E)  | 11.28(3)              | 0.0648(3)                       | 0.0638                          | 0.858(9)           | 0.728(6)    |                                          | 0.000047(7)                             | 0.0759(9)                              |                                   |

| 1179.987401(6)                   | 4        | 3      | Е   | 3       | 2  | E       | $^{R}R(3,2,E)$           | 76.03(3)             | 0.0651(1)              | 0.0663 | 0.846(1)  | 0.733(6) | -0.00093(5)  | 0.000013(1) | 0.0860(2)                | 0.750(0)  |
|----------------------------------|----------|--------|-----|---------|----|---------|--------------------------|----------------------|------------------------|--------|-----------|----------|--------------|-------------|--------------------------|-----------|
| 1180.144243(23)                  | 11       | 7      | Е   | 11      | 8  | Е       | <sup>P</sup> Q(11,8,E)   | 9.31(4)              | 0.0497(2)              | 0.0576 | 0.757(23) | 0.644(1) | -0.00239(20) |             |                          |           |
| 1181.390665(5)                   | 5        | 5      | Е   | 4       | 4  | Е       | $^{R}R(4.4.E)$           | 97.66(2)             | 0.0587(0)              | 0.0632 | 0.801(1)  | 0.723(6) | -0.00126(3)  | 0.000007(2) | 0.0763(5)                | 0.843(16) |
| 1182.350649(11)                  | 9        | 7      | Е   | 9       | 8  | Е       | <sup>P</sup> Q(9,8,E)    | 10.25(3)             | 0.0590(2)              | 0.0619 |           | 0.695(4) |              | ()          | 0.0631(13)               |           |
| 1182.476326(7)                   | 3        | 0      | Е   | 2       | 1  | Е       | PR(2.1.E)                | 14.04(2)             | 0.0677(2)              | 0.0695 | 0.854(3)  | 0.749(6) |              | 0.000012(2) | 0.0906(3)                |           |
| 1183.014330(15)                  | 12       | 8      | A1  | 12      | 9  | A2      | PO(12.9.A2)              | 11.22(2)             | 0.0511(2)              | 0.0572 |           | 0.637(1) | -0.00246(15) | ()          | 0.0670(19)               |           |
| 1183 099278(6)                   | 4        | 2      | E   | 3       | 1  | E       | $^{R}R(31E)$             | 6195(2)              | 0.0635(0)              | 0.0666 | 0.835(1)  | 0.725(6) | -0.00065(5)  | 0.000008(1) | 0.0820(2)                | 0.840(16) |
| 1183 323054(12)                  | 8        | 7      | F   | 8       | 8  | F       | $P_{O}(8.8 \text{ F})$   | 771(1)               | 0.0645(3)              | 0.0628 | 0.839(1)  | 0.723(0) | 0.00416(23)  | 0.000000(1) | 0.0823(14)               | 0.010(10) |
| 1184 273226(5)                   | 5        | 4      | A1  | 4       | 3  | A2      | $R_{R}(43A2)$            | 170 58(3)            | 0.0648(0)              | 0.0653 | 0.836(1)  | 0.727(6) | -0.00410(23) | 0.00008(2)  | 0.0826(3)                | 0.846(9)  |
| 118/ 320/50(12)                  | 11       | Q I    | Δ1  | 11      | 0  | Δ2      | $P_{O}(110 \Delta 2)$    | 13 07(3)             | 0.0040(0)              | 0.0592 | 0.050(1)  | 0.727(0) | -0.00102(5)  | 0.000000(2) | 0.0620(3)                | 0.040(3)  |
| 1185 536801(10)                  | 10       | Q      | Δ1  | 10      | 0  | Δ2      | $P_{O}(10.9.42)$         | 13.97(3)<br>13.87(2) | 0.0544(2)<br>0.0583(2) | 0.0532 |           | 0.033(2) |              |             | 0.0081(13)<br>0.0787(12) |           |
| 1105.550001(10)                  | 10       | 1      | A1  | 2       | 0  | 12      | $R_{P}(20.02)$           | 76.02(2)             | 0.0565(2)              | 0.0670 | 0.947(1)  | 0.034(4) | 0.00111(4)   | 0.00006(1)  | 0.0787(12)               |           |
| 1105.744710(0)                   | 4        | I<br>C | E E | 5       | 5  | Π2<br>Γ | $R_{D}(F \in F)$         | 70.92(3)             | 0.0008(0)              | 0.0079 | 0.047(1)  | 0.734(0) | -0.00111(4)  | 0.000000(1) | 0.0883(2)                |           |
| 1105.051950(5)                   | 2        | 1      | E   | ່ງ<br>ງ | 2  | E       | R(3,3,E)                 | 92.39(3)             | 0.0342(0)              | 0.0620 | 0.751(1)  | 0.712(5) | -0.00157(5)  | 0.000000(2) | 0.0745(1)                |           |
| 1105.990462(10)                  | 5        | 1      |     | 2       | 2  | E<br>AD | R(2,2,E)                 | 3.17(1)              | 0.0704(4)              | 0.0091 | 0.871(10) | 0.755(7) | -0.00427(40) |             | 0.0900(9)                |           |
| 1186.658408(11)                  | 9        | 8      | AI  | 9       | 9  | A2      | <sup>P</sup> Q(9,9,AZ)   | 10.61(2)             | 0.0632(2)              | 0.0618 | 0.040(4)  | 0.707(5) | 0.00507(17)  | 0.000000(4) | 0.0786(12)               |           |
| 1187.263042(11)                  | 5        | 3      | E   | 4       | 2  | E       | <sup>R</sup> R(4,2,E)    | /3.60(2)             | 0.0634(1)              | 0.0644 | 0.843(1)  | 0.706(6) | -0.00091(6)  | 0.000009(1) | 0.0806(2)                |           |
| 1188.602551(5)                   | 6        | 5      | E   | 5       | 4  | E       | <sup>R</sup> (5,4,E)     | 85.56(2)             | 0.0635(0)              | 0.0645 | 0.816(1)  | 0.721(6) | -0.00158(4)  | 0.000006(2) | 0.0827(2)                |           |
| 1189.904653(6)                   | 4        | 0      | E   | 3       | 1  | E       | <sup>F</sup> R(3,1,E)    | 16.88(1)             | 0.0670(1)              | 0.0679 | 0.843(2)  | 0.736(6) | -0.00180(14) |             | 0.0898(3)                |           |
| 1190.322385(7)                   | 5        | 2      | E   | 4       | 1  | E       | $^{R}R(4,1,E)$           | 65.66(5)             | 0.0631(1)              | 0.0651 | 0.832(1)  | 0.711(6) | -0.00080(7)  | 0.000009(1) | 0.0848(16)               | 0.718(42) |
| 1190.358540(6)                   | 7        | 7      | A1  | 6       | 6  | A2      | $^{R}R(6,6,A2)$          | 162.96(8)            | 0.0507(1)              | 0.0607 | 0.706(1)  | 0.699(4) | -0.00141(3)  | 0.00008(2)  | 0.0689(4)                | 0.693(13) |
| 1191.463969(5)                   | 6        | 4      | A1  | 5       | 3  | A2      | $^{R}R(5,3,A2)$          | 154.91(3)            | 0.0635(0)              | 0.0630 | 0.826(1)  | 0.697(5) | -0.00108(3)  | 0.000009(2) | 0.0901(4)                | 0.581(11) |
| 1192.699138(6)                   | 5        | 1      | A2  | 4       | 0  | A1      | $^{R}R(4,0,A1)$          | 81.58(2)             | 0.0660(0)              | 0.0663 | 0.847(1)  | 0.722(6) | -0.00113(4)  | 0.000009(2) | 0.0881(1)                |           |
| 1192.976955(6)                   | 7        | 6      | E   | 6       | 5  | E       | <sup>R</sup> R(6,5,E)    | 77.01(3)             | 0.0606(0)              | 0.0636 | 0.793(1)  | 0.713(6) | -0.00160(4)  | 0.000012(2) | 0.0815(2)                |           |
| 1193.384516(7)                   | 4        | 1      | E   | 3       | 2  | E       | <sup>P</sup> R(3,2,E)    | 9.66(1)              | 0.0664(2)              | 0.0670 | 0.854(3)  | 0.733(6) |              |             | 0.0896(5)                |           |
| 1194.417528(6)                   | 6        | 3      | E   | 5       | 2  | E       | $^{R}R(5,2,E)$           | 69.73(2)             | 0.0622(0)              | 0.0626 | 0.818(1)  | 0.685(5) | -0.00076(4)  | 0.000007(2) | 0.0821(1)                |           |
| 1194.910923(5)                   | 8        | 8      | E   | 7       | 7  | Е       | $^{R}R(7,7,E)$           | 65.71(2)             | 0.0444(0)              | 0.0596 | 0.646(2)  | 0.685(3) | -0.00146(3)  | 0.000008(2) | 0.0630(1)                |           |
| 1195.706526(6)                   | 7        | 5      | Е   | 6       | 4  | Е       | $^{R}R(6,4,E)$           | 72.99(3)             | 0.0624(0)              | 0.0622 | 0.810(1)  | 0.692(5) | -0.00154(4)  | 0.000010(2) | 0.0818(2)                |           |
| 1197.278810(7)                   | 5        | 0      | Е   | 4       | 1  | Е       | PR(4,1,E)                | 17.21(2)             | 0.0667(1)              | 0.0663 | 0.828(2)  | 0.722(6) |              | . ,         | 0.0896(3)                |           |
| 1197,396019(22)                  | 6        | 2      | Е   | 5       | 1  | Е       | $^{R}R(5.1.E)$           | 66.96(8)             | 0.0699(3)              | 0.0637 | 0.761(4)  | 0.700(6) |              | 0.000013(2) | 0.0799(23)               |           |
| 1197.396721(18)                  | 8        | 7      | A1  | 7       | 6  | A2      | $R_{R}(7.6.A2)$          | 129.39(10)           | 0.0556(1)              | 0.0627 | 0.751(3)  | 0.703(5) | -0.00224(14) | 0.000007(1) | 0.0800(18)               |           |
| 1198 536940(9)                   | 7        | 4      | A2  | 6       | 3  | A1      | $^{R}R(63A1)$            | 6772(1)              | 0.0618(0)              | 0.0607 | 0.797(1)  | 0.668(4) | -0.00121(2)  |             | 0.0746(1)                | 0.948(2)  |
| 1198 542387(15)                  | 7        | 4      | A1  | 6       | 3  | A2      | R(63A2)                  | 67.72(1)             | 0.0618(0)              | 0.0607 | 0.797(1)  | 0.668(4) | -0.00121(2)  |             | 0.0746(1)                | 0.948(2)  |
| 1199 493392(8)                   | 6        | 1      | A1  | 5       | 0  | A2      | R(5,0,A2)                | 80 71(4)             | 0.0665(1)              | 0.0647 | 0.818(2)  | 0.711(6) | -0.00120(7)  |             | 0.0841(2)                | 010 10(2) |
| 1199 509368(8)                   | g        | 9      | F   | 8       | 8  | F       | R(8,8,F)                 | 49 69(7)             | 0.0003(1)              | 0.0585 | 0.585(5)  | 0.669(2) | -0.00120(7)  | 0.000011(1) | 0.00 11(2)               |           |
| 1100 00/381(6)                   | 8        | 6      | E   | 7       | 5  | E       | R(0,0,E)<br>R(75E)       | 62.68(3)             | 0.0509(1)              | 0.0505 | 0.303(3)  | 0.688(5) | -0.00200(7)  | 0.000011(1) | 0.0822(2)                |           |
| 1200 701580(7)                   | 5        | 1      | E   | 1       | 2  | E       | $P_{P}(A \rightarrow E)$ | 12.00(3)             | 0.0555(1)              | 0.0010 | 0.757(2)  | 0.000(3) | -0.00175(5)  | 0.000011(1) | 0.0022(2)                |           |
| 1200.701389(7)<br>1201.420678(6) | 7        | 2      | E   | 4<br>C  | 2  | E       | $R_{P(C, 2, E)}$         | 12.71(1)             | 0.0030(2)              | 0.0034 | 0.839(4)  | 0.710(0) | 0.00000(4)   | 0.000010(2) | 0.0014(2)                |           |
| 1201.459076(0)                   | <i>,</i> | 0      | E   | 0       | 2  | E       | $R_{D}(0,Z,E)$           | 5.00(2)              | 0.0609(1)              | 0.0011 | 0.805(1)  | 0.672(4) | -0.00090(4)  | 0.000004(1) | 0.0614(2)                |           |
| 1201.602555(0)                   | 9        | 0      | E   | 0       | 1  | E       | R(0,7,E)                 | 50.14(5)             | 0.0544(1)              | 0.0018 | 0.749(3)  | 0.091(4) | -0.00180(5)  | 0.000016(1) | 0.0700(2)                |           |
| 1202.695902(6)                   | 8        | 5      | E   | /       | 4  | E       | <sup>R</sup> R(7,4,E)    | 60.73(3)             | 0.0602(1)              | 0.0597 | 0.799(2)  | 0.661(3) | -0.00111(5)  | 0.000010(1) | 0.0799(2)                |           |
| 1204.304894(16)                  | /        | 2      | E   | 6       | 1  | E       | $^{\text{K}}$ (6,1,E)    | 63.93(11)            | 0.0640(1)              | 0.0624 | 0.871(3)  | 0.690(5) | -0.00143(11) | 0.000015(1) | 0.0837(4)                |           |
| 1204.327733(7)                   | 9        | 7      | A1  | 8       | 6  | A2      | <sup>R</sup> R(8,6,A2)   | 100.34(10)           | 0.0579(1)              | 0.0610 | 0.777(3)  | 0.680(3) | -0.00212(6)  | 0.000026(1) | 0.0791(2)                |           |
| 1204.614848(7)                   | 6        | 0      | E   | 5       | 1  | E       | <sup>F</sup> R(5,1,E)    | 15.14(2)             | 0.0662(2)              | 0.0647 | 0.822(4)  | 0.711(6) | -0.00149(11) |             | 0.0877(4)                |           |
| 1205.485111(8)                   | 8        | 4      | A1  | 7       | 3  | A2      | <sup>R</sup> R(7,3,A2)   | 57.72(3)             | 0.0655(1)              | 0.0590 | 0.794(2)  | 0.649(3) | -0.00140(3)  |             | 0.0854(1)                |           |
| 1205.529251(8)                   | 8        | 4      | A2  | 7       | 3  | A1      | $^{R}R(7,3,A1)$          | 48.93(4)             | 0.0655(1)              | 0.0590 | 0.794(2)  | 0.649(3) | -0.00140(3)  |             | 0.0854(1)                |           |
| 1206.128962(6)                   | 7        | 1      | A2  | 6       | 0  | A1      | $^{R}R(6,0,A1)$          | 75.67(2)             | 0.0653(0)              | 0.0633 | 0.829(1)  | 0.700(6) | -0.00191(4)  | 0.000009(1) | 0.0845(2)                |           |
| 1206.374111(7)                   | 10       | 9      | E   | 9       | 8  | E       | <sup>R</sup> R(9,8,E)    | 36.01(4)             | 0.0508(1)              | 0.0609 | 0.706(5)  | 0.675(3) | -0.00266(8)  | 0.000010(1) | 0.0746(3)                |           |
| 1206.898332(6)                   | 9        | 6      | E   | 8       | 5  | E       | <sup>R</sup> R(8,5,E)    | 49.45(3)             | 0.0578(1)              | 0.0591 | 0.778(2)  | 0.658(2) | -0.00190(5)  | 0.000009(1) |                          |           |
| 1207.951494(7)                   | 6        | 1      | Е   | 5       | 2  | E       | <sup>P</sup> R(5,2,E)    | 13.50(2)             | 0.0636(2)              | 0.0639 | 0.830(4)  | 0.703(6) | -0.00221(16) | 0.000021(2) |                          |           |
| 1208.318059(6)                   | 8        | 3      | E   | 7       | 2  | Е       | $^{R}R(7,2,E)$           | 56.01(2)             | 0.0599(1)              | 0.0599 | 0.796(2)  | 0.664(4) | -0.00111(5)  |             |                          |           |
| 1208.706761(6)                   | 10       | 8      | Е   | 9       | 7  | Е       | <sup>R</sup> R(9,7,E)    | 37.57(3)             | 0.0557(1)              | 0.0604 | 0.744(4)  | 0.669(2) | -0.00141(6)  | 0.000015(1) | 0.0766(3)                |           |
| 1208.844713(8)                   | 11       | 11     | Е   | 10      | 10 | Е       | <sup>R</sup> R(10,10,E)  | 23.03(2)             | 0.0306(1)              | 0.0564 | 0.445(7)  | 0.639(1) | -0.00237(5)  | 0.000012(1) |                          |           |
| 1209.563871(6)                   | 9        | 5      | Е   | 8       | 4  | Е       | $^{R}R(8.4.E)$           | 48.62(3)             | 0.0580(1)              | 0.0576 | 0.773(2)  | 0.638(1) | -0.00125(5)  |             |                          |           |
| 1210.931527(6)                   | - 11     | 10     | A1  | 10      | 9  | A2      | $^{R}$ R(10.9.A2)        | 49.31(4)             | 0.0479(1)              | 0.0599 | 0.677(5)  | 0.659(1) | -0.00241(5)  | 0.000019(1) | 0.0704(3)                |           |
| 1211 037407(6)                   | 8        | 2      | E   | 7       | 1  | E       | $^{R}R(71E)$             | 58 58(4)             | 0.0631(1)              | 0.0612 | 0.817(2)  | 0.681(5) | -0.00140(6)  | 0.000008(1) | 0.0828(2)                |           |
|                                  | 0        | 2      | L   | '       |    | -       | (',1,2)                  | 20.00(1)             | 0.0001(1)              | 0.0012 | 0.017(2)  | 5.001(5) | 5.00110(0)   | 5.500000(1) | 0.0020(2)                |           |

