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Abstract. The objective of this study is to test a cost-effective, physically based Light Detection and Ranging (LiDAR) classification
methodology for wetland and upland land cover types within an area exceeding 1,000 km2 in the Boreal Plains, Alberta, Canada.
Decision criteria are based on physical attributes of the landscape that influence maintenance of land cover types. Results are
compared with 38 geolocated measurement plots at land cover boundaries and transition zones, manual delineation of 2,337
wetlands using photogrammetric methods and publicly available land cover classifications.

Results suggest that 57% of LiDAR-based wetland classes correspond with delineated wetlands, whereas 37% occur as errors
of commission due to excluded wetlands in the manual delineation and confusion with harvested areas. Comparison of classified
edges with plot shows that all classifications underestimate wetland area. Residual differences of the LiDAR-based classification
are −0.3 m, on average (compared with measured), and have reduced range of error compared with other methods. Multispectral
classifications misclassify up to 2/3 of wetland boundaries as a result of lower-resolution mixed pixels. Therefore, high-resolution
maps of terrain morphology and vegetation structure provide an accurate, cost-effective means for characterizing wetland vs.
upland forest in areas where LiDAR data are available.

Résumé. L’objectif de cette étude est de tester une méthode de classification à partir du lidar «Light Detection and Ranging
(LiDAR)», qui est économique et basée sur la physique, pour les types de couvertures terrestres des zones humides et des hautes
terres dans une zone de plus de 1,000 km2 dans les plaines boréales, en Alberta, au Canada. Les critères de décision sont basés
sur les attributs physiques du paysage qui influencent le maintien des types de couvertures terrestres. Les résultats sont comparés
avec 38 parcelles de mesure géolocalisées aux frontières de couverture terrestre et de zones de transition, la délimitation manuelle
des 2,337 zones humides en utilisant des méthodes de photogrammétrie et les classifications de la couverture terrestre accessibles
publiquement.

Les résultats suggèrent que 57 % des zones humides classées à partir du lidar correspondent aux zones humides définies, tandis
que 37 % sont des erreurs de commission en raison de zones humides exclues dans la délimitation manuelle et la confusion avec des
zones récoltées. La comparaison des bords classés avec les parcelles montre que toutes les classifications sous-estiment la superficie
de la zone humide. Les différences résiduelles de la classification à partir du lidar sont de −0.3 m, en moyenne (par rapport à
la mesure) et ont une marge d’erreur réduite par rapport à d’autres méthodes. Les classifications multispectrales ont mal classé
jusqu’à 2/3 des limites de zones humides en raison de la résolution plus basse des pixels mixtes. Par conséquent, les cartes de haute
résolution de la morphologie du terrain et de la structure de la végétation fournissent un moyen précis et économique pour la
caractérisation des zones humides par rapport à la forêt des hautes terres dans les zones où les données lidars sont disponibles.

INTRODUCTION
Canadian wetlands, defined as saturated areas of land con-

taining waterlogged and altered soils, and water tolerant vege-
tation (Government of Alberta 2013) comprise approximately
14% of the land area of Canada (Environment Canada 2016).

Received 16 October 2015. Accepted 8 February 2016.
∗Corresponding author e-mail: laura.chasmer@uleth.ca.

Despite their broad areal coverage, these sensitive ecosystems
are declining at a staggering rate. In Alberta, approximately 2/3
of wetlands found in settled parts of the province no longer
exist, mainly as a result of agricultural drainage and urban de-
velopment (Government of Alberta 2013). Within “natural” and
crown land areas of Alberta, rates of boreal wetland change have
not been accurately quantified. This is of grave concern because
Canada has one of the greatest rates of boreal forest disturbance
globally (78% by 2008; Komers and Stanojevic 2013), due to
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natural resources extraction, land cover change/agriculture and
natural disturbance (de Groot et al. 2013). In addition to dis-
turbance, severe drying as a result of warmer air temperatures
and reduced/stable precipitation over the last 30+ years might
have intensified ecosystem sensitivity to climate change and dis-
turbance, potentially creating a “tipping point” scenario of sur-
face/groundwater drying for many wetland/inland pond ecosys-
tems. Such trends have already been identified in many northern
parts of Canada and Alaska, resulting in changes to hydrology,
vegetation succession, and increased respiration and methane
production (e.g., Roulet 2000; Sturm et al. 2001; Stow et al.
2004; Klein et al. 2005; Riordan et al. 2006; Smith et al. 2014),
which, over vast regions, could exacerbate positive feedbacks
to the climate system (Tarnocai 2009). As a result, accurate
classification of wetland type and occurrence is fundamentally
important for understanding global environmental change and
implementation of sound political decisions with regard to wet-
land disturbance and reclamation.

Quantifying changes to boreal wetland ecosystems can be
difficult but is required to monitor wetland conservation and
change. Traditional mapping requires intensive in situ data col-
lection of species type/taxonomy and visual assessments of per-
cent species cover (e.g., Halsey et al. 2003). Methods are often
costly and time consuming, and sites might be inaccessible.
Remote sensing technologies offer an alternative for large-area
mapping of wetlands/forest transition zones through continuous
observation of Earth’s surface (e.g., Ozesmi and Bauer 2002).
However, the criteria used to classify wetlands differ among
data products. In some global vegetation datasets, small and
perennial wetlands might be missed entirely within large pix-
els containing mixed land cover types (Frey and Smith 2007;
Krankina et al. 2008) or may be aggregated into other classes
within global land cover data products (Krankina et al. 2008).
Mixed pixels and aggregation of land cover types often results
in significant underestimation of wetland extent and type (Frey
and Smith 2007). Krankina et al. (2008) use the example of
peatlands (bogs, swamps, fens) to describe differences in classi-
fication criteria. They found that optical remote sensing methods
were not able to directly measure some of the defining charac-
teristics of peatlands, specifically, an accumulated layer of peat
exceeding a depth of 40 cm found on organic, waterlogged soils
(National Wetlands Working Group 1997). Therefore, peatland
mapping requires the use of proxy variables often including
surface hydrology, geomorphological land surface features, and
floristic characteristics, which might or might not be consistent
across all wetlands at all times or over broad regions (e.g., Frey
and Smith 2007).

Numerous studies have demonstrated the use of airborne
Light Detection and Ranging (LiDAR) for automated detection
of wetland edges, types, and characteristics, using LiDAR only
(Korpela et al. 2009; Richardson et al. 2010), LiDAR/synthetic
aperture radar fusion (Knight et al. 2013; Millard and Richard-
son 2013), and LiDAR/optical fusion (Gilmore et al. 2008;

Krankina et al. 2008; Chasmer et al. 2014) methods. LiDAR
systems sample 3D attributes of the land surface below and
within canopies at high spatial resolution. Most LiDAR-based
classifications use proxy indicators of wetland definition men-
tioned by Krankina et al. (2008), including topographic deriva-
tives such as slope, plan curvature, and profile curvature (e.g.,
Chasmer et al. 2014). These indicate where wet areas are ex-
pected by slight to moderate depressions of the surface com-
pared with surrounding local topography (White et al. 2012).
This has led to the development of integrative land surface data
derivatives that describe various functions of wetlands to be in-
cluded within the classification methodology beyond spectral in-
formation. Using photogrammetrically derived digital elevation
models (DEMs), Hogg and Todd (2007) suggest that spatially
explicit variations in topography, vegetation characteristics, and
linkages to hydrological feedbacks within the local environ-
ment improve the characterization of wetlands, although this
adds additional complexity to the classification method. Millard
and Richardson (2013) tested 84 LiDAR-based vegetation and
topographic derivatives, including those that can be used to de-
fine water movement (e.g., topographic wetness index) within
a Random Forest classification of a bog and surrounding land
cover types in Southern Ontario. They found that 22 data deriva-
tives could be used to characterize the bog and reduced these
further to 8 key variables, but ultimately, the standard deviation
of all laser returns and the residual of the DEM above/below
a polynomial surface provided the greatest explanation of the
variance between classes. Unlike Hogg and Todd (2007), they
found that slope-related metrics were less important. Hopkinson
et al. (2006) also suggest that the standard deviation of all returns
provide an important metric for estimating vegetation height for
all vegetation types studied and LiDAR survey parameters (i.e.,
pulse repetition frequency, flying height, etc.), without the need
for standardization.

