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This study presents a decision-tree (DT) approach to classifying heterogeneous land cover types within a north-
ernwatershed located in the zone of discontinuous permafrost using airborne LiDAR and high resolution spectral
datasets. Results are compared with a more typically applied supervised classification. Increasing errors in
discharge resulting from an inaccurate classification are quantified using a distributed hydrological model.
The hierarchical classification was accurate between 88% and 97% of the validation sub-area, whereas the paral-
lelepiped classification was accurate between 38% and 74% of the same area (despite overall accuracy of ~91%,
kappa = 0.91). Topographical derivatives were best able to explain variations in land cover types (82% to
96%), whilst spectral and vegetation structural derivatives were less accurate. When compared with field mea-
surements, the hierarchical classification of plateau edges (adjacent to a fen) was within 2 m of measured, 60%
of the time, whilst this occurred only 40% of the time when using a spectral classification. When examining the
impacts of land cover classification accuracy on modelled discharge, we find that the length of the Hydrological
Response Unit defined by the classification (and subject to varying levels of errors) was linearly related to dis-
charge (m3) such that an increase in permafrost plateau area would increase discharge by 26% of the total. The
methodology presented in this paper clarifies previous classification and modelling studies using Landsat and
IKONOS data for the same basin. This study greatly improves upon past classifications in the same area, furthers
our understanding of the distribution of connected bogs and fens (as conveyors of water to the basin outlet)
within the watershed, and current spatial extents of rapidly thawing permafrost plateaus, which are critical for
better understanding the impacts of climate change on these northern environments.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The zone of discontinuous permafrost has undergone significant cli-
mate warming and permafrost loss over the past number of decades
(e.g. Anisimov & Reneva, 2006; Beilman, Vitt, & Halsey, 2001;
Chasmer, Hopkinson, & Quinton, 2010; Quinton, Hayashi, & Chasmer,
2010; Shur & Jorgenson, 2007). This is especially evident in colder
permafrost areas, which are subject to rapid permafrost warming
(Romanovsky, Smith, & Christiansen, 2010) and the existence of ther-
mal inertia within warm, thin perennially frozen ground (Lewkowicz,
Etzelmüller, & Smith, 2011). Permafrost underlies approximately 25%
of the total land area within the Northern Hemisphere and therefore
small shifts in ground heating and vegetation succession and the
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associated changes in permafrost distribution and extent can have glob-
ally relevant implications (e.g. Jorgenson, Racine,Walters, & Osterkamp,
2001). In the discontinuous permafrost zone, rates of permafrost thaw
are expected to accelerate (Anisimov & Reneva, 2006) as plateaus be-
come increasingly fragmented (Baltzer, Veness, Chasmer, & Quinton,
in press; Chasmer et al., 2010). This can have significant impacts on
both human and environmental systems, including greenhouse gas
fluxes (Chasmer, Kenward, Quinton, & Petrone, 2012; Myers-Smith,
McGuire, Harden, & Chapin, 2007), forest fires (Camill & Clark, 2000);
changes to surface hydrology and flooding (Guan, Westbrook, &
Spence, 2010; Wright, Hayashi, & Quinton, 2009); and northern infra-
structure and economy (Prowse et al., 2009).

Accurate classification of the spatial distribution of land cover types,
especially in areas that are rapidly changing (e.g. Chasmer et al., 2012),
is fundamentally important for quantifying how these changes are
affecting ecosystems (Foody, 2002). Land cover change, often as a result
of climatic or anthropogenic disturbance, is viewed as the single most
important variable affecting ecosystem processes (e.g. Foody, 2002;
Vitousek, 1994), whilst our ability to predict future global environmental
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scenarios as a result of climate change depends significantly on the
accuracy of land cover classification (e.g. Feddema et al., 2005). Remote
sensing data are most frequently used for the classification of land
cover types (e.g. Heginbottom, 2002). Data are spatially continuous
and provide a recognisable photographic appearance of the Earth's sur-
face, thus facilitating the comparison of features of interest through
space and/or time. Furthermore, datasets often have a lengthy history
of acquisition, which can be used for the detection of land cover change
or conditions through time (e.g. Heginbottom, 2002).

Remote sensing-based classification of permafrost extent and ice
content over broad areas has had early and ongoing interest, especially
wheremultiple layers of land surface characteristics (e.g. vegetation, to-
pography, etc.) correlating to the existence of permafrost are used. Early
studies attempted to classify ranges of active layer thickness using ther-
mal imagery and visible layers of vegetation cover (Morrissey, Strong, &
Card, 1986; Peddle & Franklin, 1993) and topographic derivatives
(Peddle & Franklin, 1993), butwere unable to quantify useful ranges rel-
ative to in situ spring-time measurements. Vitt, Halsey, and Zoltai
(1994) visually assessed aerial photographs acquired in Alberta,
Saskatchewan, and Manitoba between 1949 and 1953 and counted
the numbers of bogs within each photograph, manually assigning rare
to abundant classes to each. They found that permafrost areas contain-
ing bogs had rates of degradation that were greater than rates of aggra-
dation. By the late 1990s, more sophisticated methods of automated
classification (e.g. neural networks) were applied to correlating indica-
tors of permafrost (e.g. Leverington & Duguay, 1997), and whilst less
time intensive, these were not easily transferred between sites. The
integration of remote sensingdatawithin statisticalmodels ofmountain
permafrost distribution (Gruber & Hoelzle, 2001) did not improve
model accuracy of permafrost prediction, possibly due to complex
non-linear feedbacks between energy inputs to the surface and perma-
frost losses in some areas but not others (e.g. Anisimov & Reneva,
2006). Early permafrost classification accuracies ranged from approx-
imately 40% to 70%.