| ladie 5 (continueu) | d) |
|---------------------|----|
|---------------------|----|

| <b>Position,</b> cm <sup>-1</sup> | ľ  | K′ | S′ | $J^{\prime\prime}$ | <b>K</b> ″ | <b>S</b> ″ | Assignment               | Int*10 <sup>25a</sup> | $b_L^0(N_2)$ expt, <sup>b</sup> | $b_L^0(N_2)$ calc. <sup>b</sup> | $n_1 \text{ expt}$ | $n_1$ calc. | $\delta^0(N_2)$ expt <sup>b</sup> | $\delta'(N_2) \operatorname{expt}^{c}$ | $b_L^0(self)$ <b>expt</b> <sup>b</sup> | <i>n</i> <sub>2</sub> <b>expt</b> |
|-----------------------------------|----|----|----|--------------------|------------|------------|--------------------------|-----------------------|---------------------------------|---------------------------------|--------------------|-------------|-----------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|
| 1211.145943(6)                    | 10 | 7  | A1 | 9                  | 6          | A2         | <sup>R</sup> R(9,6,A2)   | 75.55(4)              | 0.0559(1)                       | 0.0586                          | 0.747(2)           | 0.653(2)    | -0.00200(4)                       | 0.000012(1)                            | 0.0781(2)                              |                                   |
| 1211.492823(9)                    | 6  | 2  | A1 | 5                  | 3          | A2         | <sup>P</sup> R(5,3,A2)   | 8.88(1)               | 0.0635(1)                       | 0.0632                          | 0.843(1)           | 0.697(6)    | -0.00185(9)                       | 0.000018(1)                            | 0.0953(4)                              |                                   |
| 1211.517931(9)                    | 6  | 2  | A2 | 5                  | 3          | A1         | <sup>P</sup> R(5,3,A1)   | 8.96(1)               | 0.0635(1)                       | 0.0632                          | 0.843(1)           | 0.697(6)    | -0.00185(9)                       | 0.000018(1)                            | 0.0953(4)                              |                                   |
| 1211.927987(8)                    | 7  | 0  | Е  | 6                  | 1          | E          | ${}^{P}R(6,1,E)$         | 11.90(2)              | 0.0652(3)                       | 0.0633                          | 0.822(5)           | 0.700(6)    |                                   |                                        | 0.0892(6)                              |                                   |
| 1212.252462(6)                    | 9  | 4  | A1 | 8                  | 3          | A2         | <sup>R</sup> R(8,3,A2)   | 46.20(3)              | 0.0642(1)                       | 0.0577                          | 0.809(2)           | 0.639(2)    | -0.00123(3)                       | 0.000003(2)                            | 0.0853(1)                              |                                   |
| 1212.298834(8)                    | 9  | 4  | A2 | 8                  | 3          | A1         | <sup>R</sup> R(8,3,A1)   | 47.57(4)              | 0.0642(1)                       | 0.0577                          | 0.809(2)           | 0.639(2)    | -0.00123(3)                       | 0.000003(2)                            | 0.0853(1)                              |                                   |
| 1212.607277(6)                    | 8  | 1  | A1 | 7                  | 0          | A2         | <sup>R</sup> R(7,0,A2)   | 66.81(3)              | 0.0644(1)                       | 0.0620                          | 0.824(1)           | 0.690(5)    | -0.00221(5)                       | 0.000018(1)                            | 0.0852(2)                              |                                   |
| 1213.131507(8)                    | 11 | 9  | Е  | 10                 | 8          | Е          | <sup>R</sup> R(10,8,E)   | 25.65(3)              | 0.0519(1)                       | 0.0596                          | 0.708(7)           | 0.656(1)    | -0.00251(9)                       |                                        | 0.0814(6)                              |                                   |
| 1213.581159(12)                   | 12 | 12 | E  | 11                 | 11         | E          | <sup>R</sup> R(11,11,E)  | 14.96(2)              | 0.0277(1)                       | 0.0554                          | 0.36(14)           | 0.627(1)    | -0.00187(8)                       | 0.000021(2)                            | 0.0434(12)                             |                                   |
| 1213.682846(7)                    | 10 | 6  | E  | 9                  | 5          | E          | <sup>R</sup> R(9,5,E)    | 37.66(5)              | 0.0562(1)                       | 0.0568                          | 0.721(6)           | 0.633(1)    | -0.00148(14)                      |                                        | 0.0778(3)                              |                                   |
| 1215.042024(6)                    | 9  | 3  | E  | 8                  | 2          | E          | $^{R}R(8,2,E)$           | 47.34(3)              | 0.0597(1)                       | 0.0589                          | 0.783(2)           | 0.656(3)    | -0.00134(6)                       | 0.000006(1)                            | 0.0806(2)                              |                                   |
| 1215.145227(8)                    | 7  | 1  | Е  | 6                  | 2          | E          | ${}^{P}R(6,2,E)$         | 12.92(2)              | 0.0637(2)                       | 0.0625                          | 0.811(5)           | 0.692(5)    | -0.0033(21)                       |                                        | 0.0863(5)                              |                                   |
| 1215.208733(12)                   | 6  | 3  | Е  | 5                  | 4          | Е          | <sup>P</sup> R(5,4,E)    | 4.75(1)               | 0.0679(5)                       | 0.0643                          | 0.893(11)          | 0.719(7)    |                                   |                                        | 0.0916(14)                             |                                   |
| 1215.438903(7)                    | 11 | 8  | E  | 10                 | 7          | E          | <sup>R</sup> R(10,7,E)   | 26.76(3)              | 0.0529(1)                       | 0.0582                          | 0.728(7)           | 0.645(1)    | -0.00195(9)                       |                                        | 0.0777(5)                              |                                   |
| 1215.534491(11)                   | 12 | 11 | E  | 11                 | 10         | E          | <sup>R</sup> R(11,10,E)  | 16.08(3)              | 0.0451(2)                       | 0.0588                          | 0.627(14)          | 0.644(1)    | -0.00389(12)                      | 0.000027(3)                            | 0.0722(13)                             |                                   |
| 1216.303890(6)                    | 10 | 5  | E  | 9                  | 4          | E          | <sup>R</sup> R(9,4,E)    | 37.61(3)              | 0.0561(1)                       | 0.0561                          | 0.765(4)           | 0.624(1)    | -0.00146(7)                       |                                        | 0.0771(3)                              |                                   |
| 1217.588040(11)                   | 9  | 2  | E  | 8                  | 1          | E          | <sup>R</sup> R(8,1,E)    | 50.40(5)              | 0.0626(1)                       | 0.0602                          | 0.803(4)           | 0.671(3)    |                                   | 0.000015(2)                            | 0.0831(4)                              |                                   |
| 1217.601718(14)                   | 12 | 10 | A1 | 11                 | 9          | A2         | <sup>R</sup> R(11,9,A2)  | 33.76(7)              | 0.0499(2)                       | 0.0588                          | 0.669(13)          | 0.643(1)    | -0.00339(17)                      | 0.000021(3)                            | 0.077(12)                              |                                   |
| 1217.846109(6)                    | 11 | 7  | A1 | 10                 | 6          | A2         | <sup>R</sup> R(10,6,A2)  | 55.02(3)              | 0.0532(1)                       | 0.0564                          | 0.728(3)           | 0.629(1)    | -0.00208(5)                       | 0.000011(1)                            | 0.0765(2)                              |                                   |
| 1218.362994(12)                   | 13 | 13 | A1 | 12                 | 12         | A2         | <sup>R</sup> R(12,12,A2) | 17.17(2)              | 0.0239(1)                       | 0.0545                          | 0.264(14)          | 0.616(1)    | -0.00236(6)                       | 0.000016(1)                            | 0.0481(15)                             |                                   |
| 1218.616479(8)                    | 7  | 2  | A2 | 6                  | 3          | A1         | <sup>P</sup> R(6,3,A1)   | 9.94(1)               | 0.0674(2)                       | 0.0615                          | 0.872(5)           | 0.679(5)    | -0.00206(7)                       | 0.000012(1)                            | 0.0889(3)                              |                                   |
| 1218.661262(9)                    | 7  | 2  | A1 | 6                  | 3          | A2         | <sup>P</sup> R(6,3,A2)   | 9.91(2)               | 0.0674(2)                       | 0.0615                          | 0.872(5)           | 0.679(5)    | -0.00206(7)                       | 0.000012(1)                            | 0.0889(3)                              |                                   |
| 1218.930369(9)                    | 9  | 1  | A2 | 8                  | 0          | A1         | <sup>R</sup> R(8,0,A1)   | 55.98(11)             | 0.0620(1)                       | 0.0608                          | 0.797(3)           | 0.678(4)    |                                   |                                        | 0.0843(5)                              |                                   |
| 1218.933810(9)                    | 10 | 4  | A2 | 9                  | 3          | A1         | <sup>R</sup> R(9,3,A1)   | 37.28(4)              | 0.0641(0)                       | 0.0568                          | 0.809(0)           | 0.633(1)    | -0.00201(4)                       |                                        | 0.0865(3)                              |                                   |
| 1218.969303(6)                    | 10 | 4  | A1 | 9                  | 3          | A2         | <sup>R</sup> R(9,3,A2)   | 37.28(4)              | 0.0641(0)                       | 0.0568                          | 0.809(0)           | 0.633(1)    | -0.00201(4)                       |                                        | 0.0865(3)                              |                                   |
| 1219.229417(9)                    | 8  | 0  | Е  | 7                  | 1          | E          | <sup>P</sup> R(7,1,E)    | 8.64(2)               | 0.0640(3)                       | 0.0620                          | 0.850(8)           | 0.690(5)    |                                   | 0.000034(4)                            | 0.0857(9)                              |                                   |
| 1219.777253(10)                   | 12 | 9  | Е  | 11                 | 8          | E          | <sup>R</sup> R(11,8,E)   | 17.98(3)              | 0.0507(2)                       | 0.0577                          | 0.677(11)          | 0.635(1)    | -0.00148(12)                      | 0.000018(2)                            | 0.0806(11)                             |                                   |
| 1220.342003(7)                    | 11 | 6  | Е  | 10                 | 5          | E          | <sup>R</sup> R(10,5,E)   | 27.91(3)              | 0.0541(1)                       | 0.0551                          | 0.735(6)           | 0.616(1)    | -0.00117(8)                       | 0.000011(2)                            | 0.0768(4)                              |                                   |
| 1221.602529(6)                    | 10 | 3  | Е  | 9                  | 2          | E          | $^{R}R(9,2,E)$           | 38.94(3)              | 0.0601(1)                       | 0.0581                          | 0.769(3)           | 0.648(2)    | -0.00172(6)                       | 0.000007(1)                            | 0.0757(3)                              |                                   |
| 1222.054179(9)                    | 12 | 8  | Е  | 11                 | 7          | E          | $^{R}R(11,7,E)$          | 18.98(3)              | 0.0509(1)                       | 0.0561                          | 0.694(10)          | 0.623(1)    | -0.00125(10)                      | 0.000018(2)                            | 0.0708(9)                              |                                   |
| 1222.911308(7)                    | 11 | 5  | E  | 10                 | 4          | E          | $^{R}R(10,4,E)$          | 27.98(3)              | 0.0546(1)                       | 0.0551                          | 0.777(5)           | 0.616(1)    | -0.00124(7)                       |                                        | 0.0752(4)                              |                                   |
| 1223.189452(68)                   | 14 | 14 | Е  | 13                 | 13         | E          | <sup>R</sup> R(13,13,E)  | 4.61(5)               | 0.0209(3)                       | 0.0537                          | 0.580(53)          | 0.608(1)    | -0.00397(19)                      |                                        | 0.0537(10)                             |                                   |
| 1223.955802(6)                    | 10 | 2  | Е  | 9                  | 1          | E          | $^{R}R(9,1,E)$           | 41.50(3)              | 0.0621(1)                       | 0.0592                          | 0.811(3)           | 0.660(2)    | -0.00188(6)                       | 0.000010(1)                            | 0.0795(3)                              |                                   |
| 1224.160571(10)                   | 13 | 10 | A1 | 12                 | 9          | A2         | $^{R}R(12,9,A2)$         | 22.36(3)              | 0.0479(1)                       | 0.0571                          | 0.653(11)          | 0.625(1)    | -0.00276(8)                       |                                        | 0.0723(22)                             | 0.834(72)                         |
| 1224.423081(7)                    | 12 | 7  | A1 | 11                 | 6          | A2         | $^{R}R(11,6,A2)$         | 38.64(3)              | 0.0512(1)                       | 0.0546                          | 0.728(5)           | 0.612(1)    | -0.00221(5)                       | 0.000009(1)                            | 0.0713(4)                              |                                   |
| 1225.100230(6)                    | 10 | 1  | A1 | 9                  | 0          | A2         | $^{R}R(9,0,A2)$          | 45.07(3)              | 0.0633(1)                       | 0.0598                          | 0.803(3)           | 0.665(3)    | -0.00134(6)                       | 0.000008(1)                            | 0.0785(9)                              | 0.819(27)                         |
| 1225.452547(7)                    | 11 | 4  | A1 | 10                 | 3          | A2         | <sup>R</sup> R(10,3,A2)  | 28.71(3)              | 0.0620(1)                       | 0.0561                          | 0.752(6)           | 0.627(1)    | -0.00227(4)                       | 0.000016(1)                            | 0.0825(2)                              |                                   |
| 1225.488360(7)                    | 11 | 4  | A2 | 10                 | 3          | A1         | <sup>R</sup> R(10,3,A1)  | 28.59(3)              | 0.0620(1)                       | 0.0561                          | 0.752(6)           | 0.627(1)    | -0.00227(4)                       | 0.000016(1)                            | 0.0825(2)                              |                                   |
| 1225.671923(9)                    | 8  | 2  | A1 | 7                  | 3          | A2         | <sup>P</sup> R(7,3,A2)   | 9.24(1)               | 0.0656(1)                       | 0.0601                          | 0.829(5)           | 0.668(4)    | -0.00318(7)                       | 0.000018(1)                            | 0.0891(4)                              |                                   |
| 1225.745502(9)                    | 8  | 2  | A2 | 7                  | 3          | A1         | $^{P}R(7,3,A1)$          | 9.14(2)               | 0.0656(1)                       | 0.0601                          | 0.829(5)           | 0.668(4)    | -0.00318(7)                       | 0.000018(1)                            | 0.0891(4)                              |                                   |
| 1226.100182(17)                   | 7  | 4  | E  | 6                  | 5          | E          | $^{P}R(6,5,E)$           | 3.15(1)               | 0.0666(6)                       | 0.0636                          | 0.868(19)          | 0.718(7)    |                                   |                                        | 0.0868(20)                             |                                   |
| 1226.307017(14)                   | 13 | 9  | E  | 12                 | 8          | E          | <sup>к</sup> R(12,8,E)   | 11.90(2)              | 0.0484(2)                       | 0.0558                          | 0.674(18)          | 0.617(1)    | -0.00196(13)                      |                                        | 0.0673(19)                             |                                   |
| 1226.525196(13)                   | 9  | 0  | E  | 8                  | 1          | E          | ${}^{P}R(8,1,E)$         | 5.71(1)               | 0.0628(4)                       | 0.0609                          | 0.831(14)          | 0.679(4)    |                                   |                                        | 0.0815(15)                             |                                   |
| 1226.870391(9)                    | 12 | 6  | E  | 11                 | 5          | E          | <sup>K</sup> R(11,5,E)   | 20.02(3)              | 0.0530(1)                       | 0.0540                          | 0.761(9)           | 0.607(1)    | -0.00181(9)                       |                                        | 0.0740(8)                              |                                   |
| 1227.993000(7)                    | 11 | 3  | E  | 10                 | 2          | E          | <sup>r</sup> R(10,2,E)   | 29.66(3)              | 0.0584(1)                       | 0.0573                          | 0.796(5)           | 0.639(1)    | -0.00161(9)                       |                                        | 0.0805(4)                              |                                   |
| 1228.547887(14)                   | 13 | 8  | E  | 12                 | 7          | E          | <sup>r</sup> R(12,7,E)   | 12.65(2)              | 0.0478(2)                       | 0.0543                          | 0.727(20)          | 0.607(1)    | -0.00209(17)                      |                                        | 0.0748(18)                             |                                   |
| 1229.311759(11)                   | 8  | 3  | E  | 7                  | 4          | E          | <sup>r</sup> R(7,4,E)    | 6.71(1)               | 0.0605(3)                       | 0.0596                          | 0.845(12)          | 0.662(4)    | -0.00391(36)                      |                                        | 0.0859(12)                             |                                   |
| 1229.389521(10)                   | 12 | 5  | E  | 11                 | 4          | E          | <sup>rc</sup> R(11,4,E)  | 19.74(3)              | 0.0544(2)                       | 0.0544                          | 0.736(17)          | 0.611(1)    |                                   |                                        | 0.0788(11)                             |                                   |
| 1229.409797(11)                   | 9  | 1  | E  | 8                  | 2          | E          | <sup>P</sup> R(8,2,E)    | 8.56(2)               | 0.0624(5)                       | 0.0602                          | 0.837(16)          | 0.672(4)    |                                   |                                        | 0.0827(14)                             |                                   |