In recent years, the utility of LiDAR for high-resolution map-
ping of the land surface over broad regions has become a reality
(Hopkinson et al. 2013) due to rapid technological innovations
and a need for baseline mapping; however, few studies have
capitalized on the use of LiDAR data for broad-area mapping
of wetlands. In this study, a wetland classification methodology
is developed based on LiDAR data derivatives that represent
indicators for the existence and maintenance of more than 2,330
wetlands and additional land cover types. The data derivatives
used in the classification include indices describing locally topo-
graphic high and low areas (topographic morphology), vegeta-
tion structural variability, and surface reflectance. To determine
whether the classification is valid in areas of variable surficial
geology and soil characteristics, methods are applied to an area
(study polygon) exceeding 1,000 km2 of the Boreal Plains eco-
zone, Alberta, Canada. Approximately 1/3 of the study polygon
consists of a mixture of heterogeneous wetlands and till moraine
upland forests (herein described as “Till Moraine”), whereas
the other 2/3 consists of geologically homogeneous clay plains
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overlain by forests and forest harvest blocks, wetlands, and roads
(herein described as “Clay Plains”). The objectives of this study
are to

1. evaluate the efficacy of the classification methodology within
both Till Moraine and Clay Plains regions by comparing them
with a broad-area manual photo delineation of wetland types
(herein referred to as “delineated wetlands”) and extents as
a best estimate of wetland coverage (Halsey et al. 2004);

2. quantify differences between the LiDAR-based classification
and 2 lower-resolution multispectral classifications used by
the province of Alberta: (i) a Canada-wide classification:
Earth Observation for the Sustainable Development of forests
(EOSD: Wulder et al. 2008), and (ii) the Alberta Ground
Cover Classification (AGCC: Sánchez-Azofeifa et al. 2004),
baseline dataset for land cover assessment in Alberta;

3. validate land cover edge delineation of tested classification
methodologies using geographically located vegetation plots
at land cover boundaries and transition zones.

Provincial interest in a manually delineated air photo-based
wetland dataset indicates that a highly accurate and broad-area
methodology is needed for defining wetland ecosystems, ex-
tents, and characteristics as they currently exist. The Alberta
Wetland Policy (2013) requires: (i) an inventory of all wetlands
in a given area as the foundation for the Alberta Wetland Policy;
(ii) the ability to assign a value to all wetlands based on biodi-
versity and ecological health, hydrological function, and relative
abundance of wetland types; and (iii) tools for evaluating wet-
land loss and restoration. With almost wall-to-wall coverage,
LiDAR datasets for the Province of Alberta provide unprece-
dented opportunity to examine and quantify baseline land cover
types and to develop methods appropriate for ecozones and
underlying land surface characteristics. This methodology pro-
vides a timely alternative or complement to currently available
optical and RADAR-based products used by the Province of
Alberta.

STUDY AREA
The study polygon covers an area of 1,062 km2 and is lo-

cated to the north of Utikuma Lake (56.04, −115.30) ∼ 300 km
north of Edmonton, Alberta, within the Boreal Plains ecozone of
the Canadian boreal forest (Figure 1a). The Utikuma Regional
Study Area (URSA) was established as a long-term monitoring
site in 1998, primarily to quantify key hydrological processes
that have formed ecosystem diversity and resilience across a
variety of landscape scales, disturbance regimes, and succes-
sive cycles (Ferone and Devito 2004; Petrone et al. 2007). On
an annual basis, average air temperature is 0.2◦C (Natural Re-
gions Committee 2006) and potential evapotranspiration often
exceeds precipitation (Devito et al. 2005), making this region
sensitive to warming/drying trends (Petrone et al. 2007). The
study polygon is part of the Central Mixedwood subregion of

the Northern Alberta Uplands and consists of a heterogeneous
mosaic of upland forests often found on stagnant ice moraines
with medium-textured glacial till soils to the west of the poly-
gon (heterogeneous area, Figure 1b; Ferone and Devito 2004).
Wetland ecosystems comprise, predominantly, shallow ponds,
treed fens, and bogs on poorly drained organic soils (Natural Re-
gions Committee 2006). The eastern part of the study polygon
is characterized by gently undulating clay till plain comprising
glacio-lacustrine deposits and productive conifer forests (Ferone
and Devito 2004).

The height transition between pond and wetland surfaces to
riparian and upland mixedwood forests is often abrupt, with sur-
rounding riparian vegetation comprising larch (Larix laricina),
green alder (Alnus viridis), paper birch (Betula papyrifera), bog
birch (Betula glandulosa), and occasional Alaskan birch (Be-
tula neoalaskana) on gently increasing elevation found a few
meters from the wetland edge (Petrone et al. 2007). Mixedwood
upland forests comprise, mainly, aspen (Populus tremuloides),
white spruce (Picea glauca), balsam poplar (Populus balsam-
ifera) that rise up to 30 m above the pond/wetland surface in
the western (heterogeneous) part of the study area. Black spruce
(Picea mariana) is found mostly within treed wetlands under-
lain with Sphagnum spp. moss and fibric peat, grasses up to
0.5 m in height, and gyttja hummocks and hollows, whereas
open wetlands contain small birch and alder seedlings. Ponds
are characterized by submergent macrophyte vegetation that
might float on top of ponds in summer (Petrone et al. 2007). In
the eastern portion of the study polygon, sand/clay soil increases
drainage and encourages jack pine (Pinus banksiana) growth.
The region is also highly disturbed with significant areas of
forest harvesting, oil and gas extraction, and mining.

MATERIALS

Airborne LiDAR Data
Airborne LiDAR data were collected by Airborne Imaging

Inc.1 in late August, 2006, 2007, and early September 2008, us-
ing a small footprint discrete return ALTM 3100EA2 operated
at flying heights near 1,400 m above ground level (Figure 1b). A
pulse repetition frequency of 50 kHz and a scan angle of ± 25o

was used with 50% overlap between scan lines to reduce min-
imal occlusion of laser pulses by the canopy and to effectively
sample from both sides of tree crowns. Comparison with Moder-
ate resolution Imaging Spectroradiometer (MODIS)-enhanced
vegetation index (EVI)3 indicates that phenological changes to
vegetation had not occurred until the week of September 29 (for
the 2008 survey period acquired in early September).

