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Terrestrial laser scanning (TLS) with the Echidna Validation Instrument (EVI) provides an effective and accurate
method for calibrating multiple-return airborne laser scanning (ALS) point cloud distributions to map effective
leaf area index (LAIe) and foliage profile within a 1-km diameter test site of mature eucalyptus forest at the
Tumbarumba research site, New SouthWales, Australia. Plot-based TLS foliage profiles are used as training datasets
for the derivation of a scaling function applied to calibrate effective leaf area index (LAIe) from a coincident ALS
point cloud. The results of this study show that: a) the mean proportion of the total number of returns within
11.3 m radius of the TLS scan station was 64%. Increasing the radius decreased the level of detail due to occlusion;
b) the relationship between TLS LAIe profile and ALS foliage percentile distribution (PD) using all, primary and sec-
ondary returns are not linearly related; and c) regressions between TLS LAIe profile and ALS PD, demonstrate better
correspondence using a 5th order polynomial applied to all returns (r2 = 0.95; SE = 0.09 m2 m−2) than aquasi-
physically-basedWeibull scaling function. The calibration routinewas applied toALSdatawithin aGIS environment
to create a 500 m radius 3Dmap of LAIe. This localised 3D calibration of LAIewas then used as the basis to calculate
the overhead canopy extinction coefficient parameter (k), and thereby facilitate upscaling of spatial LAIe estimates
to larger domains using a Beer Lambert Law assumption.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Leaf area index (LAI)

The spatial distribution of foliagewithin a forest canopy controls light
and energy transfer between the sky and the ground (Chen et al., 1999;
Loranty et al., 2010; Oke, 1996; Traver et al., 2010), the interception
of precipitation (Whitehead & Kelliher, 1991; Wilson et al., 2001) and
aerosols (Wedding et al., 1975), rates andmagnitudes of photosynthesis
(Amthor et al., 1990; Chasmer et al., 2008) and evapotranspiration
(Blanken et al., 1997; Brümmer et al., 2012; Engel et al., 2002; Ge et al.,
2011), atmospheric flux footprint density and extent (Kljun et al., 2002,
2004; McAneney et al., 1994), as well as animal habitat and foraging
pathways (DeWalt et al., 2003; Goetz et al., 2010). Consequently, param-
eters describing leaf properties and canopy structure are necessary
inputs to eco-physical models used to simulate mass and energy fluxes
throughout forest environments (Davi et al., 2006; Kobayashi et al.,
2012; Kowalczyk et al., 2006; Richardson et al., 2012). Recent

comparisons between land surface model (LSM) results and ob-
served CO2 flux (net ecosystem exchange, NEE) at a range of FluxNet
sites indicate that models often misrepresent the variability of CO2

fluxes over short time scales (Schwalm et al., 2010). Phenological
processes frequently related to C exchange are most often estimated
from remote sensing methods. This has been identified as an area
where improvements are needed in model input data (Richardson
et al., 2012), and because phenology is inherently related to the
amount of photosynthesizing biomass, this requires accurate esti-
mates of leaf area.

Leaf area index (LAI) is typically defined as the vertically integrated
one sided area of leaf or needle cover per unit ground surface area on a
horizontal plane (e.g. Chen et al., 2006; Gower et al., 1999; Watson,
1947). LAI is expressed in units of m2 m−2 and is traditionally measured
through destructive sampling. LAI cannot easily be measured directly
through non-destructive means, so another metric, effective leaf area
index (LAIe), is more commonly measured in the field and either cali-
brated to true LAI (e.g. Chen et al., 2006) or used directly in model simu-
lations (e.g. Ives et al., 2011, who use LAIe; and Coops et al., 2012;
Schwalm et al., 2010 who use LAI). LAIe is analogous to LAI but does
not differentiate betweenwoody or leafy foliage components or account
for variations in apparent leaf area due to leaf, branch and shoot
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clumping (Chen et al., 1996, 2006; Ives et al., 2011; Ryu et al., 2012). Both
methods of characterising foliage distribution are valuable for different
reasons, and depend on whether we are interested in leaf surface pro-
cesses like photosynthesis, respiration and evapotranspiration (Et), or
more structural attributes that control energy and mass transfers within
the canopy. Therefore, mapping the 3D distribution of canopy LAIe
provides a mechanism for modelling and scaling of mass and energy
exchanges. The following study compares the 3D distribution of foliage
measured using airborne and terrestrial laser scanners at a FluxNet flux
monitoring site within a mature mountain ash (Eucalyptus delegatensis)
forest site in Australia.

1.2. Lidar-based canopy foliage profiles

Airborne laser scanner (ALS) systems employ light detection and
ranging (lidar), optical scanner, inertial reference and global positioning
system technologies to calculate 3D coordinates of terrain and overlying
surface cover (Baltsavias, 1999). ALS surveys are typically optimised for
an approximately even spatial sampling of point coordinates. The exact
spatial configuration of return sampling patterns varies with scan angle
and ALS scanning mechanism (Wehr & Lohr, 1999). There is wide vari-
ation inALS specifications in terms of laser pulsewavelength, power, di-
mension, repetition frequency and real-time data storage capabilities.
In common, however, all ALS data can be outputted as a point cloud of
laser pulse returns, with all modern systems able to deliver multiple
returns representing the first (uppermost), intermediate and last (low-
est) surfaces encountered by each emitted pulse.

LAI (or LAIe) has, in previous studies, been linked to vertical laser
pulse return profiles measured using ALS techniques. One simple ap-
proach has been to calculate the ratio of the number of returns below
the canopy to the total number of returns and assume that this provides
a direct estimate of the overhead transmittance or gap fraction (P) of the
canopy (e.g. Morsdorf et al., 2006; Riaño et al., 2004; Solberg et al.,
2006).

Ρ≈ NBC

NTot
ð1Þ

where NTot is the total number of returns in the full canopy profile and
NBC is the number of returns below some threshold height above the
ground surface (typically between 1 m and 3 m).