| 1230.143728(7)  | 11 | 2  | E  | 10 | 1  | E  | <sup>R</sup> R(10,1,E)  | 31.50(3) | 0.0603(1) | 0.0582 | 0.786(5)  | 0.648(1) | -0.00224(9)  | 0.000021(2)  | 0.0836(4)  |
|-----------------|----|----|----|----|----|----|-------------------------|----------|-----------|--------|-----------|----------|--------------|--------------|------------|
| 1230.604297(15) | 14 | 10 | A1 | 13 | 9  | A2 | <sup>R</sup> R(13,9,A2) | 14.64(3) | 0.0464(2) | 0.0554 |           | 0.609(1) |              |              |            |
| 1230.871883(9)  | 13 | 7  | A1 | 12 | 6  | A2 | <sup>R</sup> R(12,6,A2) | 26.33(3) | 0.0502(1) | 0.0534 | 0.634(10) | 0.601(2) | -0.00228(9)  | 0.000025(2)  |            |
| 1231.119627(7)  | 11 | 1  | A2 | 10 | 0  | A1 | <sup>R</sup> R(10,0,A1) | 34.11(3) | 0.0621(1) | 0.0587 | 0.789(5)  | 0.652(1) | -0.00162(8)  | 0.000021(2)  | 0.0841(4)  |
| 1231.811182(9)  | 12 | 4  | A2 | 11 | 3  | A1 | <sup>R</sup> R(11,3,A1) | 20.94(3) | 0.0606(1) | 0.0555 | 0.813(9)  | 0.621(1) | -0.00142(5)  | 0.000021(1)  | 0.0850(3)  |
| 1231.848733(9)  | 12 | 4  | A1 | 11 | 3  | A2 | <sup>R</sup> R(11,3,A2) | 20.92(3) | 0.0606(1) | 0.0555 | 0.813(9)  | 0.621(1) | -0.00142(5)  | 0.000021(1)  | 0.0850(3)  |
| 1232.667550(11) | 9  | 2  | A2 | 8  | 3  | A1 | <sup>P</sup> R(8,3,A1)  | 7.95(1)  | 0.0626(2) | 0.0591 | 0.841(5)  | 0.659(3) | -0.00227(12) | 0.000023(3)  | 0.0882(9)  |
| 1232.781012(11) | 9  | 2  | A1 | 8  | 3  | A2 | <sup>P</sup> R(8,3,A2)  | 7.98(1)  | 0.0626(2) | 0.0591 | 0.841(5)  | 0.659(3) | -0.00227(12) | 0.000023(3)  | 0.0882(9)  |
| 1233.060408(72) | 15 | 12 | Е  | 14 | 11 | Е  | <sup>R</sup> R(14,11,E) | 3.80(3)  | 0.0431(5) | 0.0559 |           | 0.606(1) | -0.00415(36) |              |            |
| 1233.263806(13) | 13 | 6  | Е  | 12 | 5  | E  | <sup>R</sup> R(12,5,E)  | 13.92(2) | 0.0528(2) | 0.0533 | 0.652(18) | 0.601(2) | -0.00184(16) |              |            |
| 1234.209695(8)  | 12 | 3  | Е  | 11 | 2  | Е  | <sup>R</sup> R(11,2,E)  | 21.97(3) | 0.0580(1) | 0.0565 | 0.747(8)  | 0.630(1) | -0.00224(11) |              | 0.0810(7)  |
| 1234.915629(22) | 14 | 8  | Е  | 13 | 7  | Е  | <sup>R</sup> R(13,7,E)  | 8.20(2)  | 0.0466(3) | 0.0530 | 0.579(31) | 0.597(2) |              |              | 0.0637(30) |
| 1235.820952(15) | 13 | 5  | Е  | 12 | 4  | Е  | $^{R}R(12,4,E)$         | 10.34(2) | 0.0568(3) | 0.0539 | 0.717(21) | 0.607(1) | -0.00145(11) |              | 0.0776(19) |
| 1236.157291(8)  | 12 | 2  | Е  | 11 | 1  | Е  | $^{R}R(11,1,E)$         | 23.41(4) | 0.0598(2) | 0.0574 | 0.753(10) | 0.636(1) | -0.00228(12) | 0.000024(3)  | 0.0849(7)  |
| 1236.257241(13) | 9  | 3  | Е  | 8  | 4  | E  | <sup>P</sup> R(8,4,E)   | 6.25(1)  | 0.0598(4) | 0.0581 | 0.795(16) | 0.647(2) | -0.00328(20) | 0.000054(6)  | 0.0815(15) |
| 1236.501073(15) | 10 | 1  | Е  | 9  | 2  | Е  | PR(9,2,E)               | 6.03(1)  | 0.0621(4) | 0.0592 | 0.798(19) | 0.661(2) |              |              | 0.0839(17) |
| 1236.960540(17) | 8  | 5  | A1 | 7  | 6  | A2 | <sup>P</sup> R(7,6,A2)  | 4.13(1)  | 0.0672(7) | 0.0631 |           | 0.716(6) |              |              | 0.0858(20) |
| 1236.991242(8)  | 12 | 1  | A1 | 11 | 0  | A2 | <sup>R</sup> R(11,0,A2) | 24.53(4) | 0.0608(2) | 0.0578 | 0.801(11) | 0.640(1) | -0.00197(14) |              | 0.0879(7)  |
| 1237.188272(13) | 14 | 7  | A1 | 13 | 6  | A2 | <sup>R</sup> R(13,6,A2) | 17.18(3) | 0.0494(2) | 0.0525 | 0.710(16) | 0.595(2) | -0.00223(12) |              | 0.0724(16) |
| 1238.006728(12) | 13 | 4  | A1 | 12 | 3  | A2 | <sup>R</sup> R(12,3,A2) | 14.92(2) | 0.0599(2) | 0.0549 | 0.803(16) | 0.614(1) | -0.00191(6)  | 0.000015(1)  | 0.0869(6)  |
| 1238.044758(12) | 13 | 4  | A2 | 12 | 3  | A1 | <sup>R</sup> R(12,3,A1) | 14.76(2) | 0.0599(2) | 0.0549 | 0.803(16) | 0.614(1) | -0.00191(6)  | 0.000015(1)  | 0.0869(6)  |
| 1239.611629(14) | 10 | 2  | A1 | 9  | 3  | A2 | <sup>P</sup> R(9,3,A2)  | 6.24(1)  | 0.0641(5) | 0.0582 | 0.660(24) | 0.650(2) |              | . ,          | 0.0858(18) |
| 1239.778257(20) | 10 | 2  | A2 | 9  | 3  | A1 | <sup>P</sup> R(9,3,A1)  | 6.37(2)  | 0.0636(8) | 0.0582 | 0.883(35) | 0.650(2) |              | 0.000111(13) | 0.0873(27) |
| 1239.952806(17) | 9  | 4  | Е  | 8  | 5  | E  | <sup>P</sup> R(8,5,E)   | 4.29(1)  | 0.0595(5) | 0.0584 | 0.769(23) | 0.655(3) |              | 0.000074(8)  | 0.0755(20) |
| 1240.251762(11) | 13 | 3  | Е  | 12 | 2  | Е  | $^{R}R(12,2,E)$         | 15.56(2) | 0.0576(2) | 0.0558 | 0.682(14) | 0.621(1) | -0.00192(13) |              | 0.0804(13) |
| 1241.698227(19) | 14 | 5  | Е  | 13 | 4  | Е  | <sup>R</sup> R(13,4,E)  | 8.62(2)  | 0.0541(2) | 0.0535 |           | 0.602(2) | -0.00111(9)  | 0.000020(2)  |            |
| 1242.002920(10) | 13 | 2  | Е  | 12 | 1  | Е  | $^{R}R(12,1,E)$         | 16.84(2) | 0.0604(1) | 0.0565 |           | 0.626(1) | -0.00231(12) |              |            |
| 1242.717923(10) | 13 | 1  | A2 | 12 | 0  | A1 | <sup>R</sup> R(12,0,A1) | 17.32(3) | 0.0608(2) | 0.0569 |           | 0.628(1) | -0.00238(12) |              | 0.0810(11) |
| 1243.142558(16) | 10 | 3  | Е  | 9  | 4  | E  | <sup>P</sup> R(9,4,E)   | 5.28(1)  | 0.0609(3) | 0.0570 |           | 0.638(1) | -0.00328(31) |              |            |
| 1243.369265(19) | 15 | 7  | A2 | 14 | 6  | A1 | <sup>R</sup> R(14,6,A1) | 10.97(2) | 0.0493(2) | 0.0520 |           | 0.591(4) | -0.00199(15) |              |            |
| 1244.037172(17) | 14 | 4  | A2 | 13 | 3  | A1 | <sup>R</sup> R(13,3,A1) | 9.97(2)  | 0.0614(2) | 0.0544 | 0.690(10) | 0.608(1) | -0.00219(8)  | 0.000017(2)  | 0.0733(10) |
| 1244.072667(17) | 14 | 4  | A1 | 13 | 3  | A2 | <sup>R</sup> R(13,3,A2) | 9.82(2)  | 0.0614(2) | 0.0544 | 0.690(10) | 0.608(1) | -0.00219(8)  | 0.000017(2)  | 0.0733(10) |
| 1246.120908(16) | 14 | 3  | Е  | 13 | 2  | Е  | <sup>R</sup> R(13,2,E)  | 10.71(2) | 0.0578(2) | 0.0552 |           | 0.612(1) | -0.00228(17) | 0.000020(2)  | 0.0744(21) |
| 1246.511979(20) | 11 | 2  | A2 | 10 | 3  | A1 | <sup>P</sup> R(10,3,A1) | 4.50(1)  | 0.0667(4) | 0.0574 |           | 0.641(1) | -0.00363(14) | 0.000020(2)  |            |
| 1246.746775(21) | 11 | 2  | A1 | 10 | 3  | A2 | <sup>P</sup> R(10,3,A2) | 4.43(1)  | 0.0667(4) | 0.0574 |           | 0.641(1) | -0.00363(14) | 0.000020(2)  |            |
| 1246.767860(20) | 10 | 4  | Е  | 9  | 5  | Е  | $^{P}R(9,5,E)$          | 3.99(1)  | 0.0570(4) | 0.0567 |           | 0.635(1) | -0.00723(45) |              |            |
| 1248.302906(14) | 14 | 1  | A1 | 13 | 0  | A2 | <sup>R</sup> R(13,0,A2) | 11.48(2) | 0.0600(2) | 0.0560 | 0.673(20) | 0.618(1) | -0.00183(15) |              |            |
| 1249.414534(28) | 16 | 7  | A1 | 15 | 6  | A2 | <sup>R</sup> R(15,6,A2) | 3.47(1)  | 0.0517(3) | 0.0516 |           | 0.587(5) |              |              |            |
| 1249.414534(28) | 16 | 7  | A2 | 15 | 6  | A1 | <sup>R</sup> R(15,6,A1) | 3.47(1)  | 0.0517(3) | 0.0516 |           | 0.587(5) |              |              |            |
| 1250.54476(15)  | 10 | 5  | A1 | 9  | 6  | A2 | $^{P}R(9,6,A2)$         | 5.53(1)  | 0.0581(3) | 0.0578 |           | 0.652(2) |              | 0.000020(2)  |            |
| 1251.820632(38) | 15 | 3  | Е  | 14 | 2  | Е  | $^{R}R(14,2,E)$         | 7.02(3)  | 0.0562(3) | 0.0545 |           | 0.604(2) | -0.00321(26) | 0.000020(2)  |            |
| 1253.518248(26) | 11 | 4  | Е  | 10 | 5  | Е  | <sup>P</sup> R(10,5,E)  | 3.30(1)  | 0.0550(5) | 0.0555 |           | 0.623(1) |              | . /          |            |
| 1253.694913(31) | 12 | 2  | A2 | 11 | 3  | A1 | <sup>P</sup> R(11,3,A1) | 3.06(1)  | 0.0619(6) | 0.0566 |           | 0.633(3) |              | 0.000020(2)  |            |
| 1253.749377(23) | 15 | 1  | A2 | 14 | 0  | A1 | <sup>R</sup> R(14,0,A1) | 7.43(2)  | 0.0597(3) | 0.0552 |           | 0.609(1) |              | . /          |            |
|                 |    |    |    |    |    |    |                         |          |           |        |           |          |              |              |            |

 $^{a}$  cm/molecule.  $^{b}$  cm<sup>-1</sup> atm<sup>-1</sup>.  $^{c}$  cm<sup>-1</sup> atm<sup>-1</sup> K<sup>-1</sup>.