Quality control processing for high/low returns and re-
moval of areas with greater than 50% overlap of scanlines

1Calgary, AB; licensed to the Province of Alberta
2Optech Inc., Toronto, Ontario
3Optech Inc., Toronto, Ontario
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FIG. 1. (a) Location of the ∼ 1000 km2 study area polygon within the Boreal Plains ecozone, Alberta, Canada. The study polygon
(b) is divided by a black line into “Heterogeneous” Till Moraine and “Homogeneous” Clay Plains. LiDAR data subsets were
acquired in 2006, 2007, and 2008 displayed as a hillshade model of the original DEMs. Three concentrated areas of interest (AOI)
are used for comparison, and the locations of field plots along wetland boundaries are illustrated.

was performed in TerraScan (Terrasolid, Finland). Cutting of
overlapping areas reduces increased return reflection within
canopies at scan line edges (Morsdorf et al. 2008) and within
areas exceeding double overlap. Laser return data were then
tiled and classified into ground, nonground and all returns using
TerraScan. A 2-m × 2-m DEM was created, using an inverse dis-
tance weighting (IDW) approach with a search radius of 2.5 m
derived from the ground-classified returns. A gridded variance
map of all returns was also created within a 2-m × 2-m × z
column as the sum of the squared deviations of z (height) from
the mean of all returns divided by 1 less than the total number of
returns within a column. Finally, laser return intensity was nor-
malized for range and scan angle, using methods of Hopkinson
(2007) and Crasto et al. (2015) for paved road surfaces crossing
between survey polygons and rasterized to 2 m resolution using
the same IDW method. Intensity was also checked, using dark
subtraction from lowest intensity pixels. A digital surface model
(DSM) and canopy height model (CHM = DSM − DEM) were
created for visualization (not used in the classification) based
on the mean maximum height of all returns found within a
2-m × 2-m × z column.

Comparison Datasets: Delineated Air Photos, AGCC and
EOSD

Numerous remote-sensing-based datasets are used for com-
parison with the LiDAR-derived wetland classification pre-
sented in this study. The first method is based on wide-area

aerial photo delineation (herein referred to as “delineated wet-
lands”;4 Figure 2a). A detailed map of wetland extents and types
exists for an area covering 42 1:250,000 map sheets. A small
subset of this area is compared with the LiDAR-based classi-
fication. The purpose of the wetland delineation is to upgrade
and improve the peatland/wetland classification system estab-
lished by the National Wetlands Working Group (1988, 1997;
Halsey et al. 2004) and by Vitt et al. (1996; Figure 2a). Wet-
lands were identified, delineated, and characterized from air
photos according to Vitt et al. (1996) by the Alberta Peat Task
Force (Halsey et al. 2004), using orthorectified and geometri-
cally corrected aerial photograph mosaics, completed in 2002.
The wetland extent shape file contains wetland classes/types,
vegetation characteristics, and area attributes in table form per
delineated wetland. Delineated wetlands were then subset, ras-
terized, to 2-m resolution and converted into geotiff for direct
comparison with the LiDAR-based wetland classification.

The second dataset compared with the LiDAR-based classi-
fication is the publicly available EOSD classification described
in Wulder et al. (2007, 2008) as a standard forest land cover
product for Canada (Figure 2b). The EOSD product comprises
25 m × 25 m pixels and 23 land cover classes derived from
Landsat multispectral data representing the conditions of the
land, circa 2000, following methods of Wulder et al. (2007).
Four hierarchical classification levels are used to characterize

4Provided by the Devonian Botanic Garden, University of Alberta.
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FIG. 2. Combined wetland classes: (a) bog, fen, swamp, marsh, delineated from air photos (Halsey et al. 2004) and (b) grass,
shrub, treed wetland classes from the EOSD classification (Wulder et al. 2008), both illustrated in gray for the region north of
Utikuma Lake. Lakes are represented in black, the study polygon indicating LiDAR coverage is outlined. For simplicity, AGCC is
not shown here due to similarity with EOSD, except when examining small areas of the classified wetlands do differences appear.

increasingly specific characteristics of the land surface, using
National Forest Inventory (NFI) protocols. The results of the
classification have been validated over Vancouver Island based
on plots and airborne video in Wulder et al. (2006 and 2007).
Wulder et al. (2006) note producer’s accuracies of between ap-
proximately 40%–50% within a class of treed, shrub, and herb
wetlands. Classes were similarly combined in this study and re-
sampled to 2 m resolution for comparison of all wetlands within
the original treed wetland, shrub wetland, and grass wetland
classes.

Finally, the Alberta Ground Cover Classification (AGCC) is
an additional, publicly available land cover classification cre-
ated in partnership by Alberta Environment and Sustainable
Resource Development, Government of Alberta, and Agricul-
ture and Agri-Food Canada, circa 2000. The classification uses
Landsat 5 and Landsat 7 multispectral data, acquired between
August 1999 and 2002, for 51 land cover classes found in Al-
berta, described in Sánchez-Azofeifa et al. (2005). The classi-
fication was designed as a complement to the national EOSD
program, and provides 5 increasingly detailed (but also increas-
ingly less accurate) classification levels used to build an un-
supervised classification. At Level 2 (defined wetland extent
similar that provided by EOSD), the expected accuracy is 90%,
and at Level 3 (wetland type) this is reduced to an expected
accuracy of 85%, based on users’ and producers’ accuracies of
the confusion matrix.

Field Data Collection for Validation
Geographically located vegetation measurement plots were

established at separate land cover transition boundaries between
upland forest and wetland (n = 9), riparian and wetland (n =
15), and pond and wetland (n = 14) in 2002, 2008, 2012, and
2015 as part of a larger initiative to map vegetation structural
characteristics along transects. Plots were randomly located at
16 different pond/wetland sites (with some plots located on
opposite sides of an individual pond or wetland) and were at
least 25 m from an adjacent plot of the same land cover/wetland
boundary. No single plot has been measured twice. Due to a
concentration of field work and research activities in the Till
Moraine region, all but 4 plots were located in this area, resulting
in a combined assessment of Till Moraine and Clay Plains edge
detection.

Validation plots were geographically located using survey-
grade GPS, postprocessed to better than 0.1 m accuracy within
open wetlands and up to 0.3 m accuracy with longer occupation
times (up to 15 minutes) near upland forest boundaries. Plot
measurements in 2002 are described in Hopkinson et al. (2005).
Similar measurement protocols were followed in 2008 and 2015.
Plots (0.5 m along cardinal directions) consisted of percent cov-
erage of short vegetation types (aquatic, grass and herbs, low
shrubs and tall shrubs; Ducks Unlimited Canada 2002), maxi-
mum canopy height (measured by using a tape measure or staff),
and a description of the vegetation characteristics. In 2008 and
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2012, land cover type was determined based on vegetation char-
acteristics (2012 surveys (n = 3), vegetation types, and land
cover class boundary only). Open water boundaries within wet-
lands were determined at the approximate boundary between
dry ground and standing water (despite aquatic vegetation ex-
tension into ponds).

