
Geog 1000 - Lecture 19

Fluvial Geomorphology and River Systems

http://scholar.ulethbridge.ca/chasmer/classes/

Today's Lecture (Pgs 346 – 355)

- 1. What is Fluvial Geomorphology?
- 2. Hydrology and the Water Cycle
- 3. Defining the Drainage Basin
- 4. Drainage basin processes
- 5. Drainage patterns
- 6. Stream discharge and the stream hydrograph
- 7. Types of rivers and their formation

Fluvial Processes

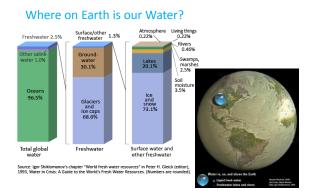
Processes related to streams and rivers.

Why are streams and rivers important? What do they do?

What is Fluvial Geomorphology?

Fluvial → Stream and river processes: WATER

Fluvial Geomorphology \rightarrow Movement of sediment along with water down streams.


ightarrow Fluvial geomorphology shapes the landscape

 \rightarrow What changes will occur to the stream channel in response to local changes (in the *watershed*)?

Before we get into Fluvial Geomorphology, we'll start with the Water Cycle!

Water and People: Some Interesting Statistics

Areas of physical and economic water scarcity

Global Water Scarcity Index

Economic water scarcity \rightarrow enough water, but great economic costs required to ensure proper management (so that it doesn't become physically scarce)

From the United Nations:

85% of population live in driest half of the planet.

783 million people \rightarrow no access to clean water.

2.5 billion people \rightarrow minimal sanitation.

6 to 8 million people \rightarrow die per year from disasters and water-related disease.

~3.5 Earth's would be needed to sustain current population at N. Am. Lifestyles (!)

Population increase of 2-3 billion people over 40 yrs. Predicted increase in food demand = 70% greater by 2050. Energy demand predicted increase by 60% over 30 years.

Water availability to decrease, but consumption will increase by ~19% by 2050.

Agriculture accounts for ~70% of global freshwater withdrawals.

1 kg of beef requires ~ 15000 L of water, 1 cup of coffee = 140 L of water used.

Exploring Hydrological Processes in Space and Time

Hydrology and the Water Cycle

Water goes into the System \rightarrow Water goes out of the System.

Important because provides actual ter available for use. → Some water is *stored* within the System

Inputs to the Water Cycle

Water flowing into the system Precipitation \rightarrow Rain and Snow

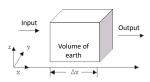
Outputs from the Water Cycle

Water leaving the system

- Snowmelt runoff into streams \rightarrow eventually to the ocean
- Below ground water movement to streams
- Surface water runoff
- Evaporation (water from soil, water bodies changing state)
- . Transpiration (water from plant surfaces changing state)

Storage in the Water Cycle

- Water staying in the system over long periods of time:
- Fresh water storage in lakes, ponds, wetlands
- Water storage in soil/aquifers (underground water in rocks) Water storage in ice and snow
- Water storage in oceans and atmosphere

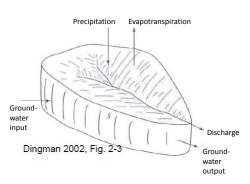


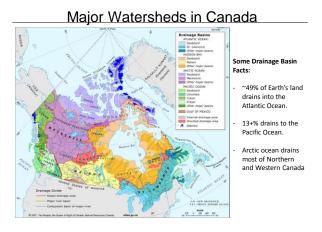
The Water Cycle and the Control Volume

Understanding water availability requires a Control Volume:

→ An volume of the land surface (with depth) that water flows into, out of, and is stored in *through time*.

Also Known as a Watershed or Drainage Basin or Catchment




The Watershed

Surface water runs into increasingly larger streams, rivers that form a **Watershed** \rightarrow can be very small to very large

The Control Volume Watershed

Largest Watersheds in the World

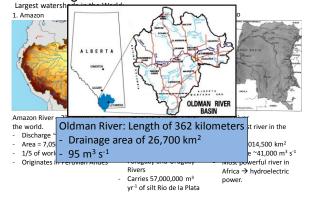
Amazon River – 2^{nd} longest R in the world.