**Fig. 4.** An example of a multispectrum fit of  ${}^{12}\text{CH}_3\text{D}$  Triad near 1156 cm<sup>-1</sup>. 20 spectra are included in this fit. This spectral region shows transitions from the  ${}^{R}\text{Q}(J'', K''=0)$  series (band head near 1156.3 cm<sup>-1</sup>) and transitions from the  ${}^{P}\text{Q}(J'', K''=1)$  series (high-wavenumber side), both from the  ${}^{\nu}\text{b}$  band. The observed spectra are plotted in the upper panel (a) and the weighted observed minus calculated differences are shown in the lower panel (b). The horizontal dash line at the bottom of panel (a) represents the 100% absorption level. The short vertical lines seen at the top of the absorption features in (a) correspond to positions of transitions included in the fit. Color codes: room-temperature spectra with the 25 cm cell (black), room-temperature spectra at 189 K (blue); spectra at ~135 K (dark pink); spectra at ~76 K (dark green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

preliminary tests, we retained the dominant contributions with  $l_1 \leq 3$  and  $l_2 \leq 2$ :  $V_{123}^{00\,eda}$ ,  $V_{101}^{00\,da}$ ,  $V_{121}^{00\,da}$ ,  $V_{202}^{00\,ia}$ ,  $V_{303}^{00\,ia}$ ,  $V_{323}^{00\,ea}$ ,  $N_{323}^{00\,ea}$ ,  $N_{325}^{00\,ea}$ . The molecular parameters for the accounted long-range and atom – atom interactions are gathered in Tables 3 and 4, respectively.

To get the isotropic potential governing the relativemotion trajectories we fitted the  $V_{000}^0(r)$  curve by a standard 12:6 Lennard – Jones function and slightly optimized the  $\sigma$ parameter (defined below) value to improve the agreement with measurements for high *J* values (a procedure of "trials" similar to that previously employed for the CH<sub>3</sub>Cl-H<sub>2</sub> system [66]). The Lennard – Jones parameters obtained are  $\varepsilon$ =83.50 K and  $\sigma$ =3.838 Å. The molecular rotational constants used in the calculations are  $A_0$ =5.2502 cm<sup>-1</sup>,  $B_0$ =3.8800 cm<sup>-1</sup> [67] for the ground state of the active molecule and A=5.28744 cm<sup>-1</sup>, B=3.87553 cm<sup>-1</sup> [28] for the vibrationally excited  $\nu_6$  state whereas  $B_0$ =1.989622 cm<sup>-1</sup> [68] for the linear perturbing molecule. At the temperatures of interest only the vibrational ground state has significant rotational populations.

## 5. Spectroscopic results and comparisons with theoretical results

In Fig. 2 we have plotted examples of pure-gas (panel (a)) and lean  $CH_3D-N_2$ -mixture (panel (b)) spectra



**Fig. 5.** Lorentz self-broadened line-width coefficients in units of  $\text{cm}^{-1}\text{atm}^{-1}$  in (a) and their temperature dependences (b) plotted against the quantum number index *m* for transitions in the  $v_6$  band of CH<sub>3</sub>D. The dashed line in panel (b) represents the temperature dependence exponent value 0.75, often used as the default value for transitions where the exponent could not be experimentally determined.

recorded at 189 K and covering the Triad region between 1070 and 1540 cm<sup>-1</sup>. Examples of multispectrum-fitted intervals are presented in Figs. 3 and 4. The top panel of Fig. 3 shows P-branch transitions with J'' = 16 and K = 0-12 relevant to the  $\nu_6$  band. The top panel of Fig. 4 presents transitions from the <sup>R</sup>Q(J'', K'' = 0) series (band head near 1156.3 cm<sup>-1</sup>) as well as transitions from the <sup>P</sup>Q(J'', K'' = 1) series (high-wavenumber side). In the bottom panels of both Figs. 3 and 4 we have plotted the weighted fit residuals (observed minus calculated) for all spectra included in the multispectrum fits.

The measured zero-pressure line position ( $\nu$ ) in cm<sup>-1</sup>, N<sub>2</sub>-broadened line-width coefficient,  $b_L^0$  (N<sub>2</sub>) in cm<sup>-1</sup> atm<sup>-1</sup> at 296 K, N<sub>2</sub>-pressure-shift coefficient  $\delta^{\circ}$  (N<sub>2</sub>) in cm<sup>-1</sup> atm<sup>-1</sup> at 296 K, and their temperature dependences  $n_1$  (unitless) and  $\delta'$  (cm<sup>-1</sup> atm<sup>-1</sup> K<sup>-1</sup>) are listed in Table 5. Despite the relatively low pressures of CH<sub>3</sub>D in our gas samples, in many cases it was necessary to adjust the self-broadened line-width coefficients and their temperature dependence exponents to fit all spectra satisfactorily, and the resulting values determined from the fits are listed in Table 5 and plotted in Fig. 5.

As stated earlier, it was not possible to unambiguously determine from our spectra the CH<sub>3</sub>D self-shift coefficients or temperature dependences, and they are not reported here.

In Fig. 5a we have plotted the room-temperature selfbroadening coefficients in units of cm<sup>-1</sup> atm<sup>-1</sup> against the quantum index *m* for transitions in the  $\nu_6$  band of CH<sub>3</sub>D. Here, m=J'+1 for the R-branch, m=J'' for the Q-branch, and m=-J'' for the P-branch transitions, where *J* is the rotational quantum number of the lower state. The points on Fig. 5 and



**Fig. 6.** Lorentz N<sub>2</sub>-broadened line-width coefficients (a) and their temperature dependences (b) plotted against the rotational quantum index *m* for transitions in the  $\nu_6$  band of CH<sub>3</sub>D. The dashed line represents the mean N<sub>2</sub>-broadened line-width coefficient for transitions of this band. N<sub>2</sub>-shift coefficients (a) and their temperature dependences (b) plotted against the rotational quantum index *m* for transitions in the  $\nu_6$  band of CH<sub>3</sub>D. The dashed line in panel (a) represents the zero-shift value. The error bars represent one standard deviation. In this analysis the temperature dependence for N<sub>2</sub>-pressure-shift coefficients were measured where appropriate. For unmeasured transitions their values were fixed to a default value of  $+0.00002 \text{ cm}^{-1} \text{ atm}^{-1} \text{ K}^{-1}$ . This assumption introduced no noticeable residuals in the least squares fits.

6 with smaller broadening coefficients correspond to  ${}^{P}P(J'',K'')$  and  ${}^{R}R(J'',K'')$  transitions for which J''=K''. To aid in theoretical calculations we are providing the expression for these smaller broadening coefficients as a function:

$$b_L^0(\text{self}) = 7 \times 10^{-6} m^3 - 0.0004 m^2 - 0.0005 m + 0.0899.$$
 (6)

The measured self- temperature dependence exponents are plotted in panel (b) of the same figure.

Similarly, in Fig. 6 we present our experimental results for N<sub>2</sub>-broadening coefficients in panel (a) and their temperature-dependence exponents panel (b), both plotted against values of *m*. As we did for Fig. 5, the expression for the smaller J'' = K'' broadening coefficients is:

$$b_{L}^{0}(N_{2}) = -1 \times 10^{-8}m^{5} + 1 \times 10^{-6}m^{4} + 1 \times 10^{-6}m^{3}$$
$$-0.0004m^{2} + 4 \times 10^{-5}m + 0.0678.$$
(7)

Both the N<sub>2</sub>- and self-broadening coefficients from the present study are in very good agreement with the room-temperature values determined in Ref. [35]. The N<sub>2</sub>- and self- broadening temperature dependence exponents determined here for the <sup>12</sup>CH<sub>3</sub>D  $\nu_6$  band were found to be of similar magnitude as the temperature dependences experimentally determined for air- and self-broadened <sup>12</sup>CH<sub>4</sub> and <sup>13</sup>CH<sub>4</sub> transitions in the same spectral region



**Fig. 7.** N<sub>2</sub>-shift coefficients (a) and their temperature dependences (b) plotted against the quantum index *m* for transitions in the  $\nu_6$  band of CH<sub>3</sub>D. The dashed line in panel (a) represents the zero-pressure value. The error bars represent one standard deviation. In this analysis the temperature dependence for N<sub>2</sub>-pressure-shift coefficients were measured where appropriate. For unmeasured transitions their values were fixed to a default value of +0.00002 cm<sup>-1</sup> atm<sup>-1</sup> K<sup>-1</sup>. This assumption introduced no noticeable residuals in the least squares fits.

over a smaller temperature range [50–53]. We also note that for the four  $\nu_6$  transitions also measured by Varanasi and Chudamani [43] over the range from 123 K to 295 K, our N<sub>2</sub>- and self-widths and temperature dependence exponents (measured over a larger temperature range) are in reasonable agreement within the absolute uncertainties of the two studies.

Our measured N<sub>2</sub>-shift coefficients that are included in Table 5 and plotted in Fig. 7 lie between -0.007 and 0.002 cm<sup>-1</sup> atm<sup>-1</sup> at 296 K. The retrieved temperaturedependences for N<sub>2</sub>- pressure-shift coefficients have also been plotted as a function of *m* in Fig. 7(b)). It is difficult to recognize a trend in the values for the retrieved N<sub>2</sub>-shift coefficients due to the relatively small number of data points. However, we do note that the N<sub>2</sub>-shift coefficients from the present study are very close to the room-temperature values determined in Ref. [35], and the N<sub>2</sub>-shift temperature dependence coefficients determined here for the <sup>12</sup>CH<sub>3</sub>D  $\nu_6$  band are quite similar in magnitude to temperature dependences experimentally determined for air-broadened <sup>12</sup>CH<sub>4</sub> shifts in the  $\nu_4$  band [50].

Fig. 8 presents overlaid experimental and calculated *J*-dependences of room-temperature  $CH_3D-N_2$  broadening coefficients at various *K* values for two sub-branches <sup>R</sup>R and <sup>P</sup>R in the  $\nu_6$  band. The agreement between theoretical and retrieved N<sub>2</sub>-broadening coefficients is best for *K* values below 7. Unfortunately the *J*-range of our retrieved line parameters is much smaller than that of theoretical



Fig. 8. Comparison of experimental and calculated *J*-dependences of room-temperature  $CH_3D-N_2$  broadened line-width coefficients at various *K* values for the two sub-branches  ${}^{R}R$  and  ${}^{P}R$  in the  $\nu_6$  band.



**Fig. 9.** Comparison of experimental and calculated *J*-dependences of room-temperature  $CH_3D-N_2$  broadened line-width coefficients at various *K* values for the two sub-branches  ${}^{R}Q$  and  ${}^{P}Q$  in the  $\nu_6$  band.



Fig. 10. Theoretical J-dependences of the temperature dependence exponents in comparison with the experimental values for <sup>R</sup>R-lines.

calculations and we are unable to check the agreement between the two sets of values at high *J* values.