Spectral classifications of land cover types identified using remote
sensing data within the zone of discontinuous permafrost are often
problematic due to fragmented land cover boundaries, low spectral con-
trast between land cover types, and rapidly changing spectral character-
istics at bog/fen and plateau edges as a result of soil moisture changes.
Further, the extension of often living but unhealthy “remnant” trees be-
yond plateau boundaries makes it exceedingly difficult to accurately
represent true plateau edges using spectral data alone (Chasmer et al.,
2010). This is important as historical rates of permafrost and land
cover changes become an indicator of the effects of climate change on
northern environments. In some cases of permafrost change detection,
the accuracy of the classification was not discussed. Classification and
geometric errors may lead to substantial inaccuracies in permafrost ex-
tent, which will propagate uncertainties associated with the quantifica-
tion of permafrost loss/land cover change as well as the use of land
cover maps within land surface and hydrological models (e.g. Miller,
Guertin, & Goodrich, 2007). Studies that combined digital elevation
models with spectral image classification and multi-temporal data
were better able to characterise permafrost byminimisingmisclassifica-
tion errors. Nguyen, Burn, King, and Smith (2009)were able tomapper-
mafrost extent to approximately 90% accuracy using high resolution
SPOT imagery of vegetation communities through the use of spectral
vegetation indices, texture analysis, and principal components analysis
(PCA). However greater than 90% of the land surface was underlain by
permafrost, and the application of the methodology to more heteroge-
neous (discontinuous permafrost) regions was not assessed. Other
methods, including object-based image analysis (e.g. Hay, Blaschke,
Marceau, & Bouchard, 2003; Johansen, Coops, Gergel, & Stange, 2007)
that use the pixel spectrum, spatial location, spectral homogeneity,
and clustered shapes to identify objects can be highly accurate, but
also require user intervention which may or may not be applicable to
broad areas of discontinuous permafrost. New applications of Random
Forest and machine learning classification methods have been applied
with high accuracies to spectral remote sensing data (e.g. Rodriguez-
Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012) and
LiDAR data (e.g. Im, Jensen, & Hodgson, 2008) but not in the zone of
discontinuous permafrost.

Land cover classifications integrating airborne LiDAR datawith spec-
tral remote sensing data for characterising vegetated environments are
fewer in number than traditional spectral classifications, but are gaining
popularity. Several studies have found marked improvements via the
integration of textural, topographic and vegetation structure characteris-
tics as well as spectral data in other regions (e.g. Goodale, Hopkinson,
Colville, & Amirault-Langlais, 2007). Use of digital elevation models
(DEMs) of underlying topography, LiDAR data products, and LiDAR/
spectral data fusion classification methods have also become popular in
mountainous permafrost areas (e.g. Kremer, Lewkowicz, Bonnaventure,
& Sawada, 2011) where geomorphic changes due to permafrost thaw
pose a considerable hazard. In the zone of discontinuous permafrost,
use of LiDAR has been less popular, likely due to logistical expenses;
however, there are a few notable studies. LiDAR data were used to map
the existence of permafrost based on land cover characteristics (Panda,
Prakash, Solie, Romanovsky, & Jorgenson, 2010) and wet areas from
laser pulse intensity (Stevens & Wolfe, 2012). Research by Hubbard
et al. (2012) integrated LiDAR data with geophysical data to characterise
above- and below-ground linkages between permafrost, land surface
properties, and sub-surface hydrology/energy balance. We have not yet
found a study that integrates airborne LiDAR and spectral data fusion
methods for characterising land cover classes within the zone of discon-
tinuous permafrost. This is currently a highly relevant and topical area of
research required for better understanding the sensitivity of these north-
ern ecosystems to development, resources extraction, and (natural/
anthropogenic) disturbance.

In this study we present a decision-tree land cover classification
methodology for permafrost plateaus, bogs, fens, uplands and water
(ponds, lakes). The classification combinesmultiple-resolution spectral,
textural, and three-dimensional sub-tree classification layers within the
global decision hierarchy. Sensitivity analysis is used to determine the
greatest contributors to identification of land cover types, with compar-
isons to a supervised land cover classification of spectral WorldView 2
data. Classification accuracies are evaluated against fieldmeasurements,
and implications of the classification accuracy are illustrated using a
hydrological runoff model.
2. Study area