It has been shown that while P correlates well with gap fraction and
fractional cover, it does not always provide a direct estimate (Hopkinson
& Chasmer, 2009). Nonetheless, pulse return ratio techniques can be
used to estimate LAIe using an adaptation of the Beer Lambert Law that
considers the canopy a turbid medium:

LAIe ¼ − ln Pð Þ
k

ð2Þ

where k is the extinction coefficient or (in the overhead case) the frac-
tion of total one-sided leaf area projected onto a horizontal plane. For
simplicity, k is often assigned a value of 0.5 following an assumption of
random or spherical leaf distribution (Martens et al., 1993). In practice,
overhead k values are highly variable in forest canopies, ranging approx-
imately between 0.25 and 0.75 (Jarvis & Leverenz, 1983). Higher values
indicate more planophile (horizontal) leaf orientations, while lower
values indicate more erectophile (vertical) orientations.

Magnussen and Boudewyn (1998) found that the cumulative per-
centile distribution (PD) of ALS return heights collected at a resolution
of ~1 pt per 5 m2 showedno significant differencewith plot-levelmodels
of cumulative needle leaf area distribution for several Douglas-fir plots.
This observation of no significant difference between foliage andALS pro-
files has tended to be corroborated in more recent studies where data
densities have been closer to 1 pt m−2. (e.g. Coops et al., 2007; Todd
et al., 2003) and also ALS distributions recreated using intensity (an

analogue for signal return strength) and not just the return frequency
(e.g. Lovell et al., 2003). While these observations hold within the level
of confidence possible within each study, it needs to be considered
that the PD is sensitive to some aspects of sensor configuration such
as scan angle (Holmgren et al., 2003), pulse power (Chasmer et al.,
2006), beam divergence and altitude (Hopkinson, 2007; Næsset,
2009). Consequently, as measurement accuracy, data resolution and
model requirements increase, we need to adapt our understanding of
ALS characterization of foliage profiles and make adjustments to the
way we estimate ALS-based canopy properties.

Due to higher repetition rates and multiple return capture, modern
ALS sensors can generate laser pulse return densities at least two to
three orders ofmagnitude greater than early generation sensors. Conse-
quently, the point clouds associated with newer technologies provide
increasingly greater detail of tree stem, branch and canopy architecture
(e.g. Adams et al., 2012; Allouis et al., 2012; Lindberg et al., 2012;
Reitberger et al., 2009) as opposed to the more low density sampling
of horizontal canopy foliage layers achieved with earlier generations
of sensor technology. This high data density is valuable from the per-
spective of visualising canopy architectural detail but it means that
the point cloud and associated PD are likely to represent more than
just the leaf or needle area. This is particularly the case with wider
scan angles, where more vertical elements within the canopy will be
captured (Holmgren et al., 2003). As a result, modern ALS data captured
over forested areas are starting to approach similar levels of structural
information as terrestrial laser scanner (TLS) point clouds (Fig. 1),
where dense datasets characterising stem-level attributes have been
the norm for almost a decade (Côte et al., 2011; Hopkinson et al.,
2004; Lovell et al., 2003). This poses a challenge, as it means that earlier
assumptions about relating that the ALS point return PD to the canopy
leaf area profile may not be applicable to high density, wide scan
angle ALS data that is increasing in popularity and availability.

The simplest way to address this challenge is to apply an empirical
calibration to the ALS PD that is trained by field-based measurements
of the foliage profile. If, as suggested by early studies, the ALS PD gener-
ated from modern high-density wide-scan point cloud data matches
the field-based foliage profile, then a histogram-matching calibration
process should result in a simple linear scale factor to relate the two
profiles. If the two profiles are not linearly related, then a non-linear
scaling function that varies with profile height (z) will be necessary. A
reliable field-based method of canopy foliage profile generation using
the Echidna®Validation Instrument (EVI) TLS system has been demon-
strated in a number of studies (Jupp et al., 2005, 2009; Lovell et al., 2003,
2011; Strahler et al., 2008). The approach presented here is to use
plot-based EVI foliage profile data as training datasets to generate a his-
togram scaling function, which can be used to calibrate a profile of LAIe
from the vertical PD of a coincident ALS point cloud. This calibration
is then applied to ALS data captured at a FluxNet monitoring site in
Australia to generate a 3D model of canopy foliage distribution within
the footprint of the flux monitoring tower.

1.3. The Echidna® Validation Instrument (EVI)

The EVI (Jupp et al., 2009; Lovell et al., 2003; Strahler et al., 2008) is a
waveform-recording,multi-view angle TLS system. It is designed to cap-
ture data from at least the full upper hemisphere in a single acquisition
and cover thefield of viewwith no gaps in laser illumination (Jupp et al.,
2005). The scanning pattern of the EVI is controlled by a rotating mirror
that directs the beam through the vertical plane, and by rotation of the
sensor head to provide azimuthal coverage. The rotation rate is normally
selected to provide contiguous shots at the horizontal and overlapping
data closer to zenith. The optical system is coaxial, which provides an ef-
ficient optical system, compact assembly and essentially no minimum
detectable range. The optical design of the instrument means that
some of the outgoing laser pulse is present in the recorded signal,
which allows precise temporal alignment of the individual waveforms.
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The EVI uses a diode pumped solid state 1064 nm Nd:YAG laser op-
erating at a fixed pulse repetition frequency of 2 kHz. The outgoing
beam has a diameter of 29 mmwith a manually variable divergence of
between 2 and 15 mrad. Empirical tests of temporal pulse shape have
determined that the pulse width has a stable value of 14.9 ns at
full-width half-maximum which corresponds to an effective width in
‘range’ of about 2.4 m. Despite the width of the pulse the peak is sharp
and well defined, allowing accurate determination of range to targets
producing a single clear return.

In contrast to many TLS systems that record a single range for each
laser shot, the EVI records the light reflected from objects along the
laser path which can be calibrated to power units. The waveform is
recorded with a maximum sampling rate of 2 GS s−1 which equates to
one sample every 7.5 cm of range from the instrument. In addition to
the core waveform data, ancillary information is recorded continually
throughout a scan. The data recorded have three geometric dimensions;
zenith angle (0 ≤ θ ≤ 180°), azimuth angle (0 ≤ φ ≤360°) and range
(r) to target. The precise positional information that is recorded allows
the data to be projected into a number of different formats. The

known laser pulse shape allows filtering of the waveform data to pro-
duce point clouds (Yang et al., 2013) of detected target locations.