In Fig. 9 we compare retrieved and calculated J-dependences of room-temperature CH<sub>3</sub>D-N<sub>2</sub> broadening coefficients at various K values for the two sub-branches <sup>R</sup>Q and <sup>P</sup>Q in the  $\nu_6$  band. As in the case of the R-branch transitions, the calculations agree better with the experimental values for K below 7. Overall, the calculated N<sub>2</sub>-broadening coefficients show reasonable agreement with the retrieved N<sub>2</sub>-broadening coefficients but for *K* values above 6, they do not reproduce closely the trends in the retrieved line parameters. The general trend in the N<sub>2</sub>-broadening coefficients is to remain nearly constant for K values below 4, then to drop off rapidly to lower values for larger K values. The observed trends in the calculated and observed N<sub>2</sub>broadening coefficients may arise from approximations made in the descriptions of wavefunctions of CH<sub>3</sub>D. The calculations performed here are not at the level of accuracy of the tensorial formalism used in the global analysis of positions and intensities of CH<sub>3</sub>D.

In order to deduce the temperature dependence exponents for CH<sub>3</sub>D-N<sub>2</sub> lines we further calculated the broadening coefficients for two other experimentally probed temperatures: 240 K and 190 K. Lower temperatures were not considered since the thermal motion energy at those temperatures becomes close to the isotropic potential depth ( $\varepsilon$ =83.50 K) and the semi-classical approaches lose their validity. The temperature exponents *N* were extracted by the usual least-squares method from the relation:

$$\gamma_{if} (T) = \gamma_{if}(T_o) \times \left(\frac{T}{T_o}\right)^{-N}$$
(8)

where *N* is the  $n_1$  of Eq. (1) and  $T_o$  is 296 K, the reference temperature. (In Eq. (8) above,  $\gamma$ =line-broadening coefficient for CH<sub>3</sub>D-N<sub>2</sub> and N= $n_1$  of Eq. (1).)

An example of their comparison with the experimental values is given in Fig. 10 for <sup>R</sup>R-branch lines. This figure shows that the theoretical values are generally lower than the corresponding measurements and that for the highest considered *J*, the differences between the calculated curves

for various *K* disappear. The discrepancies, as previously, can be attributed to the drawbacks of the semi-classical treatment and the interaction potential model. Theoretical values for line-broadening coefficients at 296 K and the associated temperature exponents are included in Table 5.

A Voigt line shape including line mixing via full relaxation matrix formulation was used to fit the data and improve the residuals. The pressure and path-length products for our spectra listed in Table 1 were not large enough in order to distinguish easily speed-dependence and line-mixing effects. Hence, the speed-dependence parameters could not be retrieved in our analysis, and it was possible to measure the off-diagonal relaxation matrix elements (ORME) for N<sub>2</sub>-broadening only for the sets of transitions included in Table 6. We have been able to retrieve the temperature dependences for the relaxation matrix elements for only a few  $CH_3D+N_2$  cases, using an exponential temperature dependence law similar to that used for broadening coefficients. The results for these parameters are also included in Table 6.

#### 6. Conclusions

This study reports experimental measurements of N<sub>2</sub>broadening and pressure-shift coefficients as a function of temperature in the  $\nu_6$  band of CH<sub>3</sub>D. For the linebroadening case, semi-classical calculations are provided as well. A set of 23 spectra have been analysed to provide accurate values for zero-pressure line-center positions, self- and N<sub>2</sub>-broadening coefficients and self- and N<sub>2</sub>pressure-shift coefficients for 400 transitions and their temperature dependences. We have identified several interesting patterns in the measured N<sub>2</sub>-broadening coefficients. In addition we have retrieved line mixing (offdiagonal relaxation matrix elements) and where possible, their temperature dependence exponents.

The agreement between the retrieved  $N_2$ -broadening coefficients and the semi-classical theoretical results is good, except for higher *K* values where the theoretical results seem to be overestimated. Unfortunately, the experimental  $N_2$ -pressure shift coefficients are generally

#### Table 6

Zero-pressure line positions, width and shift parameters and the off-diagonal relaxation matrix-element coefficients, Wii, determined for pairs of subband transitions in the  $\nu_6$  band of <sup>12</sup>CH<sub>3</sub>D. The fixed parameters are reported with a "(F)" label attached to them.

| Position <sup>a</sup>               | $b_L^0(N_2)^b$          | $n b_L^0(N_2)$          | $\delta^{0}(N_{2})^{b}$    | $\delta'(\mathbf{N_2})^{\mathrm{d}}$   | Assignment                          | $W_{ij} (N_2)^{b}$         | T-dep. $W_{ij}$ (N <sub>2</sub> ) <sup>b</sup> | <i>W<sub>ij</sub></i> (N <sub>2</sub> ) <sup>,e</sup> |
|-------------------------------------|-------------------------|-------------------------|----------------------------|----------------------------------------|-------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------------------|
| 1085.625324 (8)                     | 0.0633 (2)              | 0.832 (15)              | -0.00110 (15)              | +0.000027(2)                           | <sup>P</sup> P(10,3,A1)             | 0.0040 (2)                 | 1.24 (19)                                      | 0.0031 (4)                                            |
| 1085.738824 (8)                     | 0.0633 (2) <sup>c</sup> | 0.832 (15) <sup>c</sup> | -0.00110 (15) <sup>c</sup> | $+0.000027(2)^{c}$                     | <sup>P</sup> P(10,3,A2)             |                            |                                                |                                                       |
| 1094.044024 (5)                     | 0.0642 (2)              | 0.774 (6)               | -0.00214 (11)              | +0.000023(1)                           | <sup>P</sup> P(9,3,A2)              | 0.0048(1)                  | 0.75 (F)                                       | 0.0049 (2)                                            |
| 1094.117524 (5)                     | 0.0642 (2) <sup>c</sup> | 0.774 (6) <sup>c</sup>  | -0.00214 (11) <sup>c</sup> | +0.000023 (1) <sup>c</sup>             | <sup>P</sup> P(9,3,A1)              |                            |                                                |                                                       |
| 1102.423989 (4)                     | 0.0655 (2)              | 0.779 (8)               | -0.00215 97)               | +0.000025(1)                           | <sup>P</sup> P(8,3,A1)              | 0.0045 (2)                 | 0.82(9)                                        | 0.0045 (2)                                            |
| 1102.468792 (4)                     | 0.0655 (2) <sup>c</sup> | 0.779 (8) <sup>c</sup>  | -0.00215 97) <sup>c</sup>  | +0.000025 (1) <sup>c</sup>             | <sup>P</sup> P(8,3,A2)              |                            |                                                |                                                       |
| 1110.754522 (7)                     | 0.0645 (1)              | 0.805 (1)               | -0.00218 (4)               | +0.000026(1)                           | <sup>P</sup> P(7,3,A2)              | 0.0034 (1)                 | 0.75 (F)                                       | 0.0060 (3)                                            |
| 1110.779654 (12)                    | 0.0655 (2) <sup>c</sup> | 0.779 (8) <sup>c</sup>  | $-0.00215 \ 97)^{\circ}$   | $+0.000025(1)^{c}$                     | <sup>P</sup> P(7,3,A1)              |                            |                                                |                                                       |
| 1119.025382 (8)                     | 0.0675 (0)              | 0.814 91)               | -0.00210 (3)               | +0.000023(0)                           | <sup>P</sup> P(6,3,A2)              | 0.0048 (1)                 | 0.75 (2)                                       | 0.0032 (2)                                            |
| 1119.038034 (12)                    | 0.0675 (0)              | 0.814 91)               | $-0.00210(3)^{\circ}$      | $+0.000023(0)^{\circ}$                 | Ro(0.0.40)                          | 0.0001 (1)                 | 0.00 (5)                                       | 0.0000 (0)                                            |
| 1143.52/534 (7)                     | 0.0653 (1)              | 0.783 (3)               | -0.001/7 (5)               | -0.000004 (0)                          | <sup>R</sup> Q(8,3,A2)              | 0.0031(1)                  | 0.80 (F)                                       | 0.0032 (2)                                            |
| 1143.5/1634 (8)                     | 0.0653 (1)              | $0.783(3)^{\circ}$      | $-0.001/7(5)^{\circ}$      | $-0.000004(0)^{\circ}$                 | $^{R}Q(8,3,A1)$                     |                            |                                                |                                                       |
| 1154.439430 (16)                    | 0.0590(2)               | 0.840 (19)              | -0.00186(12)               | -0.000018(3)                           | $^{10}Q(13,0,A2)$                   | 0.00102 (20)               | 0.75 (5)                                       |                                                       |
| 1154./1391/(12)                     | 0.0591(1)               | 0.870 (12)              | -0.00135(11)               | +0.000008(2)                           | Q(12,0,A1)                          | 0.00182 (29)               | 0.75 (F)                                       |                                                       |
| 1154.966470 ( 9)                    | 0.0603(1)               | 0.769(7)                | -0.00158(9)                | +0.000013(2)                           | Q(11,0,AZ)                          | 0.00385(27)                | 0.75 (F)                                       |                                                       |
| 1155,199070 ( 8)<br>1155,422422 (7) | 0.0618(1)               | 0.776(4)                | -0.00110(7)                | +0.000016(1)                           | Q(10,0,A1)<br>RO(0,0,A2)            | 0.00492(22)                | 0.75 (F)<br>0.75 (F)                           |                                                       |
| 1155.422425 (7)                     | 0.0625(1)               | 0.790(3)                | -0.00110(7)                | +0.000004(1)                           | Q(9,0,AZ)                           | 0.00405(11)                | 0.75 (F)                                       |                                                       |
| 1155,521645 (7)                     | 0.0630(1)               | 0.822(3)                | -0.00207(7)                | +0.000018(1)                           | Q(0,0,A1)<br>RO(70A2)               | 0.00501(15)<br>0.00724(10) | 0.75 (F)                                       |                                                       |