Removal of Harvested and Regenerating Forest Stands,
Using Landsat TM

Similar to field data collections, we assume little change
to the environment over the 6–8 years between LiDAR sur-
veys (in 2006–2008), air photo delineation, and Landsat clas-
sified products. However, this is not always the case. Distur-
bance that occurs between air photo/EOSD classifications and
the LiDAR-based classification might increase commission er-
rors between LiDAR-classified and other classification datasets,
because cleared areas might be flat and contain grasses and re-
generating shrubs that appear indistinguishable from many wet-
lands but should not be classified as such. Further, changes in
pond levels and succession can vary from year to year or over
the course of many years. To characterize land cover change
as a result of harvesting, fire, oil and gas extraction, etc., we
use Landsat 5 Higher Level Science Data Products, processed
using the Ecosystem Disturbance Adaptive Processing System
(LEDAPS version 2.0). The Modified Soil Adjusted Vegetation
Index (MSAVI; Masek et al. 2006) product (path 44, row 21) was
accessed using Earth Explorer5 for the July 1–August 15 period,
1998, 2001, 2003, and 2008 for cloud-free conditions. Image-to-
image normalization of MSAVI was conducted for dark, middle,
and light nonvarying, pseudoinvariant features (n = 136) follow-
ing Hall and Hay (2003). Abrupt changes in MSAVI pixels are
determined using subtraction (to indicate change), and more
gradual slope changes following disturbance are identified and
compared with preremoval classification accuracy.

METHODS

Background
The LiDAR classification described in this study presumes

that different parts of the wetland environment have different
vegetation structural and topographic or morphological charac-
teristics used to define them, such that the frequency distribution
of returns through the canopy can be used as a digital “finger-
print” for the natural environment. For example, Millard and
Richardson (2013) observed greater standard deviation of all
laser pulse returns within forest environments due to the dis-
tribution of returns through the canopy that characterizes this
land cover class. They also found reduced standard deviation
within bogs containing little/no tall vegetation. Further, Korpela
et al. (2009) found that the distribution of returns within veg-
etation provided strong explanation within a range of diverse

5 http://earthexplorer.usgs.gov

peatlands. Figure 3 demonstrates similarities within and dif-
ferences between percentile frequency distribution of ground-
normalized point clouds related to wetland land cover types
and the transition to upland mixedwood. To create structurally
different fingerprints of land cover classes used within the clas-
sification, point clouds were extracted within 5 m radius plots
for 25 representative homogeneous land cover types along mea-
surement transects and 29 randomly sampled locations within
the larger study area. Frequency distributions of returns with
height were determined per sample location and classified into
6 dominant classes: upland mixedwood, the transition between
upland mixedwood and riparian, riparian, wetland, pond, and
treed wetland, observed while in the field. For example, upland
mixedwood stands are characterized by a large proportion of re-
turns through canopies, with relatively few returns from below
canopy and minimal understory vegetation (Hopkinson et al.
2005). They are also typically found on stagnant ice moraines
and slightly elevated areas. Toward the outer edges of upland
hills, foliage occurs throughout the full canopy profile due to
light and moisture regimes and edge influences. This causes
reflection of returns throughout the canopy, especially where
returns are incident upon and reflect from canopy sides within
this transition. The structural characteristics of open wetlands
allow for penetration of returns into grasses and sedges to a
depth where grasses begin to bend over, creating a less penetra-
ble surface (Hopkinson et al. 2005), reduced standard deviation
(Millard and Richardson, 2013), and concentration of returns
near the ground surface (Figure 3). Further, reduced DEM accu-
racy as a result of an inability to penetrate to the ground surface
does not demonstrate sufficient variation in variance to put this
land cover into a different class (although this could be more
problematic in prairie grassland regions).

Friedman’s test on ranks is used to determine if nonpara-
metric differences exist between randomly selected frequency
distributions within land cover types, and is used to develop
the decision criteria of the LiDAR-based classification. The null
hypothesis (H0) assumes that the frequency distribution of re-
turns within canopies and from the ground surface is the same
within land cover types, while the alternative (HA) suggests
that they are different. This provides a rationale based on re-
turn variance for differentiating between vegetation structures
associated with different land cover types. Except for ripar-
ian and treed wetlands, no significant differences between fre-
quency distributions are found within land cover types (P ranges
between 0.13 and 0.56 for upland forest, transitional bound-
aries between forest and riparian, and grass wetland/pond edge,
Figure 3). Further, no significant differences are found between
those same classes (P ≤ 0.05, variable Chi sq. depending on
comparison), except for treed wetlands and riparian (P = 0.36,
Chi sq = 10.21) where shrubs and shorter trees have similar
distributions of returns between and within vegetated canopies
(P ≤ 0.1, Figure 3). This indicates that some confusion might ex-
ist between riparian and treed wetland classes within the overall
classification.
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FIG. 3. Representative photographs along transects illustrating different vegetated land cover types used common to natural parts
of the Boreal Plains. Example point clouds and frequency distribution with ±1 standard deviation are also shown for single 5 m
radius plots: (a) upland mixedwood forest, (b) transition between upland forest and riparian, (c) riparian, (d) grass wetland/pond
edge, and (e) treed wetland.
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Airborne LiDAR Classification Methodology
With these fingerprint-type observations in mind, classifica-

tion procedures are based on the full canopy profile characteris-
tics of the point clouds as a function of the variance of all returns
from ground surface to top of canopy. In addition, the residu-
als from the mean elevation of a predetermined mean surface
derived from the ground-classified DEM are used to provide
greater differentiation between the ground surface morphology
of upland, transition, and wetland classes. The application of a
mean surface effectively smooths and removes the underlying
topographical trend of the data by placing a plane of mean eleva-
tion within a given search radius. The search radius is, therefore,
used only to derive a mean DEM surface from which the orig-
inal DEM can be subtracted. Residual pixel elevation from the
original DEMs that occur above and below the mean surface are
used to define the locally topographic high and low areas rep-
resenting uplands and wetland depressions, respectively (Todd
and Hogg, 2007; Chasmer et al. 2014). Figure 4 illustrates the
procedures used along a single transect crossing pond, wetland,
riparian, and upland boundaries.

The circular search radius of the mean elevation is auto-
matically adjusted depending on the standard deviation DEM
within a broader region based on the average width of wetlands
determined from manual delineation within Till Moraine and
Clay Plains regions. Therefore, the heterogeneous Till Moraine
region uses a smaller mean elevation search radius (110 m)
than the flatter, more homogeneous Clay Plains region (300 m
search radius). Classification of roads, cut blocks, and trails
is characterized as having low all-return variance due to lack
of trees/vegetation found on road and trail surfaces, relatively
high-return intensity due to minimal vegetation interception;
flat, lightly colored gravel surfaces; road edge DEM slope char-
acteristics; and low standard deviation of all returns. Water is
defined following Crasto et al. (2015), using a combination
of very low (off nadir/wide scan angles) and saturation (near
nadir) normalized intensity. A 3 pixel × 3 pixel (6 m × 6 m)
majority filter was used to remove intermediate-to-high-return
intensities at scan angles slightly off nadir (up to ± 6o), which
could be confused with return intensities from roads and wet-
lands. To avoid expansion/contraction effects of the filter at
water edges, water was given lowest priority in the decision
criteria (and the other land cover type per pixel would have
priority). In addition to Crasto et al. (2015), low standard de-
viation of all returns compared with other surfaces is used,
suggesting flat water surfaces and minimal wave height. Based
on ranges of predefined land cover characteristics described,
pixels are assigned to a land cover class if they meet the range
of criteria defined for that class. The probability of inclusion
depends on the number of conditions that have been met for
that class. If fewer conditions have been met, then the pixel
is assigned to another class. Figure 5 provides a flow diagram
of the procedures and characteristic ranges used to define each
class.