2. Study area

The Tumbarumba study site is in the Bago State Forest of the south-
ern tablelands of New South Wales, Australia. It has a moist temperate
climate with annual precipitation ~1500 mm and a mean annual tem-
perature of 8.0 °C (Leuning et al., 2005). The wet sclerophyll forest site
lies between 1200 and 1300 m a.s.l., is dominated by mature alpine
ash (E. delegatensis) with stem heights up to 50 m (Fig. 2) and is an
area of active forestmanagement. A fluxmonitoring towerwas installed
in 2000 at the boundary of two stands that were commercially thinned
in 1984 and 1985. Surrounding forest stands (>500 m from the tower)
have undergone periodic commercial thinning operations. Annual net
carbon exchange within the footprint of the tower is highly variable
but over the long term the site has been found to be a net carbon sink
(van Gorsel et al., in press).

Fig. 1. A 5 m deep and 50 m wide cross section through three independent laser pulse return point clouds at the centre of a mature Eucalyptus delegatensis EVI plot at Tumbarumba.
A) EVI TLS data captured using the EVI from ground level looking up; B) all return high resolution (~26 pts/m2) wide scan (±30°) ALS data illustrating vertical stem and some
branching structure; C) all return medium resolution and scan angle ALS data (~5 pts/m2 and ±20°) with no obvious signs of stem representation; D) primary returns from ‘B’
(17 pts/m2); E) secondary returns from ‘B’ (9 pts/m2). All data captured near midsummer and within one year apart.

303C. Hopkinson et al. / Remote Sensing of Environment 136 (2013) 301–314



Author's personal copy

For the purpose of this analysis, the 3D LAIemapping area of interest
(AOI) was limited to a 500 m radius of relatively homogenous and re-
cently undisturbed canopy surrounding the tower (Fig. 2). This area cor-
responds closely to the 80% flux footprint probability density function
associated with long term flux measurements from 2001 to 2011
(Hopkinson et al., 2012; van Gorsel et al., in press). From the flux foot-
print parameterization of Kljun et al. (2004), ~50% of the long term
flux originates fromwithin 200 mof the tower but this drops off quickly
with 86% being contained within the 500 m radius AOI and 91% for a ra-
dius of 1 km. The radius derived from the footprint parameterization is
relatively short due to the high surface roughness and the prevailing sta-
bility conditions found at this site. Consequently, while the AOI extends
out to 500 m, our requirement for model accuracy increases closer to
the tower where canopy conditions have a more direct influence on
measured and modelled CO2 and H2O fluxes.

3. Data

Summertime ALS data were captured in November 2009 using a
Riegl LMS-Q560 operating at a wavelength of 1550 nm, a beam diver-
gence of 0.5 mrad and using a rotating polygonal mirror to distribute
laser pulses across a linear swath beneath the survey aircraft. The sensor
was flown at approximately 400 m a.g.l with a ±30° maximum scan
angle, 240 kHz pulse repetition frequency and 50% swath side lap to en-
sure that all areaswere viewed from two positions. For each pulse emit-
ted, the full waveform return was recorded and then converted to
multiple discrete returns in post-processing. The derived point cloud
had amean scan angle at ground level of ~15° and a horizontalmultiple
return point density in the AOI of ~26 pts m−2(Fig. 1B). TLS data were
captured with the EVI two times at eight plots in the area of maximum
flux origin on a grid of 300 m × 300 m immediately surrounding the
flux tower (Figs. 1A and 2). In all cases beam divergence was set to

5 mrad. One sample set was collected in February 2009 (nine months
prior to the ALS) and another in December, less than onemonth follow-
ing the ALS. The December TLS was used for ALS LAIe profile calibration
due to temporal proximity. To facilitate georegistration of the TLS and
ALS point clouds, the EVI scanner locations were surveyed using single
frequency rapid static differential GPS towithin ~1 mabsolute accuracy
in December of 2009. Digital hemispherical photographs (DHPs) were
captured at the eight TLS plots in February 2009 to provide some local
validation of the TLS-based total LAIe estimates. Canopy LAIewas calcu-
lated from the DHPs using the LAI57 approach in the CAN-EYE software
(Weiss & Baret, 2010). This approachwas chosen, aswe have no reliable
data describing clumping or leaf angle distribution, and LAI57 isolates
the hemispheric gap fraction at 57.5° where a random foliage distribu-
tion can be reasonably assumed (Warren-Wilson, 1963; Weiss et al.,
2004).

4. Methods

4.1. EVI LAIeTLS profiles

Profiles of foliage area are related to the vertically resolved gap
probability distribution within the canopy, Pgap.

Pgap θ; zð Þ ¼ e−G θð ÞL zð Þ=cosθ ð3Þ

where θ is the zenith angle, z is the height above ground, G(θ) is the
Ross G-function (Ross, 1981) and L(z) is the cumulative (or total)
foliage area at height z. An estimate of Pgap(θ,z) can be obtained
from the EVI data as presented below. Thus the profile of LAIe can
be calculated and its derivative, the foliage area volume density.

The calculation of Pgap fromEVI data follows themethod of Jupp et al.
(2009). All the EVI waveforms are captured from a hemispherical scan
and individually processed to a quantity called apparent reflectance.
This is the reflectance of a diffuse target filling the beam of the instru-
ment that would return the same intensity as recorded from the actual
target. For a waveform recorded at zenith angle, θ, over ranges, r, it has
the form

ρa ¼
I θ; rð ÞR2

K Rð ÞΦ0
ð4Þ

where I is the range-dependent recorded intensity, R is the range to the
target, K(R) is a calibration function associatedwith the geometry of the
receiver optics andΦ0 is the energy of the outgoing pulse. Integrating ρa
over range provides a step-wise reduction in the power of the outgoing
signal brought about by hits on single or multiple targets. This is related
to Pgap by

Ia θ; rð Þ ¼ 1−p θ; gð Þ 1−Pgap θ; rð Þ
� �

ð5Þ

where Ia is the integral of ρa, g is the distribution function for facet direc-
tions of the targets and p is themeanphase function for the varying facets.
In general, the phase function is unknown and if possible should be esti-
mated from the data. Jupp et al. (2009) use an initial assumption of p = 1
and then identify two thresholds in the calculated Pgap relating to (i) the
maximum Pgap value for targets that fully extinguish the beam (hard
target) and (ii) the maximum Pgap value for targets that partially extin-
guish it (soft target), above which all samples are assumed to be true
gaps. These are used to scale the Pgap in a similarway to the two-level sep-
aration of gap and vegetation that can be done in hemispherical photo-
graph analysis (Leblanc et al., 2005).

