Geog 1000 - Lecture 30 Introduction to Remote Sensing http://scholar.ulethbridge.ca/chasmer/classes/

Today's Lecture (Pgs 25 - 28)

1. Finish Wednesday's lecture

- 2. What is remote sensing? Why use remote sensing
- 3. Image channels and reflected radiation
- 4. True vs. False Colour composites
- 5. Band ratios

Monday: Assignment 4 due at the beginning of class. Please do <u>not</u> email it to me (unless we arranged to do so).

Also: Class evaluations emailed to you.

What is Remote Sensing?

"Remote sensing is the field of study associated with extracting information about an object without coming into physical contact with it" – Schott 1997.

We remotely sense things every day with our eyes...

We acquire \rightarrow process \rightarrow output data.

Definition of remote sensing includes: Vision, astronomy, medical imaging, sonar, earth observation from a distance, etc.

Focus: Earth observation from aircraft, satellite.

What is Remote Sensing?

Let's start with passive remote sensing

Radiation transmission, absorption, reflection

Energy can be transmitted, absorbed, or reflected: Reflection = albedo (α) \rightarrow What is measured by RS Good absorbers are good emitters! Any examples?

Why is remote sensing useful?

Gives us a historical view of the spatial world...

ALSO:

Gives us a different view of the world (from a different angle) \rightarrow more synoptic view over a larger area.

Gets rid of the problem "Can't see the forest for the trees..."

AND:

Allows us to look at the world beyond "visible" wavelengths

Why is remote sensing useful?

Another Example

Our eyes: Adapted for variability in visible spectrum.

Energy interaction with features Total EM energy transmitted, reflected and absorbed:

Two important things to note:

- 1. Proportions of each vary depending on object (bio)geochemistry.
- 2. Proportions of each vary per wavelength.

Things that look the same in one wavelength, look very different in another wavelength:

Biochemical Influences on Reflection

Spectral Signatures of Objects Visible Near Infrared Shortwave Infrared

Remote Sensing Uses KEY Wavelengths

Bands \rightarrow Discrete wavelengths that show greatest differences between things on Earth

Each "Band" is assigned a RGB display colour

For Example: WorldView-2 Satellite

The same area, but differences in reflectance and absorption of electromagnetic radiation from the sun depending on object structure and chemistry.

Representing Earth Surface Features blue

Everything that reflects "green" wavelength looks green Everything that reflects "red" wavelength looks red

Representing Earth Surface Features

Everything that reflects "red" wavelength looks green Everything that reflects "NIR" wavelength looks red

We are most interested in absorption vs. reflection

How can we (vaguely) determine vegetation that is more/less healthy (or productive, or has more or less biomass)?

Ratio of red absorption vs. NIR reflection \rightarrow healthiest veg will absorb the most red and will reflect the most NIR

From this information...

... We can automatically characterise/classify the land surface:

No Reading for the weekend. Final Assignment introduced on Monday