Comparison of LiDAR Classification with Other
Classifications and Field Data

Maps of correspondence, omission, and commission are de-
rived via direct pixel-to-pixel comparisons among the LiDAR-
based classification, manually delineated wetlands, AGCC, and
EOSD with and without removing previous disturbance and
regeneration. Each class-per-product is reclassified into ei-
ther wetland or nonwetland area, provided with a numeric
identifier, and compared, thereby creating a spatially ex-
plicit map of classification correspondence beyond more typ-
ically used confusion matrices (although these are provided
as well). Corresponding codes-per-pixel represent areas where
both the LiDAR-based classification and the alternative de-
fined each individual pixel as wetland. Where the LiDAR
classification identified a pixel as wetland and the alternative
did not, these are presumed errors of commission, whereas
the opposite are errors of omission, as long as the alter-
native classification correctly identifies pixels belonging to
wetlands.

Comparisons among validation plots located at approximate
land cover boundary edges with wetlands edges defined us-
ing LiDAR, photogrammetric, and multispectral classifications
were determined based on (i) whether the land cover classi-
fication coincides with the location of the plot measurement
and (ii) whether the land cover type is accurately classified.
If it is not accurately classified (and there are no adjacent or
nearby pixels of the same class), then we assume misclassifi-
cation and the class is given a null value (missing). Where a
boundary between land cover and wetland does exist at or near
(within 50 m or 2 EOSD/AGCC pixels) the plot measurement
boundary location, the linear distance from the plot measure-
ment to the closest pixel edge is recorded in the direction of
the adjacent land cover type. If wetland size is underestimated
compared with measured (other pixel classes extend into the
wetland), then the distance between measured and classified is
converted into a negative distance. If the wetland size is overes-
timated compared with measured, then the distance of wetland
extension remains positive. This inherently includes fuzzy tran-
sitional boundaries between classes because these are often not
abrupt.

RESULTS

Application of the LiDAR-Based Classification to Till
Moraine and Clay Plains Regions

The spatial distribution of wetland classes (treed, open, and
riparian zones), water, and disturbance using the LiDAR-based
classification is presented in Figure 6a with spatial correspon-
dence presented in Figure 6b. The Till Moraine (western) part
of the study polygon is characterized by greater proportional
coverage of forests (42%), fewer wetlands (47%) and fewer
shallow water ponds and lakes (11%) compared with the Clay
Plains (eastern) part of the study polygon. However, caution
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FIG. 4. Diagram illustrating methods used as viewed along a 530-m transect (white line) illustrated through the center of each
image: (a) true color high-resolution satellite imagery from WorldView-2 illustrates the transition between pond-wetland-upland
forest-wetland and pond classes; (b) shows the same area and transect overlaid onto a canopy height model (CHM = DSM –
DEM). Mature upland mixedwood forests range in height between ∼ 22 m and 25 m, whereas transitional and riparian vegetation
height range is between 4 m and 18 m. Ponds in (b) have been classified. (c) LiDAR-classified wetlands based on topographic
residuals and grouped variance in all areas except for upland mixedwood (illustrated as a CHM). (d) A profile view of the 2 m ×
530 m all-return point cloud transect, and demonstration of the mean surface, DEM residuals, and all-return variance.
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FIG. 5. Flow diagram of classification procedure and defined ranges (in italics). Rectangles indicate inputs, rounded corners are
intermediate data derivatives, and gray blocks with blunt corners represent final classes.



VOL. 42, NO. 5, OCTOBER/OCTOBRE 2016 531

FIG. 6. (a) Classification of water, disturbance (including roads, trails and harvest, but excluding regenerating forests), wetlands
and wetland/forest boundaries within LiDAR subsets collected in 2006, 2007, and 2008. (b) Spatial patterns of correspondence,
commission errors (yellow) and omission errors (red) between LiDAR-based wetland areas and wetlands delineated using pho-
togrammetric methods.
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TABLE 1
Comparison between the LiDAR-based classification of wetlands, and photo-delineated wetlands, EOSD and AGCC both

excluding and including harvest and regeneration areas. Correspondence and commission/omission errors have been further
divided into LiDAR data vintage subsets (acquired in 2006, 2007, and 2008), and regional analysis within the Clay Plains and

Till Moraine parts indicative of more and less landscape heterogeneity

Comparison
LiDAR Collection and

Sections % Corresp. (× 100%) % Commission (× 100%)
% Omission (×

100%)

LiDAR classification vs.
air photo delineated
LiDAR vs. EOSD

2006 0.57 0.36 0.07

2007 0.64 0.29 0.07
2008 0.57 0.37 0.06

Clay Plains 0.57 0.38 0.05
Till Moraine 0.58 0.32 0.10

Total Wetland Area 0.57 0.37 0.06
2006 0.52 0.39 0.09
2007 0.54 0.40 0.06
2008 0.53 0.41 0.06

Clay Plains 0.56 0.38 0.06
Till Moraine 0.46 0.46 0.08

Total Wetland Area 0.53 0.38 0.09
LiDAR vs. AGCC 2006 0.53 0.38 0.09

2007 0.50 0.44 0.06
2008 0.55 0.37 0.08

Clay Plains 0.57 0.36 0.07
Till Moraine 0.48 0.44 0.08

Total Wetland Area 0.54 0.38 0.08
LiDAR vs. delineated,

(corrected for harvest
and regeneration
(temporal Landsat
TM))

2006 0.60 0.33 0.07

2007 0.63 0.30 0.07
2008 0.63 0.31 0.06

Clay Plains 0.63 0.32 0.05
Till Moraine 0.60 0.30 0.10

Total Wetland Area 0.62 0.32 0.06
LiDAR vs. EOSD,

(corrected for harvest
and regeneration)

2006 0.60 0.31 0.09
2007 0.59 0.35 0.06
2008 0.66 0.28 0.06

Clay Plains 0.70 0.24 0.06
Till Moraine 0.55 0.37 0.08

Total Wetland Area 0.65 0.26 0.09
LiDAR vs. AGCC,

(corrected for harvest
and regeneration)

2006 0.56 0.35 0.09
2007 0.48 0.46 0.06
2008 0.72 0.20 0.08

Clay Plains 0.76 0.17 0.07
Till Moraine 0.52 0.40 0.08

Total Wetland Area 0.67 0.25 0.08

should be used when interpreting these results because they do
not consider errors of commission and omission (Figure 6b).
Positioning of wetlands in the Till Moraine region is related to
underlying geology and hydrologically isolated pond/wetland
complexes. Within the Clay Plains region, wetlands and shal-

low ponds dominate the lower elevation region (60%, 29%, re-
spectively). Increased accessibility is also linked to more roads
and cutlines (4% of total area in the east vs. 3% in the west),
large areas of previously harvested forests, and oil/gas extraction
wells.
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Comparing LiDAR, Manually Delineated, and
Multispectral Classifications of Wetland Area

More than 2,330 manually delineated wetlands were found in
the survey polygon, 55% classed as peatlands (bog, fen), 39% as
swamp, and the remaining wetlands as comprising marsh, shal-
low surface water ponds, and lakes. The LiDAR classification
corresponds best with manually delineated wetlands (Table 1)
and to a lesser extent AGCC and EOSD, due to comparable
identification of smaller wetlands and wetland boundaries when
compared with delineated wetlands. Slightly better correspon-
dence is also found between AGCC compared with LiDAR-
based methods, opposed to EOSD.

When compared with manually delineated wetlands, the
LiDAR-based classification identifies 38% (Till Moraine) and
32% (Clay Plains) more wetland area than that defined using
air photos. However, identification of wetlands (where they
do not exist in the wetland delineation) using the LiDAR-
based classification is not necessarily an error. Wetlands are
sometimes missed by the manual delineation procedure but
are included in the LiDAR classification. Further, some delin-
eated wetland areas also include shallow standing water (small
ponds) as wetland. These are classified as water in the LiDAR
classification.