The value of Pgap calculated from a singlewaveform is a realisation of
an actual gap, rather than a probability, therefore it is necessary to aver-
age the measured values over some spatial region in order to estimate
the underlying probability distribution. In this work, the EVI data are
averaged over rings between zenith angle limits in steps of 5°. We

Fig. 2. The Tumbarumba forest study site, illustrating canopy height, eddy covariance flux
tower and TLS plot locations (and names for the seven used in model development), 80%
flux footprint extent and 500 m radius surrounding the tower. Inset is the site location
within Australia.
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calculate a mean foliage profile from zenith-ring averages of Pgap using
the ratio of cumulative foliage area (L(z)) relative to LAIe to provide a
profile largely independent of clumping. The effect of clumping is sub-
sumed into the empirical Ross-G function that is part of the linear
LAIe model (Jupp et al., 2009). Thus the cumulative LAIe profile (or
total LAIe) is defined by

L Zð Þ
LAIeTLS

¼ lnPgap θ; z
� �

lnPgap θ;H
� � ð6Þ

whereH is the height of the canopy and the notationθ indicates that the
data are averaged over a range of zenith angles, rather than a mean
angle. The foliage area volume density profile is then

f zð Þ ¼ LAIeTLS
∂
∂z

lnPgap θ; z
� �

lnPgap θ;H
� �

 !
: ð7Þ

In these equations the value of LAIeTLS is estimated from the EVI data
using a simple linear canopymodel as shown by Jupp et al. (2009). The
Pgap profiles are calculated for a number of zenith rings i.e. different
values ofθ, and then amean profile is calculated byweighting each pro-
file according to the solid angle subtended by the ring.

4.2. Data alignment and plot extraction

Combining ALS data captured from an overhead moving platform
with static hemispheric TLS data captured from a point on the ground
presents two primary challenges: i) the point clouds must be horizon-
tally and vertically co-registered to ensure that 3D attributes are direct-
ly comparable; ii) sampling geometry and laser pulse occlusion mean
that the horizontal and vertical distributions of point cloud density are
not equal. Addressing the first challenge was straight forward as each
EVI scan location had been surveyed, such that the origin of the scanner
could be set to the knownGPS coordinate. Orientation and fine horizon-
tal and vertical adjustments of the TLS point cloud were achieved by
translating and rotating the TLS data until they visually matched the
ALS data. Automated least squares approaches are available for scan
alignments using off the shelf commercial software but this approach
can be problematic and lead to erroneous results using TLS data in com-
plex forested environments (e.g. Hopkinson et al., 2004), so a manual
interpretive approach was preferred.

The irregularity of point cloud sample distributions between ALS
and TLS has both vertical and horizontal elements. The vertical differ-
ences in sampling density and frequency distributions are the subject
of the LAIe histogram-matching calibration (described below). Howev-
er, the horizontal sampling density variation must be addressed in the
selection of a suitable plot size for subsequent calibration of the ALS
data. Spatial sample density for ALS data can be assumed to be relatively
even, whereas TLS data density will systematically diminish with dis-
tance from the scanner (Fig. 1A) due to increased point spacing and
foliage-induced occlusions (Chasmer et al., 2006; Côte et al., 2012). A
similar challenge must be addressed when matching DHP estimates of
LAI or fractional cover with ALS data at the plot-scale (Hopkinson &
Chasmer, 2009; Morsdorf et al., 2006).

Given the systematic decrease in TLS sample density and increasing
randomness in TLS sample coverage at ever larger radii, a suitable ALS
sampling radius around the EVI scanner was identified by measuring
the proportions of the total TLS sample points present within four dif-
ferent radii for each of the EVI plots. It is a priori understood that the ra-
dius cannot be too small as to contain too few of the foliage contact
points used in the LAIe profile generation, while it cannot be too large
as to lose its spatial representivity or uniqueness. The radii tested
followed an approximately logarithmic pattern of increasing area
11.3 m (0.04 ha) to 25 m (0.2 ha) to 56 m (1 ha) to 100 m (3 ha).
The smallest radius corresponds to a forest mensuration plot of

400 m2, which is small enough to contain unique tree crown attributes
from a single or small number of Eucalyptus trees while being large
enough to ensure mis-alignments and spatial uncertainties are mitigat-
ed. The largest radius corresponds to the approximate distance between
EVI plot centre locations, and results in up to 40% areal overlap between
plots; i.e. beyond this radius, the plots will possess spatial auto correla-
tion and cannot be used as independent training data points. The 56 m
radius approximates the midpoint between plots where there is no
appreciable overlap and is also close to the distance at which a 57.5°
zenith angle from the EVI scan location emerges from the canopy of
the Eucalyptus stand; i.e. the angle at which foliage orientation can be
assumed to be random (Warren-Wilson, 1963; Weiss et al., 2004).
The 25 m radius is logarithmically approximately mid way between
11.3 m and 56 m. Once a suitable radius was identified, ALS point
cloud data surrounding each of the EVI plot centres were extracted for
comparison and calibration.

4.3. ALS profile calibration

Ground-level TLS data captured below the horizontal plane of the EVI
scan origin were not used in the generation of the LAIeTLS profile. There-
fore, during the histogram-matching calibration process, only ALS data
lying above the height of the EVI scanner origin were used. This height
varied between 1.6 m and 1.9 m above ground. ALS data above this
plane at each EVI plot were binned at 2 m height increments for subse-
quent comparison and histogram-matching. Bin heights of 2 m were
chosen, as this provided a suitable compromise between the require-
ments for sufficient detail in the foliage profile while being large enough
to accommodate positional and alignment uncertainties that, in extreme
cases, could approach 1 m. The ALS data were converted to a percentile
distribution (PD) by counting the number of pointswithin the previously
determined ‘optimal’ radius for each 2 mhigh bin, and then dividing into
the total number of points within the profile. The PD could then be di-
rectly compared to LAIeTLS on a bin by bin basis. Comparisons were
performed on three return classes of ALS data: i) all returns (first, single,
intermediate and last echoes) to maximise the sampling density of the
ALS data and increase the level of canopy structural detail; ii) prima-
ry returns (first and single echoes — Fig. 1D) to be consistent with
early ALS foliage profile recreation techniques (e.g. Magnussen &
Boudewyn, 1998); and iii) secondary returns (intermediate and
last echos — Fig. 1E), as these returns penetrate the outer envelope
of the canopy and have the potential to characterize foliage structure
that is partially occluded and therefore invisible to primary returns.

