Geog 1000 - Lecture 25

Ecosystem Energy Pathways http://scholar.ulethbridge.ca/chasmer/classes/

Today's Lecture (Pgs 485 – 495)

Question: What happens to plant photosynthesis in winter?

- 1. Trophic relationships between producers and consumers
- 2. Limits to development: species distribution and population
- 3. Biodiversity and biological evolution
- 4. Ecosystem stability
- 5. The current state of biodiversity
- 6. Ecosystem restoration
- 7. Terrestrial and aquatic succession

Assignment 3 due on Monday

 \rightarrow Will skip soils (not enough time, but may try to discuss last week with environmental change).

What happens to photosynthesis in winter?

Preparing for winter:

→ Shorter days: Less light, lower temperatures (less water)

Leaves no longer able to produce glucose $\boldsymbol{\rightarrow}$ shut down chloroplasts and cells die.

- → Healthy leaves require red, yellow; blue, violet (photosynthetically active radiation – PAR) for photosynthesis.
- → Reflect green and near infrared radiation in summer
- → Red & orange reflected when not needed, in fall

What happens to photosynthesis in Winter?

Most vegetation → becomes dormant in winter/night → deciduous lose leaves → conifer needle stomata freeze shut when cold...

*Maintenance results from consumption of stored organic material = CO₂ release into atmosphere

 $\rm CO_2$ added \rightarrow from animals, plants, breaking down of organic materials, fossil fuel combustion

 CO_2 removed \rightarrow photosynthesis, oceans

What is the impact of seasonal photosynthesis on global warming?

What happens to photosynthesis in Winter?

Atmospheric CO₂ will decreases as long as removal from atmosphere > release

Today in Geography

A dirty \$10 diamond was found by U of Alberta: Clues that water exists 410-660 kms below Earth's surface (Nature).

- → Bumpy diamond sculpted by fluids
- \rightarrow Amount of water could be same *mass* as all worlds oceans.
- \rightarrow Important implications for water cycle, tectonics

Evidence: Tiny grain of rock 4 hundredths of a mm in diameter in diamond \rightarrow Rock made of ringwoodite, contains 1.5% water

→ "An oasis of water in the transition zone"

 \rightarrow Moves up to the surface quickly via kimberlite volcanic rock – erupts quickly from extreme depths.

Today in Geography

http://www.cbc.ca/news/technology/deep-earth-has-oceans-worth-of-water-10-diamond-reveals-1.2569564

What is going on with Lethbridge Water?

Trophic Relationships between Producers and Consumers

Food Web Efficiency:

Gross Production minus Respiration = Net Production

What this means is:

- → Organisms must expend energy to survive.
- → Differences greater between consumers than producers
- → Substantial losses in energy lost

Conversion Efficiency: Net production (level 1) / Net production (level 2) (etc.

Species Distribution: Limiting Factors

Limiting Factors \rightarrow Physical, chemical or biological \rightarrow Determines species distributions. Know some of the limiting factors (pg 488).

What might be the limiting factors?

Tree Line

Killer Whales

Species Distribution: Limiting Factors

Ecosystem Stability and Evolution

Ecosystems \rightarrow Constantly evolving, forced by growth/resistance factors

→ Changes due to changing environment

ightarrow Gradual transitions to catastrophic events

Catastrophic Landslide + regeneration

Field gradually turning into a forest

An Example: Changing black spruce tree distribution in the NWT as a result of permafrost thaw:

ightarrow Ecosystems are always changing

Biodiversity and Biological Evolution

Biodiversity → Bio-logical diversity

→ Species richness, variability (genetic variations, species variations or ecosystem variations within a biome).

High biodiversity

Low biodiversity

Evolution

Evolution \rightarrow adaptation and development of single cell organisms to more complex forms over generations.

- → Genetics shaped by environment
- \rightarrow Leads to greater rates of survival

Traits in genes maximise use of niches = Natural Selection \rightarrow genetic favoritism

Ecosystem Stability

Greater biodiversity = greater long-term stability, productivity.

E.g. Cedar Creek Ecosystem Science Reserve

→ More diverse communities = greater resilience to drought

Inertial stability: Ability to resistance small disturbance

Resilience: Ability to recover

Examining Wetland Biodiversity in Alberta

Declining Biodiversity Problem

5 Greatest Threats to Biodiversity

Ecosystem Restoration

Ecosystem Restoration Activities

Agricultural lands Recent tropical defe

Recent tropic

Nide-scale re:

Source: WRI

Ecological Succession: Terrestrial

Ecological Succession \rightarrow Newer communities (complex) replace older ones (simpler) = hopefully more mature condition.

 \rightarrow Requires disturbance: Deforestation, fire, volcanic eruption, wind storm, etc.

Ecological Succession: Aquatic