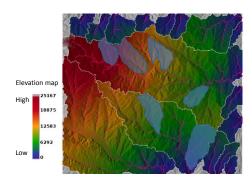
- Discharge ~209,000 m³ s⁻¹
- Area = 7,050,000 km²
- 1/5 of world's total river flow
 Originates in Peruvian Andes
- Originates in Peruvian Andes
- Area = 4,144,000 km²
 Paraguay and Uruguay Rivers
 Carries 57,000,000 m³

Widest river in the

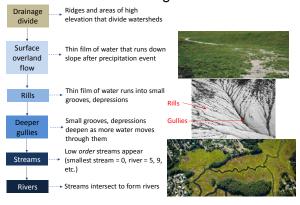
kms

world, max width = 220


yr⁻¹ of silt Rio de la Plata


3rd largest river in the world

- Drains 4,014,500 km²
 Discharge ~41,000 m³ s⁻¹
 Most powerful river in
- Africa → hydroelectric power.


Largest Watersheds in the World

Watersheds and Sub-Watersheds

Flow of Water through a Watershed

Description of Stream Networks:

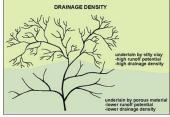
Stream Networks based on Stream Order:

 1^{st} order streams \rightarrow have no tributaries

 2^{nd} order streams \rightarrow confluence of two first order streams

3rd order streams \rightarrow confluence of two second order streams ... etc.

Examining Drainage Patterns: Density Drainage Density (D_a) (km km⁻²): Drainage Density



 $A_D \rightarrow An$ area $\Sigma L \rightarrow$ Total length of streams draining that area

In other words:

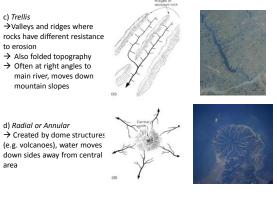
area

Total length of the streams divided by the area of the watershed.

- ightarrow Related to ave. P (low in arid and humid areas, high in wetter area).
- \rightarrow Also higher in less permeable soils.

Drainage Patterns

→ Looks like a 'tree'


b) Rectangular → Formed by jointed/faulted rocky terrain

→ Right angle stream intersections

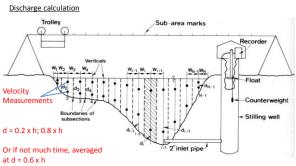
Drainage Patterns:

e) Parallel A Water moves in parallel streams associated with steep slopes f) Deranged A No clear pattern of drainage, no true stream valley. Surface disrupts stream flow, creates ponding

Introduction to Stream Discharge (Q)

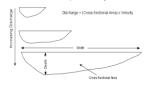
What is it? Movement of water dow

Movement of water downslope ightarrow influenced by gravity

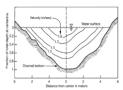

- → Contains an amount of kintetic energy
- → provides a certain amount of water
- → shapes the stream and surrounding land surface (geomorphology)

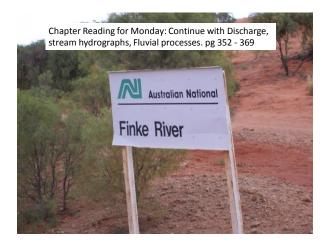
Defined as: Rate of flow of water volume (including sediments etc.) Units = volume length of travel per unit time (e.g. $m^3 s^{-1}$).

$Q = A \times V = W \times D \times V$


Q = discharge m³s⁻¹; A = area; W = channel width D = avge channel depth; V = avge stream velocity

Determining discharge from transects:




Discharge Characteristics of Rivers:

Discharge increases as stream cross sectional area increases

Discharge is greatest in the middle of the stream where there isn't much friction