Comparison of LAIeTLS profiles with the ALS PD profiles was
performed at seven of the eight EVI plot locations surrounding the
flux tower. [One EVI scan was omitted from the analysis, as the raw
scan data could not be retrieved.] The first test performed was to as-
certain which of the all (PD(ALL)), primary (PD(P)) or secondary
returns (PD(S)) provided the most robust dataset for calibration of
the LAIeALS model. This test was performed using a polynomial re-
gression histogram-matching technique to force the average of the
seven ALSPD profiles to fit the average of the LAIeTLS profiles:

LAIe zð Þ ¼ a zð ÞPD zð Þ ð8Þ

where a is a scaling factor that varieswith bin height z. Polynomial func-
tions of the scale factor awere derivedbydividing LAIeTLS by PD for each
of the six plots and averaging the results for each of the height bins from
2 m to 50 m (max canopy height) above ground level. The suitability of
all, primary or secondary returns for LAIe histogram matching was de-
termined based on the comparative results of the polynomial regres-
sions. The polynomial regression functions ranged from third to sixth
order, with the order chosen based on observable improvements in
the coefficient of determination; i.e. if the r2 value continued to increase
at each order, then a sixth order polynomial would be chosen for the
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calibration. Higher orders of polynomialwere not considered due to the
likelihood of overfitting the data.

Following determination of the optimal point return class for LAIe
profile reconstruction, it was decided to test two ‘robust’ approaches
for calibration that could either be ‘tweaked’ for future datasets and
for different areas, or applied over small areas with minimal mathe-
matical manipulation. Polynomial regression was not considered ideal
for widespread implementation, as it has no physical basis and can be
manipulated to fit almost any curve; even one containing errors. Two
approaches were adopted. The first, a quasi-physical approach, was
to model a as a function of either one or two Weibull distributions
(e.g. Coops et al., 2007; Lovell et al., 2003; Magnussen et al., 1999).
The implicit assumption here being that the scale factor a varies as
a function of the foliage density

a zð Þ ¼ q 1−e−r 1− z
Hð Þsh i

ð9Þ

where q, r, and s are the fitted parameters. A single and a doubleWeibull
curve approachwere attempted, as the forest at Tumbarumba possesses
significant understorey foliage and displays a two tier foliage distribu-
tion in some places. For the single Weibull scaling function, Eq. (9)
was fitted to the complete canopy height range. In our implementation
of a double Weibull curve, the height-based scale factors were separat-
ed into two canopy components based on the height of the inflection
point between under- and over-storey components. The understorey
scaling function was computed first. Then the scale factor residuals be-
tween thefirst iteration of Eq. (9) and the overstoreywere used in a sec-
ond iteration of Eq. (9) to derive a second Weibull scaling function,
which, when added to the first, produced a scaling function for the
full canopy profile.

The second approach to calibration was the simplest to implement
while also being the most accurate in terms of honouring the original
calibration data; i.e. to calculate an independent scale factor a for each
bin height and use a ‘look up table’ approach. Thiswas the approach ap-
plied to the ALS data surrounding the tower at Tumbarumba, as the AOI
was small and the calibration data collected from the region of most in-
terest for future modelling.

4.4. LAIeALS model

Following the histogram-matching calibration process, the model
needed to be applied to the elevation- and height-variant canopy ALS
point cloud data across the AOI. For simplicity, 2.0 m was chosen as
the threshold between canopy and ground level foliage cover. This
height is convenient and broadly justified as it is close to that of the
EVI scanner origins, approximates that used in the DHP canopy LAIe
measurements and is typical for ALS-based canopy to ground height
ratio thresholds. Moreover, within a reasonable height range (say 1 m
to 3 m) choosing a precise height threshold is somewhat arbitrary, so
choosing a height that corresponds exactly with the first height bin
above the ground surface simplifies analytical procedures and the pre-
sentation of data.

ALS ground points were filtered from single and last return points
using an adaptation of the ground classification algorithm developed by
Axelsson (1999). All individual ALS point elevations were normalised to
height above ground following the approach described in Hopkinson et
al. (2006). As with the calibration process, all ALS data were binned
into 2 mhigh increments. The ground-level bin (0 m to 2 m)was needed
for the construction of the vertical PD but an estimate of LAIe below the
canopy threshold was not possible due the mixture of ground and vege-
tation points within this height range. The 3D model was implemented
by gridding each bin as an independent raster layer and then stacking
the layers to generate a spatially varying PD. A grid cell resolution of
2 m was chosen to be consistent with the vertical bin resolution. To en-
sure that the model calibration was applied over an equivalent spatial

domain to that fromwhich it was derived, grid level PD values were cal-
culated using a search radius equivalent to the optimal plot radius
established earlier. The scaling functions derived during the calibra-
tion process were then applied to each bin layer to generate a verti-
cally stacked map of LAIeALS at a 2 m × 2 m × 2 m voxel resolution
throughout the 500 m radius AOI.

For the sake of comparison and to provide an estimate of site LAIe
using methods similar to previous studies, a map of total LAIe was cre-
ated using the ALS return ratio (Eq. 1) and Beer Lambert Law approach
(Eq. 2). An extinction coefficient k of 0.5 (spherical foliage distribution)
was assigned, as the true value was not known. By comparing themean
LAIe estimates from the two maps surrounding the tower, it was possi-
ble to then calculate a more realistic value for k (e.g. Morrison et al.,
2011).