| 1155,726751 (7)                     | 0.0649(1)               | 0.824(2)                | -0.00203(3)                | +0.000010(1)                           | Q(7,0,AZ)<br>RO(6.0.41)             | 0.00734(10)                | 0.75 (F)                                       |                                                       |
| 1155.079555 (7)                     | 0.0655(1)               | 0.831.91)               | -0.00146 (6)               | +0.000013(1)                           | Q(0,0,A1)<br>RO(5.0.A2)             | 0.00625 (6)                | 0.75 (F)                                       |                                                       |
| 1156 1085 40 (7)                    | 0.0039.91)              | 0.828 91)               | -0.00180(0)                | +0.000007(1)                           | $R_{O}(40.01)$                      | 0.00023(0)                 | 0.75 (F)                                       |                                                       |
| 1156 101029 (7)                     | 0.0000(1)               | 0.833(1)                | -0.00200(0)                | +0.000003(1)                           | RO(20 A2)                           | 0.00074(0)                 | 0.75 (F)                                       |                                                       |
| 1156 252680 (8)                     | 0.0000(1)               | 0.840(2)                | -0.00190(7)<br>-0.00248(9) | -0.000000(1)                           | $R_{O}(2.0 \text{ A1})$             | 0.00433(3)                 | 0.75(F)                                        |                                                       |
| 1156 293622 (11)                    | 0.0000(1)               | 0.320(2)<br>0.758(2)    | -0.00248(9)<br>-0.00354(9) | $\pm 0.000003(1)$<br>$\pm 0.000014(1)$ | $R_{O}(10A2)$                       | 0.00273 (3)                | 0.75 (F)                                       |                                                       |
| 1162 997143 (10)                    | 0.0679(1)               | 0.738(2)<br>0.778(2)    | -0.00334(3)<br>-0.00124(4) | +0.000014(1)                           | PO(93A1)                            | 0.0050 (1)                 | 0.75 (F)                                       |                                                       |
| 1163 110746 (7)                     | $0.0639(1)^{\circ}$     | $0.778(2)^{\circ}$      | $-0.00124(4)^{c}$          | $+0.000014(1)^{\circ}$                 | PO(93A2)                            | 0.0050(1)                  | 0.00 (1)                                       |                                                       |
| 1163 714357 (8)                     | 0.0635(1)               | 0.876(2)                | -0.00121(4)                | +0.000011(1)<br>+0.000026(1)           | PO(8 3 A2)                          | 0.0048 (1)                 | 117 (3)                                        |                                                       |
| 1163 787924 (8)                     | $0.0645(1)^{\circ}$     | $0.826(2)^{\circ}$      | $-0.00212(4)^{c}$          | $+0.000026(1)^{\circ}$                 | PO(8 3 A1)                          | 0.0010(1)                  | , (3)                                          |                                                       |
| 1164 381569 (5)                     | 0.0672(1)               | 0.828(2)                | -0.00239(3)                | +0.000024(0)                           | PO(73A1)                            | 0.0035(1)                  | 0.78 (5)                                       |                                                       |
| 1164.426483 (5)                     | $0.0672(1)^{\circ}$     | $0.828(2)^{\circ}$      | $-0.00239(3)^{c}$          | $+0.000024(0)^{c}$                     | PO(7.3.A2)                          | 0.0000 (1)                 | 0110 (0)                                       |                                                       |
| 1164.989362 (4)                     | 0.0696 91)              | 0.843 (2)               | -0.00232(3)                | +0.000025(0)                           | <sup>P</sup> Q(6,3,A2)              | 0.0063 (1)                 | 1.04 (3)                                       |                                                       |
| 1165.014728 (4)                     | 0.0696 91) <sup>c</sup> | 0.843 (2) <sup>c</sup>  | $-0.00232(3)^{c}$          | $+0.000025(0)^{c}$                     | <sup>P</sup> Q(6,3,A1)              |                            |                                                |                                                       |
| 1203.493135 (28)                    | 0.0571 (2)              | 0.765 (5)               | -0.00263(5)                | +0.000020(1)                           | <sup>Q</sup> P(12,3,A1)             | 0.0031 (3)                 | 0.75 (F)                                       |                                                       |
| 1203.505090 (26)                    | 0.0571 (2) <sup>c</sup> | 0.765 (5) <sup>c</sup>  | $-0.00263(5)^{c}$          | $+0.000020(1)^{c}$                     | <sup>Q</sup> P(12,3,A2)             |                            |                                                |                                                       |
| 1205.485111 (8)                     | 0.0655(1)               | 0.794 (2)               | -0.00140 (3)               | +0.000002(0)                           | <sup>R</sup> R(7,3,A2)              | 0.0035(1)                  | 0.78 (5)                                       | 0.0001 (3)                                            |
| 1205.529251 (8)                     | 0.0655 (1) <sup>c</sup> | 0.794 (2) <sup>c</sup>  | -0.00140 (3) <sup>c</sup>  | $+0.000002 (0)^{c}$                    | <sup>R</sup> R(7,3,A1) <sup>c</sup> |                            |                                                |                                                       |
| 1212.252462 (6)                     | 0.0642(1)               | 0.809(2)                | -0.00123 (3)               | +0.000003(0)                           | <sup>R</sup> R(8,3,A2)              | 0.0064 91)                 | 1.14 (2)                                       | 0.0038 (4)                                            |
| 1212.298834 (8)                     | 0.0642 (1) <sup>c</sup> | 0.809 (2) <sup>c</sup>  | -0.00123 (3) <sup>c</sup>  | +0.000003 (0) <sup>c</sup>             | <sup>R</sup> R(8,3,A1)              |                            |                                                |                                                       |
| 1218.616479 (8)                     | 0.0674 (2)              | 0.872 (5)               | -0.00206 (7)               | +0.000012(1)                           | <sup>P</sup> R(6,3,A1)              | 0.0043 (2)                 | 1.23 (8)                                       |                                                       |
| 1218.661262 (9)                     | 0.0674 (2) <sup>c</sup> | 0.872 (5) <sup>c</sup>  | $-0.00206(7)^{c}$          | +0.000012 (1) <sup>c</sup>             | <sup>P</sup> R(6,3,A2)              |                            |                                                |                                                       |
| 1218.933810 (9)                     | 0.0641 (0) <sup>c</sup> | 0.809 (0) <sup>c</sup>  | -0.00201 (4) <sup>c</sup>  | $+0.000002 (0)^{c}$                    | <sup>R</sup> R(9,3,A1)              | 0.0111(1)                  | 1.09 (0)                                       |                                                       |
| 1218.969303 (6)                     | 0.0641 (0)              | 0.809 (0)               | -0.00201 (4)               | +0.000002(0)                           | <sup>R</sup> R(9,3,A2)              |                            |                                                |                                                       |
| 1225.452547 (7)                     | 0.0620(1)               | 0.752 (6)               | -0.00227 (4)               | +0.000016(1)                           | <sup>R</sup> R(10,3,A2)             | 0.0064 (1)                 | 0.94 (7)                                       | 0.0018 (5)                                            |
| 1225.488360 (7)                     | 0.0674 (2) <sup>c</sup> | 0.872 (5) <sup>c</sup>  | -0.00206 (7) <sup>c</sup>  | +0.000012 (1) <sup>c</sup>             | <sup>R</sup> R(10,3,A1)             |                            |                                                |                                                       |
| 1225.671923 (9)                     | 0.0656(1)               | 0.829 95)               | -0.00318 (7)               | +0.000018(1)                           | <sup>P</sup> R(7,3,A2)              | 0.0044 (2)                 | 1.05 (8)                                       |                                                       |
| 1225.745502 (9)                     | 0.0656 (1) <sup>c</sup> | 0.829 95) <sup>c</sup>  | -0.00318 (7) <sup>c</sup>  | $+0.000018(1)^{c}$                     | <sup>P</sup> R(7,3,A1)              |                            |                                                |                                                       |
| 1231.811182 (9)                     | 0.0606 (1)              | 0.813 (9)               | -0.00142 (5)               | +0.000021(1)                           | <sup>R</sup> R(11,3,A1)             | 0.0061 (1)                 | 1.12(11)                                       | 0.0038 (1)                                            |
| 1231.848733 (9)                     | 0.0606 (1) <sup>c</sup> | 0.813 (9) <sup>c</sup>  | $-0.00142(5)^{c}$          | $+0.000021 (1)^{c}$                    | "R(11,3,A2)                         |                            |                                                |                                                       |
| 1238.006728 912)                    | 0.0599 (2)              | 0.803 (16)              | -0.00191 (6)               | +0.000015(1)                           | "R(12,3,A2)                         | 0.0063 (2)                 | 0.90 (19)                                      |                                                       |
| 1238.044758 (12)                    | 0.0599 (2) <sup>c</sup> | 0.803 (16) <sup>e</sup> | $-0.00191(6)^{\circ}$      | $+0.000015(1)^{\circ}$                 | "K(12,3,A1)                         | 0.0000 (0)                 | 0.75 (7)                                       |                                                       |
| 1244.037172 (17)                    | 0.0614 (2)              | 0.690(10)               | -0.00220 (8)               | -0.000017(2)                           | "R(13,3,A1)                         | 0.0060 (3)                 | 0.75 (F)                                       |                                                       |
| 1244.072667 (17)                    | $0.0614(2)^{c}$         | $0.690(10)^{c}$         | $-0.00220 (8)^{c}$         | $-0.000017 (2)^{c}$                    | "К(13,3,А2)                         |                            |                                                |                                                       |