The Scotty Creek watershed (61.44°N, 121.25°W) is located ~50 km
south of Fort Simpson within the zone of sporadic discontinuous perma-
frost (Hegginbottom, Dubreil, & Harker, 1995), Northwest Territories,
Canada (Fig. 1). The ~150 km2watershed is comprised of a highly hetero-
geneous mosaic of small permafrost mounds b100 m2 (palsas, Beilman
et al., 2001) and larger plateaus (up to 20,000 m2), ombrotrophic flat
bogs, channel fens, uplandmoraine deposits with a dense cover of decid-
uous and/or spruce trees, and small lakes and ponds. Permafrost thick-
ness varies with ground cover and ranges from a few metres to over
20 m (Smith, Burgess, & Riseborough, 2008), but in general, is very thin
and warm (Smith et al., 2008). Plateau coverage has been estimated at
~22% for the year 2000 with a predicted reduction to ~17% by 2055
(Duchesne, Wright, & Ednie, 2008), whilst Beilman and Robinson
(2003) have shown losses of 22% on average over the past 50 years in
this area. Permafrost is typically found in organic terrain and was likely
formed during the Little Ice Age and therefore, it is not in equilibrium
with the current climate (Shur & Jorgenson, 2007). Further, permafrost
plateaus and palsas, which rise slightly above peatlands, are surrounded
by unfrozen and often very wet ground. This is some thermal influence
on the degradation of permafrost at plateau edges (e.g. Quinton et al.,
2010). Well drained upland moraine deposits covered with shallow



Fig. 1. a) Location of the Scotty Creekwatershed at the southern boundary of discontinuous permafrost, Northwest Territories, Canada; b) spatial extents of LiDAR data, watershed bound-
ary (and WorldView 2 data), and classification test areas; c) shaded relief digital elevation model (DEM) derived from LiDAR data with land cover and plateau edge transects measured
in situ.
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organic soils and predominantly deciduous or mixed forest are believed
to be largely absent of permafrost.

From a remote sensing perspective, permafrost plateaus are
characterised by spectrally “dark” (visible wavelengths) mature black
spruce (Picea mariana), which vary in height between 2 m and 12 m,
and with effective LAI ranging between 1.1 and 1.4 m2 m−2 (on aver-
age). Ground cover vegetation, common Labrador tea (Rhododendron
groenlandicum), bog cranberry (Vaccinium vitis-idea), rusty peat moss
(Sphagnum fuscum), yellow reindeer lichen (Cladonia mitis) and grey
reindeer lichen (Cladonia rangifera) sit on a newly decomposed fibric
peat layer (0.2–0.5 m) under which an organic peat layer extends to a
depth of up to 8 m (Quinton, Hayashi, & Pietroniro, 2003). Channel
fens are easily identified as large linear features which convey water re-
ceived from permafrost to basin outlets (usually ponds) (Quinton et al.,
2003). Saturated soils at the edges of fens and within water channels
may be confused with other land cover types (e.g. plateaus) due to
low spectral contrast. Fen surfaces are covered by a buoyant peat
mat of various pleurocarp mosses including golden fuzzy fen moss
(Tomenthypnum nitens), tufted moss (Aulacomnium palustre) and
stick hook moss (Hamatocaulis vernicosus). The vascular vegetation
is dominated by sedges, herbs such as buck-bean (Menyanthes
trifolia) and shrubs including birches (Betula spp), dwarf bog-
rosemary (A. polifolia) and sweet gale (Myrica gale). The peat mat
sits just above the water table and responds to fluctuations in
water table height, but is not able to support tall tree development
due to ground surface instability (except for sparse larch (Larix laricina)
in some parts). Fen soils are comprised of a dense organic layer with
some mineral soils, which extend to a depth of 3 m below the water
surface (Hayashi, Quinton, Pietroniro, & Gibson, 2004). Bog surfaces
are highly reflective in visible and infrared wavelengths due to a cover
of various species of peat moss, with some ericaceous shrubs: leather
leaf (Chamaedaphne calyculata), dwarf bog-rosemary (A. polifolia) and
small bog cranberry (Vaccinium oxycoccos) as well as some herbs in-
cluding Maianthemum trifolium. Bogs are often spectrally confused
with fens and plateaus in areas where the water table is at the ground
surface, yet often small (b100 m2) bog patterns with rounded edges,
surrounded by upraised permafrost plateaus make them morphologi-
cally unique to fens. Moraine uplands are comprised of dense trembling
aspen (Populus tremuloides), white spruce (Picea glauca), and Alaskan
birch (Betula neoalaskana). Tree species are much taller with greater
foliage cover than that found in other parts of the watershed due to
rocky, mineral rich soils.
3. Materials and methods

3.1. Field data collection

Ten transects traversing fen, plateau andbog land cover types (edges
of uplands and lakes were not measured due to inaccessibility) were
established throughout the growing season 2011, one year following
the LiDAR data collection. Environmental measurements including
snow depth, top of soil profile soil moisture (0 to 5 cm), depth to frost
table (at first refusal using a graduated steel rod), vegetation species
type, and canopy gap fraction (estimated using digital hemispherical
photography) were geographically located using a Leica (Leica Geo-
systems Inc., Canada) SR530 RTK (real-time kinematic) differential
GPS system (Baltzer et al., in press). Land cover type was also visually
identified according to similarity of characteristics representing what
makes up each land cover type. Because land cover type only was
used for validation, and due to the spacing of the GPS measurement lo-
cations of depth to frost table (~5 m), it was assumed that land cover
beyond plateau edges would not change drastically within one year.