5. Results and discussion

5.1. EVI vs DHP LAIe

No DHP data were captured at the time of the ALS and TLS collections
in late 2009. However, EVI LAIeTLS and DHP LAIe57 captured almost
10 months earlier in February 2009 demonstrate comparable results
over eight coincident plots surrounding the tower (Fig. 3). A t-test dem-
onstrated that there was no significant difference in mean LAIe esti-
mates using DHP (1.58 m2 m−2, σ = 0.20) or EVI (1.57 m2 m−2,
σ = 0.23), and despite a limited range in LAIe observations the rela-
tionship between DHP and EVI LAIe was strong (r2 = 0.64) and close
to unity (slope = 0.99). These observations are similar to results
presented in Lovell et al. (2012) and indicate that the total LAIe esti-
mates derived from EVI around the tower site at Tumbarumba are
consistent with more traditional DHP-based methods of LAIe mea-
surement. While the EVI-derived foliage profile is not directly validat-
ed, the observed correlation between plot-level EVI and DHP total
LAIe supports the assumption that EVI-derived LAIe profiles are a suit-
able data source for the calibration of ALS LAIe profiles.

5.2. EVI plot radius

For all EVI plots, a mean of 64% of all points was captured within
11.3 m horizontal radius of the scan station (Table 1). Increasing the ra-
dius to 25 m raised the mean proportion of data captured from 64% to
82% despite a 500% increase in the area sampled. At 56 m, 95% of all
data had been captured but canopy structure detail was sparse due to
occlusion caused by dense foliage elements closer to the scanner. Be-
yond 100 m radius (9 times greater distance and 80 times greater

Fig. 3. EVI vs DHP LAIe for the eight plots surrounding the flux tower in February 2009.
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area than at 11.3 m) only occasional points were retrieved at a density
too low to be of any value.

Regressing the ALS PD(All) bin values against the comparable EVI LAIe
values produced very weak correlations (r2 b 0.1 at all radii) but the
smaller 11.3 m radius demonstrated slightly better results (closer to
unity andhigher r2) than either 25 mor 56 m. There are compelling rea-
sons for choosing 11.3 m as the plot size for EVI to ALS LAIe calibration:
i) EVI data are densest and less sensitive to occlusion closer to the scan
station and so the profile is more representative of the foliage profile

immediately surrounding the EVI location; ii) terrain and canopy height
variations are reduced at smaller radii; iii) 11.3 m radius corresponds to
a standardmensuration plot size of 400 m2 and is equivalent in area to a
20 m × 20 m grid cell, which represents a convenient array size for
modelling canopy properties around flux towers. A smaller radius was
not practical, as this would mean that the region of extracted ALS data
would be much smaller than that containing the TLS data used in the
generation of the LAIeTLS profiles.

5.3. The influence of return classification

Comparisons of plot-level LAIeTLS to ALS primary (PD(P)) and sec-
ondary (PD(S)) return class percentile distributions extracted from the
11.3 m radius around the EVI scanner are illustrated in Fig. 4. Due to pri-
mary (first and single echo) returns comprising almost 70% of the total
point cloud, the shape of PD(All) (not shown in Fig. 4) is virtually indis-
tinguishable from PD(P). In most cases, the ALS and TLS profiles display
bimodal distributions describing the upper canopy and understorey. As
has been reported elsewhere (e.g. Chasmer et al., 2006) the primary and

Table 1
EVI scan data point totals by radius out from scanner origin.

Radius (Area) Percentage of total points sampled in the EVI scan Mean

EE NE NN NW WW SW SS

11.3 m (0.04 ha) 74% 57% 57% 64% 66% 67% 59% 64%
25 m (0.2 ha) 90% 82% 81% 82% 84% 80% 78% 82%
56 m (1 ha) 99% 98% 96% 98% 96% 92% 90% 95%

Fig. 4. LAIeTLS profiles with ALS percentile distributions (PD) for primary (P) and secondary (S) returns at seven plots. ALS data binned in 2 m height increments.
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all return ALS profiles tend to peak higher in the canopy and character-
ize less of the understorey than the associated TLS profiles. Visually, it is
not easy to identify which of the ALS return class profiles most closely
matches the shape of the LAIeTLS profiles but it is clear they are not
strongly linearly related (Figs. 4 and 5) with some random variations
between coincident profiles. Indeed, from Fig. 5, the most direct corre-
lation between the average ALS and TLS profiles is found for PD(S).
While this is not a strong relationship (r2 = 0.52), it is interesting
that the lower density secondary returns comprising less than 10% of
the canopy-level point cloud (>20% is below the canopy height thresh-
old of 2 m) provide a more direct index of the foliage distribution than
the more dense primary returns.

The minor improvement in r2 from 0.18 to 0.28 from PD(P) to PD(ALL)

in Fig. 5 is due to inclusion of secondary returns. None of the linear re-
gression models presented in Fig. 5 provide a useful basis for simulating
LAIe from theALS PD, as it is clear fromFig. 4 that scaling between LAIeTLS
and ALS PD varies with height (z). This is better illustrated in Fig. 6,
where the scaling function a is derived through polynomial regression
and applied to the average PD(ALL), PD(P), and PD(S) for all seven plots.
While secondary returns provide themost direct correlationwith height
bin-level LAIeTLS (Fig. 5), the height-dependent scaling function is more

Fig. 5. Height bin-level regressionof average LAIeTLS andALS PD for all returns (ALL), primary
returns (P) and secondary returns (S). Using direct linear regression, secondary (last and
intermediate) returnsdemonstrate bestfit. (Note: binheight averaged across all sevenplots).

Fig. 6. 5th order polynomial scaling functions a to match the ALS PD of all (A), primary (B) and secondary (C) returns to the EVI LAIeTLS profile. Error bars = one standard deviation
of the bin height scale factor across all seven plots. Note: z = 0 in this figure is the scanning plane origin.
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uniformly distributed and predictable for all andprimary returns (Fig. 6).
A 5th order polynomial regression of the mean scaling function a
with respect to height z (Fig. 6) demonstrates that PD(ALL)and
PD(P)can be more easily matched to the EVI LAIe profile (r2 = 0.95,
0.94and SE = 0.09, 0.09, respectively) than when using ALS PD(S)(r2 =
0.78, SE = 0.25). Given that PD(ALL) results in a slightly better model
fit and contains higher density point sampling throughout the canopy

profile, it is considered themost suitable of the three return class distribu-
tions tested for matching with the EVI-derived LAIe distribution.