<sup>a</sup> cm<sup>-1</sup>.

<sup>b</sup> cm<sup>-1</sup> atm<sup>-1</sup> at 296 K.

These values are constrained to be the same for the two split pairs of transitions.  $^d\ cm^{-1}\ atm^{-1}\ K^{-1}.$ 

<sup>e</sup> Reference [35]: only room temperature off-diagonal relaxation matrix element coefficients were determined.

scattered and we were unable to model them with our theoretical model.

#### Acknowledgments

The research described in this article was carried out at the College of William and Mary, Jet Propulsion Laboratory (JPL), California Institute of Technology, Connecticut College and NASA Langley Research Center under contracts with the National Aeronautics and Space Administration. A. Predoi-Cross acknowledges the support she received from the National Sciences and Engineering Research Council of Canada and the study leave program at the University of Lethbridge, AB, Canada for providing the opportunity to carry out this investigation. The authors thank NASA's UPPER Atmosphere Research Program for their support of the McMath – Pierce FTS laboratory.

#### References

- EPA. Methane and nitrous oxide emissions from natural sources. Washington, DC, USA: U.S. Environmental Protection Agency; 2010.
- [2] U.S. Department of State. Projected greenhouse gas emissions. In: Fourth climate action report to the UN framework convention on climate change. U.S. Department of State, Washington, DC, USA; 2007.
- [3] Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian arctic shelf. Science 2010;327:1246–50.
- [4] Miller SM, Wofsy SC, Michalak AM, Kort EA, Andrews AE, Biraud SC, Dlugokencky EJ, Eluszkiewicz J, Fischer ML, Janssens-Maenhout G, Miller BR, Miller JB, Montzka SA, Nehrkorn T, Sweeny C. Anthopogenic emissions of methane in the United States. Proc Natl Acad Sci 2013;110(50):20018–22.
- [5] Crutzen PJ. Methane's sinks and sources. Nature 1991;350:380-1.
- [6] Alperin M, Hoehler T. The ongoing mystery of sea-floor methane. Science 2010;329:288–9.
- [7] Irion W, Moyer EJ, Gunson MR, Rinsland CP, Yung YL, Michelsen HA, et al. Heavy ozone enrichments from ATMOS infrared solar spectra. Geophys Res Lett 1996;23:2381–4.
- [8] Rinsland CP, Gunson MR, Foster JC, Toth RA, Farmer CB, Zander R. Stratospheric profiles of heavy-water vapor isotopes and CH<sub>3</sub>D from analysis of the ATMOS Spacelab 3 infrared solar spectra. J Geophys Res Atmos 1991;96:1057–68.
- [9] Lellouch E, Bezard B, Fouchet T, Feuchtgruber H, Encrenaz T, de Graauw T. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron Astrophys 2001;370:610–22.
- [10] Kim JH, Kim SJ, Geballe TR, Kim SS, Brown LR. High-resolution spectroscopy of Saturn at 3 microns: CH<sub>4</sub>, CH<sub>3</sub>D, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>6</sub>, PH<sub>3</sub>, clouds, and haze. Icarus 2006;185:476–86.
- [11] Sromovsky LA, Fry PM, Boudon V, Campargue A, Nikitin A. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres. Icarus 2012;218:1–23.
- [12] Burgdorf M, Orton G, van Cleve J, Meadows V, Houck J. Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy. Icarus 2006;184:634–7.
- [13] Bezard B, Nixon CA, Kleiner I, Jennings DE. Detection of <sup>13</sup>CH<sub>3</sub>D on Titan. Icarus 2007;191:397–400.
- [14] Irwin PGJ, de Bergh C, Courtin R, Bezard B, Teanby NA, Davis GR, et al. The application of new methane line absorption data to Gemini-N/NIFS and KPNO/FTS observations of Uranus' near-infrared spectrum. Icarus 2012;220:369–82.
- [15] Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD. Strong release of methane on Mars in northern summer 2003. Science 2009;323:1041–5.
- [16] Novak RE, Mumma MJ, Villanueva GL. Measurement of the isotopic signatures of water on Mars: implications for studying methane. Planet Space Sci 2011;59:163–8.
- [17] Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M. Detection of methane in the atmosphere of Mars. Science 2004;306:1758–61.
- [18] Webster CR, Mahaffy PR. Determining the local abundance of Martian methane and its <sup>13</sup>C/<sup>12</sup>C and D/H isotopic ratios for

comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission. Planet Space Sci 2011;59:271–83.