The boundary between the fen andpermafrost plateauwas defined as
the line created where the water surface met the sloped edge of the per-
mafrost plateau. This plateau ‘edge’ was also surveyed at the same time
and same day as the airborne LiDAR data collection on August 2nd,
2010. The waterline was visually identified at intervals ranging between
2 and 13 m around the edge of a single large plateau, and surveyed using
a Leica SR530 (Leica Geosystems Inc., Canada) differential GPS system in
post-process kinematic (PPK) mode (system accuracy = +/−0.02 m).
The GPS base station was set up in an open area in the middle of the
plateau within 200 m of all measurements. The same base station data
were also used to differentially correct the airborne LiDAR trajectory so
there is high confidence in the spatial co-registration of the field and
airborne data products.

3.2. Remote sensing data collection and processing

Vegetation structural characteristics and topographic derivatives
used in the hierarchical land cover classification were derived from
airborne scanning LiDAR data, planned and collected by the authors
on August 2, 2010 using an Optech Inc. (Toronto, Ontario) ALTM3100c
(Hopkinson et al., 2013). The sensor was operated at a flying height of
1500 m.a.g.l. with a pulse repetition frequency of 50 kHz, a scan angle
of ±20° and 50% overlap of scan lines. The approximate number of
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returns perm2 is 2. Data processing following initial point cloud integra-
tion with GPS and internal measurement unit (IMU) data, and calibra-
tion included the removal of isolated and erroneous returns, ground
classification, flightline alignment and ground classification smoothing
(to minimise random errors to a tolerance of 0.05 m) (TerraScan,
TerraSolid Inc., Finland). LiDAR-based data derivatives used as initial in-
puts into the classification of land cover types are summarised in Fig. 2.

WorldView 2 (Digital Globe Corp.) data were acquired at 20° maxi-
mum off nadir on October 1st, 2010. Image bands included a 0.65 m
resolution panchromatic image (400–900 nm), and eight narrow spec-
tral bands: coastal (400–450 nm), blue (450–510 nm), green (510–
580 nm), yellow (585–625 nm), red (630–690 nm), red edge (705–
745 nm), near infrared 1 (NIR1, 770–895 nm), and near infrared 2
(NIR2, 860–1040 nm) at 2 m pixel resolution. Mosaicking and colour
balancing was performed in Geomatica OrthoEngine (PCI Inc. Canada)
and orthorectified using the LiDARDEM, 2 m resolution gridded ground
surface laser return intensity and 23 tie points located within both
datasets at the intersections of trails and seismic lines. Ortho accuracy
was better than 1 m using a second order polynomial transformation in
OrthoEngine. Pixel digital numbers (DN) were then converted to top of
atmosphere spectral radiance (Wm−2 sr−1 μm−1) based on absolute
radiometric calibration factors (Wm−2 sr−1 count−1) provided per
band to get a band-integrated radiance (Wm−2 sr−1). This is then divid-
ed by effective bandwidth to get spectral radiance combined with DEM
topography and used within the ATCOR 2 atmospheric correction mod-
ule of Geomatica (Richter, 2009) to remove minimal haze and variable
optical depths, for colour balancing and to calculate surface reflectance.

3.3. Classification methodology

In this study we use a decision-tree (DT) fusion classifier to quantify
the highest probability of prediction given a set of input data and 50
training sites per land cover class, distributed throughout the water-
shed. Hierarchical models are based on a set of decisions and rules
that are applied at each node of the classifier depending on theprobabil-
ity of the input to accurately predict the land cover of the training set
(Zhu, Liu, & Jia, 2006). Primary inputs (e.g. DEM) and secondary deriva-
tive (e.g. slope, aspect) datasets are beneficial for classification because
Fig. 2. Flow diagrams of initial LiDAR data processing used to create a digital elevation model (D
(CHM), canopy gap fraction (gapfr) and intensity grids used as inputs to theDT classification. Bo
italics outline the method used.
they not only characterise spectral differences, but also take advantage
of similarity/dissimilarity between objects in space. Four sets of hierar-
chical decision classes were tested based on 1) elevation derivatives
only; 2) vegetation structural characteristics only; 3) spectral classifica-
tion of land cover types; and 4) all variables, combined.

Following Zhu et al. (2006), we use spectral and structural data to
create a multi-resolution image hierarchy frame to determine the most
appropriate spatial resolution per land cover (object) type (Fig. 3). Up
scaling is based on pixel similarity in space and includes scaling grids
from 1 m to 30 m, using variable search radii (Franke, 1982) (Fig. 3). Up
to 92 layerswere assessedper land cover typeprior to aggregation and re-
moval of co-varying layers within classes used in the hierarchical classifi-
cation. Probabilities are assigned to sub-layers relative to the training
class, and these are accumulated to give an overall probability (weight)
of prediction used to determine percent accuracy (and tested on study
sub-areas, Fig. 1). Iterative (Boolean) decisions are made to keep or
discard the sub-decision-tree in favour of other predictors based on a
range of conditions used to estimate the spatial coverage of each land
cover type (e.g. Bou Kheir, BØcher, Greve, & Greve, 2010) and confusion.