In other areas, LiDAR methods incorrectly identify regener-
ating harvest stands as wetland, resulting in difficulty separating
confusion errors in the LiDAR-based classification and excluded
wetlands in the manual delineation of air photos. When regen-
erating stands (determined using Landsat MSAVI) are removed,
LiDAR methods continue to identify greater total wetland area,
but, compared with manually delineated wetlands found in Till
Moraine and Clay Plains regions, this is reduced from 38% to
32% and from 32% to 30%, respectively (Table 1). This indi-
cates that, even after previously harvested stands are removed,
differences continue to exist between delineated and LiDAR-
based methods (Figure 6b). Another source of confusion occurs
between the LiDAR-based classification and manually delin-
eated wetlands that exist along roads, seismic lines, and paths.
Within the broader study area, 34% of roads (etc.) are classified
as wetlands when compared with the EOSD “exposed land”
class. Effects of LiDAR survey subset vintage (2006, 2007, and
2008) do not demonstrate large differences, except for increased
difference in wetland correspondence between 2007 and 2008
(up to 11%). This could be due to some foliage loss/flattening
of grasses during initial stages of senescence or differences in
the heterogeneity and size of wetlands identified by using the
different classification methods (Table 1).

Figure 7 shows detailed areas of interest (AOIs), includ-
ing a Landsat false color composite (FCC), the LiDAR-based
classification, and maps of correspondence within Till Moraine
and Clay Plains regions. In Figure 7a, 17 prominent wetland
ecosystems were excluded by the manual delineation, but were
classified as wetlands using the LiDAR-based methods. Lack
of correspondence is illustrated as commission error, but these

would be greatly reduced if all wetland boundaries were in-
cluded in the manual delineation. Similar issues are also found
in Figure 7b and c, where 7 and 8 prominent wetland ecosys-
tems are missed by manual delineation. This is complicated
by misclassification of regenerating stands in Figure 7b and
c. Based on additional delineation from high-resolution opti-
cal imagery (WorldView 2 in AOIs 1, 3, SPOT 5 in AOI 2),
the proportional areas of missing wetlands are 19%, 38%, and
16%, respectively. LiDAR methods incorrectly classify 5 and
3 regenerating stands (with changes observed using Landsat
MSAVI) as wetland. These areas have higher reflectance in near
infrared (red channel), identified as slightly brighter (red) ar-
eas in the Landsat false color composite, illustrating the need
for a separate “regeneration” class to reduce confusion among
classes.

Edge Detection Accuracy Compared with Measurement
Plots

Boundaries between wetland and other land cover types (up-
land forest, riparian, and standing water (ponds)) are compared
among classification methodologies and geographically located
field plot validation in Figure 8. The results of this comparison
indicate that all classification methods slightly underestimate
wetland extents, on average. The LiDAR-based classification
results in the smallest deviation from measured, whereas differ-
ences between measured and delineated wetlands are slightly
greater, with increasing deviation found among EOSD, AGCC,
and measured plot locations. Average LiDAR-classification ac-
curacy for edge detection is −0.3 m (stdev. = 2.3 m from mea-
sured), whereas average delineated wetlands from air photos is
−1.8 m (stdev. = 8.9 m) from measured. Interestingly, only one
wetland boundary was excluded in the LiDAR-based classifi-
cation, due to confusion with an adjacent road (and therefore
no boundary existed), whereas 13 wetland boundaries were ex-
cluded in the manual photo delineation, and 29 and 17 of 38
wetland boundaries were misclassified in the EOSD and AGCC
classifications, respectively.

Fewer measured plots (n = 9) were located between the
boundaries of upland forest into treed wetland without some
shrub or riparian transition zone. Delineation from air photos
compared with measurement plots tended to underestimate wet-
land boundary (size), thereby extending the boundary of forest
into wetland areas by 0.5 m (validation plot n = 9), on average,
with greater variability (stdev. = 14.2 m), possibly due to vegeta-
tion succession or confusion between dark shadows and wetland
boundaries (occlusion errors; also found in Chasmer et al. 2014).
Average differences between measured plots and wetland-forest
boundaries, and the LiDAR classification were −0.3 m (stdev.
= 4.6 m), indicating greater ability to differentiate between
treed wetland and upland forest. Boundaries between forests
and wetlands were often misclassified as forest (conifer, de-
ciduous, or mixed) in the EOSD classification, whereas AGCC
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FIG. 7. Comparison of wetland classification within areas of interest illustrating detailed similarities and differences between
the LiDAR-based classification and manually delineated wetlands. Landsat TM (2008) false color composite provides visual
representation of forested uplands (red) and wetlands (blue/green) with manually delineated wetlands from air photos. Wetlands
(including treed and riparian areas) are illustrated in the central panels, with correspondence between classification methods in
right panels. A hillshade elevation model illustrates subtle variations in upland topography not classified as wetland.
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FIG. 8. Box plot of land cover edge detection differences between land cover classifications (manually delineated from air
photos, the LiDAR-based classification, EOSD and AGCC) and geolocated plots at land cover boundaries. Zero represents plot
measurement location. Negative deviations from measured indicate that the classified boundary is further into the wetland than the
measured plot location, whereas positive deviations indicate that the classified boundary extends beyond the measured boundary.
The line within the center of the box represents the median, box boundaries indicate the quartile distribution (25th and 75th
percentiles) and whisker lines above and below the box indicate 90th and 10th percentiles, respectively.

was able to delineate 3 of 9 boundaries to within −19 m, on
average. Riparian to wetland class edge delineation resulted
in slight underestimation of wetland size (average = −1.2 m,
stdev. = 9.7 m, n = 15) based on manually delineated wetlands
compared with measurement plots, while LiDAR, EOSD, and
AGCC slightly overestimated wetland boundaries: 0.1 m (Li-
DAR) to 1.3 m (AGCC), moving this further into the riparian
zone compared with measured. The standard deviation of off-
sets from measured clustered within 1.1 m (LiDAR) and 13.3 m
(AGCC). One and 2 wetland-riparian boundaries were not clas-
sified in the LiDAR-based classification, nor in the manually
delineated air photos, and 4 and 10 boundaries were misclas-
sified in AGCC and EOSD datasets. Pond-wetland boundaries,
classified using air photo delineation and LiDAR-based meth-
ods, have the least variability from measured plot boundaries:
stdev. = 2. 1 m (LiDAR) and 5.0 m (delineated) of any of the
land cover boundary comparisons (forest to wetland, riparian to
wetland, pond to wetland). Further, 8 ponds were not delineated
separately from wetlands in the air photos, and 10 and 7 ponds
were misclassified in the EOSD and AGCC classifications. The
range of variability of pond to wetland edge detection using
EOSD and AGCC often exceeded the spatial resolution of the
classification (25 m), indicating that errors were primarily a re-
sult of large mixed pixels that are especially problematic within
this heterogeneous region.