- [19] Kim SJ, Caldwell J. The abundance of  $CH_3D$  in the atmosphere of Titan, derived from 8  $\mu$ m to 14  $\mu$ m thermal emission. Icarus 1982;52: 473–82.
- [20] Coustenis A, Bezard B, Gautier D. Titans atmosphere from Voyager infrared observations 1. The gas composition of Titan's equatorial region. Icarus 1989;80:54–76.
- [21] Penteado PF, Griffith CA, Greathouse TK, de Bergh C. Measurements of CH<sub>3</sub>D and CH<sub>4</sub> in Titan from infrared spectroscopy. Astrophys J 2005;629:L53–6.
- [22] Flasar FM, Achterberg RK, Conrath BJ, Bjoraker GL, Jennings DE, Romani PN, et al. Temperatures, winds, and composition in the Saturnian system. Science 2005;308:1247–51.
- [23] Flasar FM, Achterberg RK, Conrath BJ, Gierasch PJ, Kunde VG, Nixon CA, et al. Titan's atmospheric temperatures, winds, and composition. Science 2005;308:975–8.
- [24] Kawakita H, Watanabe JI. Fluorescence efficiencies of monodeuteriomethane in comets: toward the determination of the deuterium/ hydrogen ratio in methane. Astrophys J 2003;582:534–9.
- [25] Kawakita H, Watanabe JI, Furusho R, Fuse T, Boice DC. Nuclear spin temperature and deuterium-to-hydrogen ratio of methane in comet C/2001 Q4 (NEAT). Astrophys J 2005;623:L49–52.
- [26] Webster CR, Mahaffy PR. Determining the local abundance of Martian methane and its' <sup>13</sup>C/<sup>12</sup>C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission. Planet Space Sci 2011;2059: 271–83.
- [27] Pinkley LW, Dangnhu M. Analysis of the  $\nu_6$  band of  $^{12}$ CH<sub>3</sub>D at 8.6  $\mu$ m. J Mol Spectrosc 1977;68:195–222.
- [28] Tarrago G, Delaveau M, Fusina L, Guelachvili G. Absorption of  $^{12}CH_3D$ at 6–10 µm: triad  $\nu_3$ ,  $\nu_5$ ,  $\nu_6$ . J Mol Spectrosc 1987;126:149–58.
- [29] Devi VM, Benner CD, Rinsland CP, Smith MAH, Thakur KB. Diodelaser measurements of intensities and halfwidths in the  $\nu_6$  band of  $^{12}$ CH<sub>3</sub>D. J Mol Spectrosc 1987;122:182–9.
- [30] Tarrago G, Restelli G, Cappellani F. Absolute absorption intensities in the triad  $\nu_3$ ,  $\nu_5$ ,  $\nu_6$  of  $^{12}$ CH<sub>3</sub>D at 6–10  $\mu$ m. J Mol Spectrosc 1988;129: 326–32.
- [31] Nikitin A, Champion JP, Tyuterev VG, Brown LR. The high resolution infrared spectrum of CH<sub>3</sub>D in the region 900–1700 cm<sup>-1</sup>. J Mol Spectrosc 1997;184:120–8.
- [32] Ulenikov ON, Onopenko GA, Tyabaeva NE, Schroderus J, Alanko S. Study on the rovibrational interactions and  $A_1/A_2$  splittings in the  $\nu_3/$  $\nu_5/\nu_6$  triad of CH<sub>3</sub>D. J Mol Spectrosc 2000;200:1–15.
- [33] Nikitin AV, Champion JP, Tyuterev VG, Brown LR, Mellau G, Lock M. The infrared spectrum of CH<sub>3</sub>D between 900 and 3200 cm<sup>-1</sup>: extended assignment and modeling. J Mol Struct 2000;517–518: 1–24.
- [34] Devi VM, Benner CD, Smith MAH, Rinsland CP. Measurements of airbroadened width and air-induced shift coefficients and line mixing in the  $\nu_6$  band of <sup>12</sup>CH<sub>3</sub>D. J Quant Spectrosc Radiat Transf 2001;68: 1–41.
- [35] Devi VM, Benner CD, Smith MAH, Rinsland CP, Brown LR, Sams RL, et al. Multispectrum analysis of self- and N<sub>2</sub>-broadening, shifting and line mixing coefficients in the  $\nu_6$  band of  $^{12}$ CH<sub>3</sub>D. J Quant Spectrosc Radiat Transf 2002;72:139–91.
- **[36]** Predoi-Cross A, Hambrook K, Brawley-Tremblay M, Bouanich J-P, Smith MAH. Measurements and theoretical calculations of N<sub>2</sub>broadening and N<sub>2</sub>-shift coefficients in the  $\nu_2$  band of CH<sub>3</sub>D. J Mol Spectrosc 2006;235:35–53.
- [37] Blanquet G, Walrand J, Bouanich J-P. Diode-laser measurements of N<sub>2</sub>-broadening coefficients in the ν<sub>3</sub> band of CH<sub>3</sub>D. J Mol Spectrosc 1995;171:525–32.
- [38] Walrand J, Blanquet G, Bouanich J-P. Diode-laser measurements of N<sub>2</sub>- and O<sub>2</sub>-broadening coefficients in the  $\nu_3$  band of CH<sub>3</sub>D. Spectroc Acta Part A 1996;52:1037–40.
- [39] Devi VM, Benner CD, Smith MAH, Rinsland CP, Brown LR. Multispectrum analysis of self- and nitrogen-broadening, pressure shifting and line mixing in the  $\nu_3$  parallel band of <sup>12</sup>CH<sub>3</sub>D. J Quant Spectrosc Radiat Transf 2002;73:603–40.
- [40] Devi VM, Benner CD, Smith MAH, Rinsland CP, Brown LR. Self- and N<sub>2</sub>-broadening, pressure induced shift and line mixing in the  $\nu_5$  band of  $^{12}$ CH<sub>3</sub>D using a multispectrum fitting technique. J Quant Spectrosc Radiat Transf 2002;74:1–41.
- [41] Tang Y, Yang SL, Lehmann KK. Measurements of CH<sub>3</sub>D line strengths, foreign pressure-broadening, and pressure-shift coefficients at near-IR region using continuous-wave cavity ring-down spectroscopy. J Mol Spectrosc 2013;291:48–56.

- [42] Chudamani S, Varanasi P. Measurements on 4.7 μm CH<sub>3</sub>D lines broadened by H<sub>2</sub> and N<sub>2</sub> at temperatures relevant to planetary atmospheres. | Quant Spectrosc Radiat Transf 1987;38:179–81.
- [43] Varanasi P, Chudamani S. Linewidth measurements in the thermal infrared bands of <sup>12</sup>CH<sub>3</sub>D at planetary atmospheric temperatures. Appl Opt 1989;28:2119–22.
- [44] Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, et al. The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 2013;130:4–50.
- [45] Sung K, Mantz AW, Brown LR, Smith MAH, Crawford TJ, Devi VM, Benner CD. Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for  $^{13}\text{CH}_4$  at 7  $\mu\text{m}$ . J Mol Spectrosc 2010;262: 122–34.
- [46] Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least squares fitting technique. J Quant Spectrosc Radiat Transf 1995;53:705–21.
- [47] Devi VM, Benner D, Smith MAH, Rinsland CP, Brown LR. Measurements of air broadening, pressure shifting and off diagonal relaxation matrix coefficients in the  $\nu_3$  band of  $^{12}$ CH<sub>3</sub>D. J Mol Struct 2000;517–518:455–75.
- [48] Toth RA.  $\nu_2$  band of H<sub>2</sub>O: line strengths and transition frequencies. J Opt Soc Am B 1991;8:2236–55.
- [49] Rothman LS, Gordon IE, Barbe A, Benner DC, Bernath PF, Birk M, et al. The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 2009;110:533–72.
- [50] Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Multispectrum analysis of <sup>12</sup>CH<sub>4</sub> in the  $\nu_4$  band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing. J Quant Spectrosc Radiat Transf 2009;110:639–53.
- [51] Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Multispectrum analysis of <sup>12</sup>CH<sub>4</sub> in the  $\nu_4$  band: II. Self-broadened half widths, pressure-induced shifts, temperature dependences and line mixing. J Quant Spectrosc Radiat Transf 2010;111:1152–66.
- [52] Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. A multi-spectrum analysis of the v<sub>4</sub> band of <sup>13</sup>CH<sub>4</sub>: widths, shifts, and line mixing coefficients. J Quant Spectrosc Radiat Transf 2011;112: 952–68.
- [53] Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Air- and self-broadened half widths, pressure-induced shifts, and line mixing in the  $\nu_2$  band of  $^{12}$ CH<sub>4</sub>. J Quant Spectrosc Radiat Transf 2014;133: 217–34.
- [54] Ozier L, Ho W, Birnbaum G. Pure rotational spectrum and electric dipole moment of CH<sub>3</sub>D. J Chem Phys 1969;51:4873–80.

- [55] Robert D, Bonamy J. Short-range force effects in semi-classical molecular line broadening calculations. J Phys (Paris) 1979;40: 923–43.
- [56] Ma Q, Tipping RH, Boulet C. Modification of the Robert–Bonamy formalism in calculating Lorentzian half-widths and shifts. J Quant Spectrosc Radiat Transf 2007;103:588–96.
- [57] Buldyreva J, Bonamy J, Robert D. Semiclassical calculations with exact trajectory for N<sub>2</sub> rovibrational Raman linewidths at temperatures below 300 K. J Quant Spectrosc Radiat Transf 1999;62:321–43.
- [58] Buldyreva J, Nguyen L. Extension of the exact trajectory model to the case of asymmetric tops and its application to infrared nitrogenbroadened linewidths of ethylene. Phys Rev A 2008;77 042720-041.
- [59] Buldyreva J, Guinet M, Eliet S, Hindle F, Mouret G, Bocquet R, Cuisset A. Theoretical and experimental studies of CH<sub>3</sub>X-Y<sub>2</sub> rotational line shapes for atmospheric spectra modelling: application to room-temperature CH<sub>3</sub>Cl-O<sub>2</sub>. Phys Chem Chem Phys 2011;13:20326–34.
- [60] Nikitin AV, Rey M, Tyuterev VG. Rotational and vibrational energy levels of methane calculated from a new potential energy surface. Chem Phys Lett 2011;501:179–86.
- [61] Bouanich J-P, Blanquet G, Populaire J-P, Walrand J. Nitrogen broadening of acetylene lines in the ν<sub>5</sub> band at low temperature. J Mol Spectrosc 1998;190:7–14.
- [62] Jacquiez K, Blanquet G, Walrand J, Bouanich J-P. Diode-laser measurements of  $O_2$ -broadening coefficients in the  $\nu_3$  band of CH<sub>3</sub>D. J Mol Spectrosc 1996;171:386–9.
- [63] Gray CG, Gubbins KE. Theory of molecular fluids.Fundamentals, vol. 1. Oxford: Clarendon press; 1984.
  [64] Bouanich J-P, Blanquet G, Walrand J. Theoretical O<sub>2</sub>- and N<sub>2</sub>-
- [64] Bouanich J-P, Blanquet G, Walrand J. Theoretical O<sub>2</sub>- and N<sub>2</sub>broadening coefficients of CH<sub>3</sub>Cl spectral lines. J Mol Spectrosc 1993;161:416–26.
- [65] Buldyreva J, Bonamy J, Weikl MC, Beyrau F, Seeger T, Leipertz A, et al. Linewidth modelling of C<sub>2</sub>H<sub>2</sub>-N<sub>2</sub> mixtures tested by rotational CARS measurements. J Raman Spectrosc 2006;37:647–54.
- [66] Buldyreva J, Rohart F. Experimental and theoretical studies of roomtemperature sub-millimetre CH<sub>3</sub><sup>35</sup> Cl line shapes broadened by H<sub>2</sub>. Mol Phys 2012;110:2043–53.
- [67] Predoi-Cross A, Hambrook K, Brawley-Tremblay M, Bouanich J-P, Devi VM, Benner DC, et al. Measurements and theoretical calculations of self-broadening and self-shift coefficients in the  $v_2$  band of CH<sub>3</sub>D. J Mol Spectrosc 2005;234:53–74.
- [68] Reuter D, Jennings DE, Brault JW. The v=1 ←0 quadrupole spectrum of N<sub>2</sub>. J Mol Spectrosc 1986;115:294–304.