We also compare with a more typically used supervised classifica-
tion routine applied to varying WorldView 2 spectral bands (shown as
spectral signatures in Fig. 3 per land cover type). Several commonly
used supervised and unsupervised classifications (including maximum
likelihood and k-means clustering) were initially applied (e.g. Lillesand,
Kiefer, & Chipman, 2003), but we found that the parallelepiped classifi-
cationwasmost realistic, andwill be compared for the remainder of the
analysis. Best overall accuracies varied between 90% (kappa = 0.91)
(parallelepiped); 81% (kappa = 0.70) (maximum likelihood); 76%
(kappa = 0.61) (minimum distance); and 56% (kappa = 0.44) (k-
means). The training sets used in the hierarchical classification were
also used in the supervised classification.

3.4. Accuracy assessment and statistical analysis

Classification accuracies are identified using pixel confusion matri-
ces per land cover type and per hierarchical class based on training
sets and delineated plateau, bog, and fen sub-areas. Errors of omission
and commission of a) the final (fusion) classification, and sensitivity
EM), slope and aspect raster models, digital surface models (DSM), canopy height models
ld font indicates an output, rounded boxes indicate an output used in the classification, and



Fig. 3. Flow diagrams of major steps used in the order of upland, permafrost plateau, bog, fen, and water land cover types. Bold text represents output data layers created and combined
within the final classification based on decision criteria; grey boxes represent smoothing/filtering functions used to reduce “speckle”within classification stages; rounded boxes indicate
that a previous output was used within a subsequent classification methodology, and italics represent an intermediate method used.
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Fig. 3 (continued).
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to b) topographic; c) canopy structure; and d) spectral sub-trees are
presented as percent area confusion, and spatially within maps. The
accuracy of edge delineation and land cover prediction using the hierar-
chical classification vs. the spectral classification are compared using the
residual (shortest) distance between in situ plateau edgemeasurements
and the classification method.

3.5. Application of a hydrological model

Several studies conducted at Scotty Creek have found spatial similar-
ity in key terms that may be used as inputs to a simple hydrological
model used to characterise hydraulic response of permafrost plateaus.
These include: 1) rate of active layer thaw (Hayashi, Goeller, Quinton,
& Wright, 2007); 2) hydraulic conductivity with depth below the
ground surface (Quinton, Hayashi, & Carey, 2008), and 3) slope angles
of plateau flanks separating relatively flat interiors and adjacent wet-
lands (Quinton & Baltzer, 2013; mean = 0.041, stdev. = 0.006).

Sub-surface discharge from plateaus is modelled using the distribut-
ed Cold Regions Hydrological Model (CHRM) (Pomeroy et al., 2007;
Quinton & Baltzer, 2013). The purpose of the model is to simulate the
hydrological cycle from hillslopes to medium-sized basins within a
cold region context. The model requires the slope gradient, overall



79L. Chasmer et al. / Remote Sensing of Environment 143 (2014) 73–84
active layer thickness, initial position of the top of the frozen, saturated
layer (Quinton & Hayashi, 2007), initial water equivalent of the snow-
pack (SWE), and the number of soil layers defined. Each soil layer is
also characterised by thermal (e.g. volumetric heat capacity) and phys-
ical (e.g. bulk density, porosity) properties aswell as the initial soil tem-
perature as described in Quinton and Baltzer (2013). Additional input
variables include soil air and ground surface temperatures, soil temper-
ature and moisture content for each computational layer of soil, precip-
itation,water equivalent depth of a snowpack and the depth to the frost
table measured at 30-minute intervals on a representative permafrost
plateau. Air temperature was used to estimate the snowmelt rate,
ground surface temperature, and ground thaw rate (Quinton & Gray,
2003) determined from trial and error until the computed SWE deple-
tion matched observed depletion. These index methods ensure a close
match betweenmeasured vs. simulated snowmelt and frost table reces-
sion thereby reducing the possibility that significant errors in runoff
simulations are caused by snowmelt and ground thaw routines.

Computations were made at 30-minute time intervals for 15, 1-m
wide strips of ground extending a) from the centre of the plateau across
the relatively non-varying plateau top; and b) from the point of convex-
ity where the flank of the plateau begins and including: i) the length to
the edge of the hierarchical fusion classification; and ii) the length to the
edge of the spectral (parallelepiped) classification from June 1st to
August 31st, 2010. Transects also have 3D properties, where the upper
boundary was located at the ground surface, and the lower boundary
at the impermeable frost table (with depth into the soil). All inputs for
individual transect runs were the same except for differences in slope
and length of the plateau flank or sloped edge. Details on the model
Fig. 4. Accuracy of land cover classifications compared with manually traced land cover types
WorldView 2 parallelepiped classification (“Spectral”) and all three combined within a hierar
and land cover type.
parameterisation, sensitivity and uncertainty analyses are provided in
Quinton and Baltzer (2013).

4. Results

4.1. Classification results and comparisons

The accuracy of each DT classification methodology per land cover
type is presented in Fig. 4, and spatially in Fig. 5. The hierarchical fusion
of LiDAR data derivatives and spectra is the most accurate, explaining
between 88% and 97% of the area extent of land cover classes within
test areas and the broader watershed, whilst the spectral (parallelepi-
ped) classification explained between 38% and 74% of the same area,
following application of the same aggregation and de-speckling/
aggregation methods. Within all land cover types, excluding uplands,
topographic derivatives based on elevation are best able to classify
land cover types, whilst vegetation structural characteristics and vari-
able land cover spectra are generally less accurate. The parallelepiped
classification of land covers has the greatest omission errors, but least
confusion with other land cover types. Errors of omission are more
important than commission as commission errors are subtracted out
of the final land cover classification, in each case.