5.4. Weibull curve scale factor

After selecting ALS PD(ALL) for all subsequent analysis, the Weibull-
based scaling function results (Fig. 7) demonstrated no improvement
over those of the polynomial curvefitting approach. It is clear that a single
Weibull distribution (whenfitted from the groundup) is inadequate tofit
the entire scaling function (r2 = 0.78, SE = 0.94 m2 m−2), as it does not
capture the two-tier canopy (Fig. 7A). Splitting the scaling function data
into two independent curves, however, improves the fitting capability
of the Weibull distributions, with the understorey (Fig. 7B) and upper
canopy (Fig. 7C) curves demonstrating high r2 values of 0.99 and 0.93,
respectively. While these r2 values are comparable to the 0.95 value
achieved by the 5th order polynomial in Fig. 6, the standard error of
estimate (SE) statistics is weaker. The SE values of 0.15 m2 m−2and
0.32 m2 m−2for the understorey and upper canopy curves, respective-
ly, are both high compared to that of the single 5th order polynomial of
0.09 m2 m−2. Evenwhen the twoWeibull curves are combined and the
standard error recalculated, the combined value becomes 0.21 m2 m−2,
which is still high compared to the polynomial approach.

The poor performance of the single and doubleWeibull curve scaling
functions relative to the polynomial regression method was not surpris-
ing given that the Weibull distribution is constrained to a particular
shape that can be considered similar to a skewed Gaussian distribution.
Conversely, a 5th order polynomial curve has substantial freedom in
terms of its shape and relative ‘peakiness’ or ‘flatness’ along the distribu-
tion. Nonetheless, the value in the Weibull distribution approach is that
the curves have a similar characteristic to the scaling function elements
associated with each of the two tiers in the canopy. It appears from
Figs. 6 and 7 that the average scaling function varies with height along
the foliage profile, such that scale factor increases near the base of the

Fig. 7. Weibull curves fitted to the ALS PD(ALL) scale factor a distribution with height z for:
A) the complete canopy profile; B) the understorey profile; and C) the upper canopy
residuals after fitting the understorey curve.

Fig. 8. TLS and Histogram-matched calibrated all returns ALS LAIe profiles for seven
plots around the flux tower. Profile values illustrate the min, max and avg of all
seven values across all scan locations at the indicated height.
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upper and lower tiers in the canopy, decreasing towards the outer or
upper edge of the canopy where foliage is well represented in the ALS
point cloud. Consequently, the assumed physical basis for adopting a
Weibull curve scaling function may be well-founded and likely to pro-
duce ‘realistic’ results, in situations where training data are sparse or
not spatially representative of all areas to be mapped.

5.5. ALS LAIe model implementation

The histogram-matched bin-level lookup table scaling function
values are presented in Fig. 8. The average EVI LAIeTLS profile matches
the calibrated LAIeALS with a similar range in the maximum and mini-
mum LAIe bin-height values across all seven plots around the flux
tower. The standard error for the calibrated plot-level mean foliage pro-
files was 0.01 m2 m−2, thus demonstrating better results than either
the regression-based polynomial or Weibull curve fit approaches (this
is expected as each bin's scale factor is independent of adjacent bins).
The greatest differences, as inferred from the max and min profiles in
Fig. 8, occur in the upper canopy. This is likely due to simultaneous in-
creases in foliage characterisation with ALS and potentially decreased
characterisation by TLS of the uppermost sections of canopy resulting
from the differing view geometries and occlusion biases of the respec-
tive platforms (Chasmer et al., 2006).

The 3D implementation of the calibrated ALS LAIemodel is illustrat-
ed in Fig. 9A. A grid resolution of 2 m is used to aid in the visual inter-
pretation of canopy features but the spatial domain of each grid cell is
equal to that of the EVI/ALS LAIe calibration radius of 11.3 m or
400 m2. The bimodal distribution in the canopy foliage is clear with
denser vegetation tending to cluster at heights between 3 m to 9 m
and 29 m to 35 m. However, while such patterns are also visible in
the LAIe profile in Fig. 9B, only the 3Dmap illustrates the dense cluster-
ing of, and large gaps between, foliage elements within the overall can-
opy space. For example, dense riparian foliage at heights of 2 m to 6 m
above the ground surface is visible in Fig. 9A but such vegetation is often
more difficult to detect when examining only canopy height models
(e.g. Fig. 2). It is not unique to visualise ALS canopy data in this way,
as previous studies have also mapped out 3D foliage and gap profiles
from ALS data (e.g. Todd et al., 2003). However, this 3D calibration ap-
proach builds on earlier attempts by increasing our confidence in the
bin-level and cumulative estimates of total LAIe values throughout the
canopy.

Comparing the 3D GIS predictions of bin height-level (Fig. 10A)
and plot-level total (Fig. 10B) LAIe with those of the EVI training
plots illustrates reasonable correspondence, with slopes close to
unity and standard errors of 0.03 m2 m−2 for bin height estimates,
and 0.24 m2 m−2 at the plot-level. In both cases, there is considerable
scatter about the best fit line with weak r2 values. This ‘noise’ is due to

Fig. 9. ALS modelled LAIe for 500 m radius around Tumbarumba flux tower site. A) Profile of spatial distributions of LAIe within every other 2 m height bin from 2 m to 44 m above
hillshade ground surface (vertically exaggerated for illustration purposes); B) average LAIe for each 2 m height bin layer surrounding the tower; and C) cumulative LAIe from
ground to top of the canopy (max = 1.65 m2 m−2).
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the inherent spatial variabilitywithin the canopy profile at Tumbarumba,
and illustrates that no single scaling function can work perfectly across
the range of profiles sampled at the seven EVI training plots. Each of the
training plots provides a sample of the foliage profile distribution and as-
suming that the sample plots are representative of theAOI, the calibration
derived from the combined training plots is a valid approach.