DISCUSSION

Use of LiDAR for Mapping Wetlands over Broad Areas
In this study, we present a relatively simple method for clas-

sifying wetlands, riparian zones, and ponds, as well as up-
land mixedwood forests and cutlines/trails roads within the
Till Moraine and Clay Plains regions of the Boreal Plains, Al-
berta. Similarities and differences among LiDAR-based meth-
ods, high-resolution air photo delineation of wetlands, field data,
and 2 publicly available land cover classifications are also exam-
ined. Zoltai and Vitt (1995) describe 5 classes of wetlands that
can be formed along complex hydrological, chemical, and bi-
otic criteria, and LiDAR methods may be used to identify proxy
indicators from 2 out of 3 of these gradients: hydrological and
biotic. Further, Krankina et al. (2008) found that, when exam-
ining optical characterization of peatlands, vegetation structure
was more important for identifying type than the spectral charac-
teristics of the ground surface. To this end, the characterization
and classification of wetland types might depend on a combina-
tion of topographic and vegetation-structure derivative products
applied in unique ways (Töyra and Pietroniro 2005; Millard and
Richardson 2013; Luo et al. 2015) and accuracies could be suf-
ficient enough to require further validation through the use of
groundwater chemistry.

The results of this study indicate that the LiDAR-based clas-
sification applied to the broad study area accurately corresponds
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with 57% of those wetlands that have been manually delineated
(based on pixel-to-pixel comparisons; Table 1). This is improved
by 5% when confusion due to disturbance is removed. Yet, com-
mission errors account for 37% (total surveyed wetlands, 32%
after removal of disturbance-based confusion) of areas classi-
fied as wetlands using the LiDAR-based methodology compared
with manual photo delineation. Although it is difficult to quan-
tify the numbers of wetlands excluded from the manual delin-
eation of air photos throughout the entire study area (without
additional manual delineation from high-resolution optical im-
agery), proportional areas of missing wetlands range between
16% (with division between Clay Plains and Till Moraine, AOI
3) and 38% (Clay Plains, AOI 2). Photogrammetric methods
used to identify wetlands are predisposed to being highly accu-
rate due to high spatial resolution of pixels and care by manual
interpreters. Yet, Anderson and Hardin (1992) demonstrate that
the detection of wetlands using aerial photographs can be very
difficult and might be riddled with error (although current dig-
ital methods have vastly improved these methods). Confusion
issues include transient or perennial wetland that might not be
apparent due to the timing of the photograph, identification of
cryptic wetlands (or forested swamps), and differentiating be-
tween land surface edges at fuzzy boundaries. Anderson and
Hardin (1992) found that 20% of wetlands, including small,
forested swamps and perennial wetlands, were excluded from
manual delineation of air photos. The use of LiDAR data could
also improve wetland classification when compared with pho-
togrammetric methods because both ground surface topogra-
phy and vegetation characteristics can be included. For exam-
ple, Creed et al. (2003) were able to automatically identify
small cryptic wetlands with convex topographical characteris-
tics more easily than those with shallower edges using airborne
LiDAR (but did not compare optical or photogrammetric meth-
ods). Forested swamps can also be characterized to some extent
using SAR polarimetry (Clark et al. 2009), but are nearly im-
possible to detect using optical or photogrammetric methods,
which are occluded by tree canopies, especially at the edge of
the wetland where forest encroachment occurs. Within lower
resolution multispectral classification products such as EOSD
and AGCC, lower levels of correspondence with the LiDAR
classification method (53% and 54%, respectively) are found,
including relatively large commission errors (38%). This results
in reduced overall wetland areas likely due to mixed pixels and
aggregation of land cover types also observed in Frey and Smith
(2007).

Within the broader context of the study area (Table 1),
LiDAR-based errors of commission are also due, in part, to
confusion with areas that have recently undergone some form
of disturbance from land use change. Approximately 3% and
5% of Till Moraine and Clay Plains regions have undergone
some form of disturbance, and approximately 2/3 of those pro-
portional areas were classified as wetland using LiDAR-based
methods (excluding classification of new roads), representing
a relatively small proportion of the total area. Regenerating

stands have structural characteristics that are not unlike open
wetlands, where flat terrain previously harvested stands con-
tain small shrubs and might be surrounded by upland forests
(e.g., characteristics used to define wetlands in Figure 3). These
discrepancies require further adjustment to the classification
method presented, or inclusion of multitemporal optical data,
which increases the complexity and time required to apply the
classification. Delineation of harvested stands or inclusion as a
separate class requires further development. The fusion of Li-
DAR and high-resolution optical (multispectral) datasets might
improve wetland area and type within a classification, and may
be used to differentiate from areas of confusion. For example,
rich and poor fens are optically different and may be classified
as such because rich fens have an abundance of relatively short
sedges, whereas poor fens are dominated by a ground-covering
of Sphagnum moss. Bubier et al. (1997) and Sonnentag et al.
(2007),and others, have found that Sphagnum mosses have lower
spectral reflectance in the near and shortwave infrared compared
with vascular vegetation, and these optical differences can be
used to discriminate between rich and poor fens.

Confusion between roads, trails and cutlines, and wetland
classes determined from LiDAR-based methods (34% commis-
sion errors compared with EOSD, Table 1) often occur in areas
where cut lines and trails traverse wetlands, or are topograph-
ically low lying compared with nearby elevations (also found
when compared to an individual plot measurement of wetland
edge, Figure 8). In some areas, small wetlands form where cut
lines, trails, and roads once stood or are currently used (observed
while doing field work, but not georegistered). Smerdon et al.
(2009) note that the effect of roads on hydrology in the Boreal
Plains depends on landscape position and underlying geology
as well as the location of groundwater recharge and discharge
areas. Quantifying the true area extent and number of roads and
trails that have this saturated ground/wetland appearance is dif-
ficult to determine using field methods alone due to accessibility
and the perennial nature of some of these saturated areas. Future
development of a LiDAR-based wetland classification might in-
corporate linear features (roads, paths, etc.) that could be more
or less prone to flooding and hydrologically sensitive adjacent
land areas. This could provide information services for future
planning and resources extraction.

Implications of Accurate Wetland Edge Detection
One of the most critical components of wetland classification

is the ability to accurately characterize wetland edges and tran-
sition zone boundaries needed for baseline assessments, change
detection, and monitoring. These requirements are also defined
within wetland classes of publicly available datasets (Level 4 –
EOSD, Wulder et al. 2006; Level 2 – AGCC, Sánchez-Azofeifa
et al. 2005). Comparisons among LiDAR-based classification
methods used in this study and geographically located mea-
surement plots found along wetland and transition zone bound-
aries (upland forest, riparian zone, and standing water in ponds)
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indicate close correspondence (−0.3 m on average), and re-
duced residual variability between wetland edges and measured
plots (Figure 8). All classification methods underestimate wet-
land extent, on average, compared with plot boundaries. Average
manually delineated offsets were −1.8 m, and these increased to
−3.9 m and −4.0 m, on average, for EOSD and AGCC, respec-
tively; whereas variability in edge location from measured in-
creased significantly among LiDAR-based methods, delineated
photographs, to EOSD, with a slight improvement by using
AGCC for wetland edge detection. Timing between data collec-
tion (aerial photography, Landsat imagery, and LiDAR survey)
might also result in slight offsets of classified wetland bound-
aries compared with measured plots. For example, boundaries
between wetland edges and ponds (n = 14) were underestimated
by −1.1 m and −0.3 m (manual delineation and LiDAR meth-
ods, respectively), indicating that water levels might have been
higher, with greater wetland encroachment, during the LiDAR
survey as a result of greater-than-average annual and summer
precipitation in 2007 and 2008 (Petrone et al. 2014).