Between 82% and 96% of land cover extents and positions are identi-
fied from topographic derivatives, whilst only 69% of area coverage of
uplands are identified using topography alone (vegetation structural
characteristics are slightly better able to predict upland areas due to
tall, dense vegetation unique to these areas). Vegetation structural
characteristics (vegetation height, gap fraction) explain between 41%
based on topographic derivatives (“DEM”), vegetation structural characteristics (“CHM”),
chical classification (“Fusion”); errors of omission and commission per classification type



Fig. 5. Spatial extents of classification correspondencewithmanually traced land cover types (within areas of interest, Fig. 1b), unclassified, andmisclassified areas for each land cover type
and classification method.
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and 76% of land cover area and location, with greatest correspondence
(and least misclassified error) within uplands.

Errors of commission between other land cover types are greatest
using vegetation structure as the hierarchical classifier due to confusion
between typically short bog and fen vegetation in both (andmethodol-
ogies, Fig. 3) and along the plateau edgewhere vegetation thatwas once
located on thawed plateaus remains within the new land cover type
(bog). The parallelepiped classification has greatest confusion within
bogs due to heterogeneous spectral reflectance/absorption at the
edges of plateaus and again tree encroachment into bogs (Fig. 5). The
DT (fusion) classification also shows some confusion and misclassifica-
tion within bogs and fens. Both have similar vegetation structural char-
acteristics, are topographically low-lying within the landscape, and are
spectrally similar in many parts due to same plant species types and
soil moisture regimes. However, greater than 90% correspondence
between bog and fen DT classification and the validation dataset is
found within bog and fen areas, relative to 41% to 83% classification
error using topographic (DEM), vegetation structural (CHM) and spec-
tral methods.

TheDT fusion classification combining all three hierarchicalmethods
is illustrated in comparison with amore typically applied parallelepiped
classification of high resolutionWorldView 2 data (Fig. 6). Uplands have
the greatest percent area coverage of the watershed (48%) followed by
plateaus and bogs (20%, 19%), fens (12%) and lakes (2%). However,
based on the spectral classification, plateaus cover the greatest percent
area coverage of the watershed (43%, also found in Quinton et al.
(2003) at Scotty Creek using an IKONOS spectral classification), followed
by uplands (25%), fens (18%), bogs (12%), and water (3%). Differences
range between 1% and 23% area coverage of land cover types within
the watershed using the two methods. Plateaus have the largest



Fig. 6. a) Fusion classification of watershed; b) parallelepiped classification of WorldView 2 spectral bands.
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differences in extent between the two classification methods (23%),
which will have significant implications for land surface and hydrologi-
cal modelling, depending on which classification is used.

4.2. Validation and comparison of DT fusion classification and
parallelepiped classification

Two final classificationmethods are comparedwith in situ validation
transects of land cover type and plateau/fen edge delineation to quanti-
fy how well both classifications corresponded with measured, beyond
indices of confusion or correspondence between pixels. Table 1 shows
the percentage of pixels accurately identified as a certain land cover
type compared with 245 geographically locatedmeasurements of envi-
ronmental variables and visual observations along 10 transects in pla-
teau, fen and bog land cover types. The DT fusion classification is
better able to accurately predict land cover classwithin 8 of 10 transects,
with accuracies ranging from between 78% and 100% and cumulative
(average) land cover classification of 90%. The spectral classification
successfully classifies land cover types between 55% and 100% of the
time. Spectral classification along Transects 6 and 9 are an improvement
over the DT classification method, whilst the cumulative (average)
spectral classification success is 70%. The greatest differences between
classificationmethods occur along Transects 4, 7, 8, and 10, where spec-
tral characteristics between plateau and fen/bog land cover types are
confounded by soil saturation (absorption in NIR bands) and shadowing
along north-east margins. Differences may also have been exacerbated
due to the late (October) data acquisition of the WorldView 2 dataset,
and variable soil saturation conditions. Along Transect 6, the edge of
the permafrost extent is underestimated using the DT fusion method
because the plateau edge cannot be defined using the DEM, however
the edge of the plateau also has an abundance of black spruce conifer
trees, which are easily identified using the spectral classification (in cor-
respondence with field measurements). The spectral classification cor-
responds better with ground measurements along Transect 9 because,
mid-way through the transect, the fusion classification identifies a
trail as “bog” (due to indentation and thaw into the plateau and reduc-
tion of tall vegetation representative of bogs within the classification).
The trail is not identifiedwithin thefieldmeasurements (classed as “pla-
teau”) resulting in differences in accuracy between the methodologies.