The average total LAIe for the entire 500 m radius around the
Tumbarumba flux tower (Figs. 9C and 11A) is found to be 1.65 m2 m−2

(σ = 0.41 m2 m−2) whereas the average total LAIeTLS for the seven EVI
plots was 1.75 m2 m−2(σ = 0.25 m2 m−2). A t-test demonstrates that
there is no significant difference in these estimates, suggesting that the
range of profiles sampled at the EVI plots is generally representative of
the canopy conditions within the 500 m radius AOI. However, some
areas of open canopy and, more importantly, dense riparian understorey
foliage that were not sampled in the grid-based EVI training dataset are
visible in Figs. 9A and 11A. Due to the grid-based plot set up surrounding
the tower and need to capture the full range of canopy height, the EVI
training data used here did not sample the complete range of canopy pro-
file conditions throughout the AOI. Consequently, the calibrated scaling

function applied to areas of dense riparian foliage is unlikely to be accu-
rate and the true LAIe values are likely to deviate from those predicted.
However, the riparian areas in question represent less than 5% of the
overall AOI, so the impact to site-level average LAIe will be negligible.
To develop a calibration that would adequately represent different land
cover classes it would require stratification of the LAIeTLS training and
ALS PD data. This is an area of ongoing research.

The simpler ALS return ratio technique from Eq. (2), using an extinc-
tion coefficient k of 0.5, results in an average LAIe of 1.19 m2 m−2

(Fig. 11B). Comparing this with the calibrated total LAIe (Fig. 11A) re-
veals an under-estimation of ~0.5 m2 m−2, which is statistically signifi-
cant (p b 0.01). This suggests that the chosen k value was too high
and the assumption of a spherical (random) leaf orientation is inap-
propriate for the Eucalyptus canopy at Tumbarumba. Accepting the
calibrated estimate of total LAIe as truth and using the gap fraction
(P) from the return ratio in Eq. (1) and substituting into Eq. (2), pro-
duces a k of 0.36. Lower k values than 0.5 indicate more vertically in-
clined (erectophile) leaf orientation, which is more typical of Eucalyptus
canopies (Anderson, 1981). Re-applying k = 0.36 to Eq. (2) produces a
total LAIe map (Fig. 11C) that displays a similar level of spatial variability
(σ = 0.34 m2 m−2) with the same dominant patterns of high and low
density foliage. Acquiring TLS data over large areas is logistically challeng-
ing, so a hierarchical approach of calibrating LAIe foliage profiles over
relatively small areas (Eqs. 4 to 8), then scaling up to larger areas using
the return ratio approach (Eqs. 1 and 2) may be practical if a model of
the vertical LAIe profile is not required.

6. Conclusions

The paper has presented a method of calibrating an ALS-based 3D
map of forest canopy LAIe from TLS-generated foliage profile data. It
was found that a radius of ~11.3 m was appropriate for the integration
of ALS data captured from overhead with hemispherical TLS data cap-
tured below the canopy. Furthermore, canopy LAIe profiles can be more
accurately simulated fromall return data than fromeither primary or sec-
ondary returns alone. It should be cautioned, however, that these results
are specific to the high density datasets captured at the Tumbarumba
Eucalyptus forest site and it is possible that under different data acquisi-
tion, canopy height or foliage density conditions, these observations
might not hold.

Matching the ALS PD histogram to that of the EVI LAIeTLS profile
followed four different approaches. Three based on curve fitting using
regression analysis and one using a simple lookup table to identify a his-
togram scaling function on a height bin by bin basis. In order of overall
model fit between the EVI training data and the ALS PD, the lookup table
approach was themost accurate with a standard error of 0.01 m2 m−2,
the 5th order polynomial scaling function produced a standard error of
0.09 m2 m−2, the double Weibull distribution a standard error of
0.21 m2 m−2, and the singleWeibull 0.88 m2 m−2. In the practical im-
plementation at the local scale of the 500 m radius AOI, the lookup table
approach was chosen because it provided the most accurate recrea-
tion of the scaling factors required to match the ALS PD to the observed
foliage profile. This was considered satisfactory, as the priority area for
accurate foliage profiles was the area of maximum flux source concen-
tration around the tower and this coincided with the area represented
by the EVI plots.

For more widespread application of such a calibration technique,
where training sites might be sparsely spaced, or forest canopy is
more heterogeneous, it is believed that a regression-based curve fitting
approach would be more suitable. This is because a look up table will
honour the scale factors on a bin by bin basis even if anomalies are
present in the data. A regression-based approach will smooth over
such anomalies and provide a more generalised form of the scaling
function that should be more widely applicable; i.e. mitigate the influ-
ence of anomalies in training data. Therefore, over forested sites
containing a range of canopy structural elements and where there is

Fig. 10. Calibrated bin height (A) and plot (B) of LAIe after application of the scaling
function a from Eq. (8).
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confidence that the training plots cover the range of foliage conditions
present within the AOI, it might be appropriate to use a polynomial
curve to calibrate the scaling function. A single or double Weibull ap-
proach is more physically-based, as the shape function has similarities
to canopy foliage distributions (Coops et al., 2007; Vose, 1988). Conse-
quently, the use of Weibull scaling functions to match LAIeTLS profiles
to ALS PDs would be appropriate for forest stands where the canopy ar-
chitecture is relatively uniform and/or in situations where training data
are very sparse and a more physically-based calibration desired. Re-
gardless of the approach adopted, some sites may contain such canopy
heterogeneity or species variety that no single scaling function is appro-
priate. Under such circumstances, it is recommended that canopy cover
be stratified into appropriate classes, and independent scaling functions
generated.

While the objective of this studywas to derive an accurate 3Dmap of
LAIe at a resolution that could be used as an input to hydrometeorolog-
ical and carbon flux models at the tree canopy scale, it is clear that this
approach can be further adapted and extended. For example, it was
shown that the application of a sophisticated foliage profile matching
method over a focussed study area can be used to upscale Beer's
Law-based estimates of LAIe to larger areas by optimizing the extinction
coefficient parameter in Eq. (2). Further, if clumping index and the
woody to total foliage ratio are known, it is possible to convert existing
estimates of LAIe to true LAI (e.g. Chen et al., 2006; Jonckheere et al.,
2005). From Eq. (6) and Lovell et al. (2003, 2012) it is apparent that in
addition to the foliage profile, the EVI data can be used to recreate the
gap distribution or the variation in transmittancewith height in the can-
opy. A similar histogram-matched scaling function approach to that

described could therefore be applied to calibrate an accurate 3D map
of canopy transmittance from the inverse of the ALS PD.
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