With regard to increased offset variability in manually delin-
eated air photos compared at upland forest and riparian zone-
wetland edges, this could have been caused, in part, by occlusion
at transitional or fuzzy boundaries. For example, dense riparian
vegetation can mask subtle changes in topography that might be
used to identify depressions, while shadows cast by taller veg-
etation at wetland edges could be confused with tree canopies,
resulting in underestimation of wetland area, depending on sun
angles at the time of photo overpass (Chasmer et al. 2011). Wet-
land boundaries determined by AGCC and EOSD also suffer
from mixed-pixel influences where greater proportional cover-
age (and spectral reflectance) will be from forest and/or riparian
zones. The width of riparian to open wetland to pond land cover
types can vary by as little as 5 m, and can extend to 50 m in some
areas. Within narrow or small wetlands, EOSD and AGCC are
more prone to misclassification errors and larger edge residuals
as a result of mixed pixels when compared with measured (Fig-
ure 8). Often, small wetlands are missed entirely, resulting in
76% of misclassification errors based on EOSD compared with
measurement plots (Figure 8); although misclassification is re-
duced as wetland size increases beyond an area equal to several
Landsat pixels. The results shown here demonstrate the impor-
tance of spatial pixel resolution on the accuracy of wetland edge
detection. Similarity between average and residual differences
between plot measured, LiDAR, and photogrammetric-based
classification methods also indicate that, although photogram-
metric methods are relatively accurate for delineating wetland
extents and types, missed wetlands and inclusion of ponds within
wetland classes can either under- or overestimate the extent of
wetlands within a given area. LiDAR provides a cost-effective
method for broad-area mapping where available, and especially
in heterogeneous regions that could be difficult to accurately
characterize using lower-resolution multispectral classification
methods or time-consuming photogrammetric delineation.

Applicability of the LiDAR Wetland Classification for
Provincial Monitoring

The LiDAR-based classification described in this study dif-
fers from empirical “black box” or machine learning methods,
which depend on the ranking of a series of simple to complex
statistical relationships among up to hundreds of discrete and/or
continuous datasets (Pal 2005). Empirical methods also assume
that the full range of characteristics within the area to be clas-
sified have been identified and represented within the reference
training data and, therefore, require substantial reference data to
run models. If the model is applied to other regions that have not
been appropriately characterized by training data, the accuracy
of the classification will be significantly reduced (Vauhkonen
et al. 2010). For forest species discrimination requiring tree-
level measurements, National Forest Inventory (NFI) data may
be used, as long as the data provide enough information re-
quired by the model (e.g., Vauhkonen et al. 2010); alternatively,
other training data may be used to drive empirically based mod-
els. However, datasets need to consistently measure the same
variables to be used in the model, and additional classification
areas require new training data, while greater complexity of
environmental characteristics would require additional training
data (Vauhkonen et al. 2010). In areas where extensive training
data exist or can be created, empirical methods can be highly
effective (Millard and Richardson 2013), and even more so than
traditional methods of classification, because they exploit in-
formation inherent in the LiDAR point clouds that might be
lost by using grid-based layers (Zhao et al. 2011), albeit Mil-
lard and Richardson (2013) found that most layers co-vary and
only a handful of data derivatives might be used to drive the
model.

With regard to model complexity, data derivatives, and stor-
age, single-band raster (LiDAR) datasets and derivatives used in
this study are 1.76 GB each for the 1,036-km area. Further, 2,330
(delineated) wetlands are examined using a variety of classifica-
tions. For comparison, Millard and Richardson (2013) included
over 120 input channels with a total disk size of ∼ 400 MB in
a Random Forest classification of ∼ 28 km2. Data layers were
used to characterize wetland features within a bog and surround-
ing land cover types, with high accuracy. Provincial application
of such a model would require significant consideration of com-
puter and space resources for an area exceeding 650,000 km2

(the total area of Alberta). This suggests that a trade-off exists
among data derivatives, training constraints, and classification
methodologies such that the cost and complexity of applications
need to be carefully considered. Simplicity of wide-area map-
ping methods and movement away from more complex methods
of classification have been discussed in Korpela et al. (2009) and
Vauhkonen et al. (2010), although LiDAR methods can only be
used to map structure. The need to quantify vegetation species
types requires the use of optical imagery (Korpela et al. 2009)
or might show promise through multispectral LiDAR. Although
decision-making criteria for the physical environment, such as
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those applied in this study, might be difficult to initialize, the
collection of all permutations of the physical environment re-
quired for more complex models could be equally difficult. The
use of a single dataset for classification is also operationally
beneficial for reducing the cost of purchasing additional data
and storage, as well as the added complexity associated with the
management and processing of other remote sensing datasets
over broad areas (Korpela et al. 2009), as long as the method is
accurate and suitable for the application.

The performance of the classification presented in this study
will also likely require reevaluation of wetland fingerprints as
methods are extended into other ecozones such as the prairie
pothole/grassland regions of the agricultural zones, aspen park-
land, etc., but these might require adjustment of only the classes
used to divide current inputs, opposed to the organization of
new data derivatives. This also reduces the need for significant
space and computer resources required by more complex mod-
els such as Random Forest, and might also indicate universality
between important inputs and data derivatives such as all-return
variance for defining wetlands. Application and testing across
other wetland ecosystems with the use of additional field data for
validation in the future will contribute to better quantification of
the extent of wetlands in Alberta as baseline, and an important
step toward accurate provincial wetland mapping requirements
of the Alberta Wetland Policy.

CONCLUSIONS
In this study, we present a relatively simple LiDAR-based de-

cision classification of topographical variation above/below the
mean surface, depending on surface variability, and the variance
of vegetation structural characteristics found within all returns
of the LiDAR dataset for a moderately sized Boreal Plains region
of western Canada. The results of this study indicate that our
methods can be applied to delineate wetland extent and features
at or exceeding the accuracy of manually delineated air photos.
Errors of commission were 32% (after correcting for harvest)
and omission were 6%, on average, with relatively high com-
mission errors as a result of misclassification in the manually
delineated air photo dataset. Further, the LiDAR-based classi-
fication took less than 1 day to apply (although data derivative
products took considerably longer—up to 2 weeks—to create),
while air photo delineation can take hours to many months or
longer, depending on the size of the area delineated and the num-
ber photo interpreters. When compared with publicly available
datasets AGCC and EOSD, we found that wetlands in both clas-
sifications (including the delineated air photos) were excluded
as a result of coarse pixel resolution. Further, many wetlands
were missed in the air photo delineation, and, in some areas,
ponds were included within the wetland class. This suggests
significant underestimation of the extent and numbers of wet-
lands in this region using photo interpretation and multispectral
methods. In the case of the LiDAR-based classification, this
result is also complicated by previously clearcut and regener-

ating forest stands that have similar structural and topographic
characteristics to wetlands.

Future research on the use of LiDAR for wetland delineation
and type classification should consider the effects of survey tim-
ing and seasonality on classification accuracy with regard to soil
saturation and water table position above the ground surface, as
well as the ability to quantify vegetation structural character-
istics surveyed using LiDAR during shoulder periods (Wasser
et al. 2013). This is of relevance for wide-area provincial, state,
and national initiatives, which often parameterize surveys for
accurate acquisition of ground elevation, but are less interested
in vegetation. The defining characteristics used to identify wet-
land classes might require adjustment for phenology at the time
of survey, in addition to reassessment of characteristics as they
vary across ecozones and subregions.
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