The residuals between the geographic delineation of the water line
between plateau and fen via in situmeasurements (Fig. 1c) and nearest
adjacent pixels of the DT fusion vs. spectral classifications are presented
in Fig. 7. The fusion classificationmore accurately delineates the edge of
the plateau, defined by the waterline, and is within 2 m of measured,
60% of the time, whereas the spectral classification achieves this 40%
of the time, possibly as a result of confusion between shadows and sat-
urated ground conditions that vary from time ofWorldView 2 vs. in situ
data collections. Two large misclassification errors in fusion classifica-
tion, however, result in rootmean squared error (RMSE) = 4.95 m (fu-
sion), vs. 3.87 m (spectral) at distances of 139 m and 149 m along the
transect. Differences inmeasured vs. classified are due to an area of sub-
sidence within a permafrost plateau that was not measured using the
GPS transect. The subsidence area was surrounded by trees at the
outer edge, and was not easily visible when performing the water line
survey (therefore, it was missed). Interestingly, the edge of the subsid-
ing plateau is identified accurately by the fusion classification, when
compared with the DEM, but is not identified by the spectral classifica-
tion. If these two points are removed, RMSE is reduced to 2.10 m (DT
fusion).

Residual differences between the spectral classification and the pla-
teau edge/water line are also greater than 3 m for the first 7 measure-
ment locations corresponding with vascular vegetation growth within
the fen to distances of up to ~9 m beyond the transect (with greater
errors corresponding to further extension of trees into the fen). Greatest
residual differences between the DT fusion classification and the tran-
sect occur in the last 6 measurement locations (errors N3 m), corre-
sponding to short, sparse vegetation along the southern margin of the
plateau and therefore limitations to the decision criteria used to deter-
mine plateau extent.

4.3. CRHM model application and sensitivity analysis

The deviation in modelled total discharge (m3) over 15 transects
increases by 26% per unit area of the difference in the classification



Table 1
Percent of land pixels correctly classified using the hierarchical fusion classification introduced in this study vs. a parallelepiped spectral classification per land cover type compared with
geographically referenced field assessments.

T1 (n = 18) T2 (n = 20) T3 (n = 21) T4 (n = 31) T5 (n = 25) T6 (n = 18) T7 (n = 20) T8 (n = 31) T9 (n = 18) T10 (n = 43)

Hierarchical fusion classification 78 91 100 97 96 89 85 94 94 84
Spectral classification 61 85 85 75 88 94 50 61 100 55
Difference 17 6 15 23 8 −6 35 32 −6 29
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error, assuming that the DT fusion classification provides the most
accurate estimate of plateau edge. Quinton and Baltzer (2013) found
that a reduction in plateau runoff producing area had the most signifi-
cant influence on plateau discharge, reducing it by almost half the
volume between 2002 and 2010. This assumes that permafrost thaw
results in reduced hydraulic gradient, increased thaw depth, and loss
of runoff production. An overestimation in plateau area by 20% may
artificially inflate discharge estimates by almost 1.3 m3 from June to
August of a single year. Given the spectral classification almost doubles
the area extent of permafrost plateaus compared with the DT fusion
approach, the spectral classification would over-estimate permafrost
thaw-related runoff from plateaus by a commensurate amount. This
also suggests that anticipated plateau runoff from permafrost thaw
may be lower than previously anticipated.

5. Discussion

Land cover type, location and extent directly influence processes
related to hydrology and the parameterisation of hydrological models.
These include (but are not limited to): land cover-specific energy bal-
ance, evapotranspiration, infiltration, and runoff (e.g. Chen, Chen, Ju, &
Geng, 2005; Whitfield, St-Hilaire, & van der Kamp, 2009). Key spatial
inputs to models often include spatial attributes, such as topography,
geology, soils, land cover, and land use (Miller et al., 2007) for character-
isation of land cover-specific processes. Many hydrological models used
today are distributed or semi-distributed, requiring data specific to indi-
vidual land cover types, but can also be simplified to general or empiri-
cal relationships (e.g. Govind et al., 2009; Kite, 1998). The response of
hydrographs to precipitation/thaw from key land cover types within a
distributed hydrological model may be organised in terms of a) Hydro-
logical Response Units (HRU) based on land cover type, slope and aspect
(e.g. Kite & Kouwen, 1992); b) irregular shapes (Kite & Pietroniro,
1996); or c) individual remote sensing pixels that contain unique vege-
tation–soil systems (excluding exchanges) (e.g. Zhang et al., 2012). It
must be recognised, however, that whilst accurate classification of
first order (mean) spatial variability is important, increasingly detailed
characterisation of the land surface may introduce uncertainties as a
result of location and extent errors in spatial datasets (Chen et al., 2005).

Whilst using remote sensing data has improved runoff predictions
from distributed models (compared with lumped), some studies have
found that small classification errors can result in substantial uncertain-
ty to runoff andwater quality (Miller et al., 2007). For example, Kite and
Pietroniro (1996) found that differences in pixel resolution can have a
significant influence on the distribution and extent of land cover types
used within hydrological models. Further, Pietroniro, Prowse, Hamlin,
Kouwen, and Soulis (1996) found that results were improved when
calibrating a hydrological model to an accurate land cover classification
(determined from a confusionmatrix), however, themodel was still not
able to adequately reproduce the volume and timing of runoff. They
attributed model inaccuracies to the simplification of land cover pro-
cesses, and a lack of detailed information on storage and routing pro-
cesses related to land cover type.

