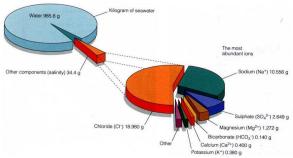

Geog 1000 - Lecture 22

Oceans and Coastal Processes http://scholar.ulethbridge.ca/chasmer/classes/

Today's Lecture (Pgs 377 - 386)

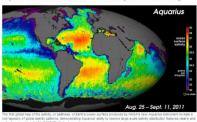
- 1. Ocean composition and structure
- 2. Components of coastal systems
- 3. Describing the coastal environment
- 4. Coastal processes and actions
- 5. Natural disasters: Flooding of New Orleans


Major Salt Water Oceans, Seas, Features

Chemical Composition of Oceans and Seas

Ocean water is a solution of dissolved solids (solutes) → Ocean salinity

Saline components: chloride; sodium; sulphate, magnesium, calcium, potassium, bromide (bicarbonate) + other trace components


Ocean Salinity

Salinity → solids by volume in parts per thousand (‰)

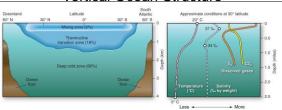
Average salinity (Brine) = 35%, varies between 30-40% (see below, text says 34-37%). Brackish water < 35% salt.

Why do we see spatial and/or temporal variations in salinity?

Aquarius Yields NASA's First Global Map of Ocean Salinity

Ocean Acidification

Human emission of carbon dioxide = 45 billion tons per year. Ocean absorbs 50% Absorption of carbon dioxide = Reduced ocean surface pH levels


- ightarrow formation of carbonic acid, 30% increase in acidity
- o Organisms no longer able to build shells

Ocean Acidification

Changes in ocean acidification over the years through photographs Jamaica Florida Keys Great Barrier Reef 1976 1980 1883

Vertical Ocean Structure

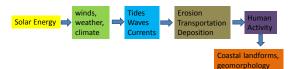
 $\textit{Mixing zone } \rightarrow \text{Warmed by sun, moved by wind}$

Thermocline transition zone → Decreasing temperatures, little motion from wind, convection

Deep cold zone → uniform salinity, unfrozen at 0°C, would freeze at -2°C due to high pressure.

Coldest water at the bottom.

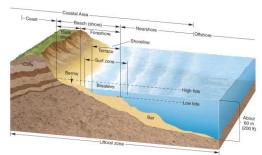
Horizontal Ocean Structure: Ocean Currents


- → Determined by winds and temperature.
- Mainly driven by circulation around subtropical High pressure cells. Clockwise in NH and counterclockwise in SH.

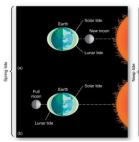
Thermohaline Circulation

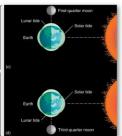
- ightarrow Driven mainly by salinity and temperature ightarrow Redistribution of heat.

Forces Influencing Coastal Environments



The Littoral Zone

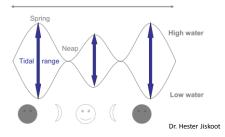

The coastal environment: Extends from highest onshore waterline to point where water is too deep for waves to move sediments



Coastal Processes and Actions

Tidal Systems:

- → Occur twice daily, influence erosion
- → Created by gravitational pull of the sun and moon (moon has greater influence).
- → Pull of moon = bulging of ocean on one side, less bulge on other side
- → Rotation of Earth = two high (flood) tides, and two low (ebb) tides


Coastal Processes and Actions

Spring tide (leap up) \rightarrow Increased tidal range 2x per month

→ Sun and moon along same plane = higher high and lower low water.

Neap tide → Decreased tidal range: 2x per month

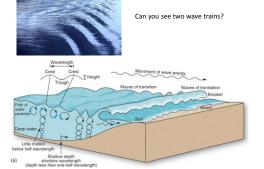
- → Occurs during first and last quarter moons
- → Sun and Moon at right angles to each other relative to Earth

Bay of Fundy, Nova Scotia: Largest Tides

Variations in tides a result of **Area, Depth, Topography** of the ocean basin; latitude; shape of

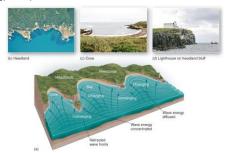
the shoreline.

Vary from a few mm to 15 m



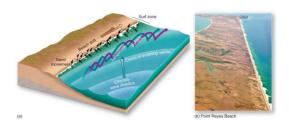
Bay of Fundy, Nova Scotia: Largest Tides

Coastal Processes and Actions


Wave Action → Friction between wind and ocean surface

Coastal Processes and Actions

Wave Refraction \rightarrow Redistribution of wave energy: Some parts of the coastline erode, others do not (surface material).


- → Eventual straightening of the coastline.
- → Energy is dissipated in coves.

Coastal Processes and Actions

Littoral (Longshore) drift \rightarrow Current formed from wave collision forming deeper water zone near shore.

→ Transports sand, gravel

Hurricane Katrina, Coast of New Orleans

About Hurricane Katrina:

One of the top 5 deadliest hurricanes in US history.

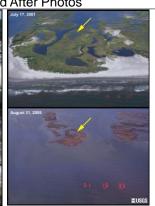
Total Fatalities: 1,833 Highest Wind Speeds: 280 km/hr Lowest Pressure: 902 mb Flooding up to 4 m depth

August 23, 2005 to August 30, 2005

Made landfall in Louisiana on August 29, 2005

Category 5 hurricane.

Louisiana: A Vulnerable Coast

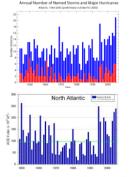

Between 1932 and 2000, 4,900 km2 of coastal islands were lost.

A further 562 km2 were lost during Hurricanes Katrina and Rita

Losses correlate with oil and gas production on coast \rightarrow subsidence and loss of wetlands

Before and After Photos

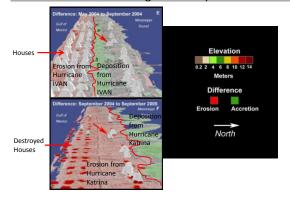
Before and After Photos


Hurricane Climatology

Increase in numbers of hurricanes since 1995
 → 13 storms since 1995

→ 8 storms since 1970

Due to warm sea surface temperatures since



http://www.ncdc.noaa.gov/extremeevents/ima ges/2005/atlantic-2005-ace.png

Volumetric Change on Dauphin Island

May 2004 (Pre Ivan) Out of Messo Double Main Road September 2005 (Post Katrina) Managep Oowle Messo August 31, 2005 Massage Out of Messo Main Road Main Road Washed out

Volumetric Change on Dauphin Island

Volumetric Change on Dauphin Island After Hurricane Ivan Destroyed Houses After Hurricane Katrina After Hurricane Katrina Overwash Post Katrina aerial photographs