In the case of the Scotty Creek watershed, we have found that a few
studies have performed spectral and textural classifications using re-
mote sensing datasets for the purposes of hydrological modelling and/
or improved understanding of runoff processes. In all cases, the classifi-
cations of land cover extents were quite different. Pietroniro et al.
(1996) used a principal components analysis and 8 spectral bands
from a Landsat image within a k-means unsupervised classification.
They found that wetland areas covered ~22% of three study basins adja-
cent to and including Scotty Creek, whilst forests covered an additional
~73% of the total basin area (subdivided by vegetation type: deciduous,
coniferous, mixed and transitional). A study by Quinton et al. (2003),
who used Landsat and IKONOS remote sensing data classified using a
maximum likelihood classification, found that the Scotty Creek water-
shed was comprised of 63% “wooded” areas (representing uplands
and permafrost plateaus), 19.6% fen, and 10.2% bog. In another study
by Stadnyk et al. (2005), they conclude that the classification of bogs
and fens within the Scotty Creek watershed using Landsat data was sig-
nificantly overestimated. They characterised the distribution of wet-
lands to cover 13% of the watershed, with forested areas, (conifer,
mixed, and transitional) covering an additional 87% of the watershed.

The results presented in our study indicate that bogs and fens repre-
sent 19% and 12% of the watershed, respectively, which indicate possi-
ble confusion between land cover types/pixels, and mixed pixel small
bog omissions using lower resolution remote sensing data. Fen areas
may be less prone to edge uncertainties because they typically cover
much broader areas and are less prone to micro-scale variability at fen
edges (unlike bogs, which are often fragmented and may be in partial
shadow which may be confused with plateau land cover types,
e.g. Chasmer et al., 2010). Uplands and plateaus accounted for
63% of the watershed in Quinton et al. (2003), which is similar to the
finding in this study (68%). Because themagnitude and timing of runoff
processes are strongly related towater routing and retention capacity of
bogs and fens, accurate classification of location, extent and connectiv-
ity of wetland areas in the Scotty Creek watershed is very important.
Examples of the influence of wetlands to basin runoff are demonstrated
in Quinton et al. (2003) and Stadnyk et al. (2005).When comparedwith
other basins within the Lower Liard, Quinton et al. (2003) found that
basins with greater area coverage of fens had greater annual basin run-
off than those with lower proportional coverage of fens to bogs. Both
Stadnyk et al. (2005) and Quinton et al. (2003) note the importance of
hydrologically connected wetlands as conveyers of water to the basin
outlet, whilst Stadnyk et al. (2005) state that accurate classification of
these connected areas as a function of topography is a critical input
required for accurate prediction of basin runoff.

Clearly, the dependence on classification accuracies froma confusion
matrix with kappa values must be regarded with some caution, as
indicated in this study and others. Classification accuracies are used
to statistically assess the representation of land covers by spectra
(e.g. Foody, 2002), but may not entirely or always represent reality.
In this study, the best parallelepiped classification of the Scotty
Creek watershed generated average accuracies of ~88%, with an overall
accuracy of ~91% (p b 0.001, kappa = 0.91) (accuracies ranged be-
tween ~78% and 98% based on training sets, errors of omission and com-
mission within a confusion matrix). However, when compared with
validation data, the classification was accurate between 38% and 74% of
the time. Pietroniro et al. (1996) present similar accuracies for a Landsat
classification of three watersheds, including Scotty Creek (91% overall
accuracy, kappa = 0.91), whilst Quinton et al. (2003) and Stadnyk
et al. (2005) do not quantify classification errors. From these results
we recommend cautionwhen stating classification accuracies from con-
fusionmatrices, but understand that inmany cases, the confusionmatrix
is a best estimate of the error associated with spectral misclassification.



Fig. 7. Residual differences between the nearest edge of the spectral (black squares) and
DT fusion classifications (white diamonds), and geographically located measurements of
the waterline along the plateau/fen edge transect.
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6. Conclusions

In this study, we combine topographic derivatives with vegetation
structural and spectral characteristics unique to land cover types
found at the edge of the southerly margin of discontinuous (sporadic)
permafrost regions of northern Canada. The methodology developed
here significantly advances current spectral classification methodolo-
gies used to identify areas of permafrost plateaus, surrounded by satu-
rated fens, and pocked by connected/isolated bogs. Further, this is a
requirement both for accurate hydrological modelling and improved
understanding of water runoff processes at the southern-most margin
of discontinuous permafrost (Quinton et al., 2003; Stadnyk et al.,
2005). Although both spectral and vegetation structural characteristics
improved the classification slightly, the use of topographic derivatives
provided the greatest explanation of land cover variability, especially
where low-lying areas and channels could be identified (e.g. Stadnyk
et al., 2005). Therefore, high resolution spectral data are not necessarily
required for input into the hierarchical classification. In comparison, re-
sults from supervised (and unsupervised) spectral classifications in this
area should be regarded with some caution in this region. We find that
the results of the correlationmatrix do not necessarily match validation
data. Alternative methods for assessing classification errors within the
zone of discontinuous permafrost should include another form of vali-
dation (e.g. transects) or possibly training from an accurate classifica-
tion like the one presented in this study.
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