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Abstract

Site-Specific Herbicide Management (ssHM) in Precision
Agriculture (PA) requires weed detection in crop fields for
directed herbicide application instead of spraying entire fields.
This has significant economic and environmental advantages
for improved agricultural practices that are essential given
forecast increases in global population and food production
needs. In this study, a new hybrid segmentation - Artificial
Neural Network (Hs-ANN) method was compared to standard
Maximum Likelihood Classification (MLC) for improving
crop/weed species discrimination in sSHM/PA. Very high
spatial resolution (1.25 mm) ground-based hyperspectral
image data were acquired over field plots of canola, pea, and
wheat crops seeded with two weed species (redroot pigweed,
wild oat) in southern Alberta, Canada. The very high spatial
and spectral resolution image data required development of

a simple yet efficient vegetation index (Modified Chlorophyll
Absorption in Reflectance Index (McCARI)) threshold segmenta-
tion to separate vegetation from soil for classification. The Hs-
ANN consistently outperformed MLC in both single date and
multi-temporal classifications. Higher class accuracies were
obtained with multi-temporally trained ANNs (84 to 92 percent
overall), with improvements up to 31 percent over MLC. With
advancements in imaging technology and computer processing
speed, this HS-ANN method may constitute a viable farm
option for real-time detection and mapping of weed species
for SSHM in agriculture.

Introduction

Site-Specific Herbicide Management (SsHM) involves
selectively applying herbicides to an agricultural field
based on identified zones of weed density rather than
spraying an entire field (Thompson et al., 1991). As a key
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component in Precision Agriculture (pA), SSHM can provide
substantial benefits through reducing the amount of
herbicide required for weed control and crop protection
since the weed-controlling chemical is only applied where
it is actually needed (Brown and Steckler, 1995; Medlin

et al., 2000; Blackshaw et al., 2006). Techniques for
implementing SSHM strategies are of increasing importance
for compliance with strict environmental regulations and
are also advantageous economically. ssHM techniques may
result in a 30 to 72 percent reduction in herbicide require-
ments (Mortensen et al., 1995) and considering that global
herbicide product sales totalled $14.8 billion (UsD) in 2006
(Crop Life, 2007), could constitute a substantial savings to
producers. This reduction of chemicals applied also
reduces the risk of environmental contamination as a result
of ground-water leaching and introducing less chemicals
into the atmosphere (Lindquist et al., 1998; Radhakrishnan
et al., 2002; Smith and Blackshaw, 2003). With projections
of global population increases in the coming years and the
associated increased reliance on agriculture to meet
challenging food production demands (Tweeten, 1998;
FAO, 2007), effective and efficient agricultural practices
such as ssum/pA will be crucial to reducing environmental
impacts and helping ensure the economic viability of
agricultural systems.

Operational implementation of real-time ssHM requires
on-board image acquisition and processing systems and
precise control of herbicide spray applicators (Tang et al.,
1999; Brown and Noble, 2005). The image acquisition and
processing system must rapidly differentiate weeds from crop
(Hutto et al., 2006; Grey et al., 2007) and provide the sprayer
control with a map of weed location and density in near
real-time. This map is built up in the field with immediate
herbicide application dependant on Artificial Intelligence (A1)
system decision making. Such a system requires accurate
species recognition as well as computational efficiency (Tian
et al., 1999; Tang et al., 2000; Burks et al., 2000b).

The rich information provided by hyperspectral sensor
systems requires efficient data processing and interpretation
tools, such as A1 methods, for practical application to real-time
ssHM. Artificial Neural Networks (ANNs) are uniquely suited to
these image processing tasks and can handle complex feature
space and integrate different data types (Atkinson and Tatnall,
1997). As a nonparametric approach they offer significant
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performance advantages compared to standard statistical
classification techniques (Qiu and Jensen, 2004) especially in
the classification of plant reflectance spectra, which typically
are not normally distributed (Noble and Crowe, 2005).

ANN model development can often be complex in terms of
establishing an optimal or near-optimal network architecture
and training set. This difficulty has been somewhat mitigated
through development of software packages specifically
designed for ANN model development and classification
(NeuralWare, 2003). That approach was used here and is
consistent with available tools and methods that may be
suitable for a semi-operational to operational context, how-
ever, the focus of this paper is on new applications involving
hyperspectral, very high resolution ground data instead of an
extensive algorithm comparison or sensitivity analysis.

ANNs first appeared in the remote sensing literature
in the late 1980’s (Key et al., 1989; Benediktsson et al.,
1990), with application to weed-crop discrimination
appearing in the late 1990°s (Yang et al., 1998, 2000;
Moshou et al., 2001). Past ANN research has focused
primarily on multispectral image classification. ANNs
have successfully classified corn (Zea mays L.) and weed
species using leaf texture (color co-occurrence) measures
with up to 97 percent overall accuracy (Burks et al., 2000a,
2000b, and 2005). ANN classification results using leaf
shape features have also been encouraging with
radish (Raphanus sativus L.) and weed species classified
with 100 percent overall accuracy (Cho et al., 2002).
Shape features were also used to distinguish carrot (Daucus
carota L.) from two weed species (ryegrass (Lolium perenne
L.) and fat hen (Chenopodium album L.)) with 62 to 82
percent of plant images correctly classified (Aitkenhead et
al., 2003). Yang et al. (2000) evaluated network architec-
ture effects on classification accuracy in discriminating
corn from seven weed species with class accuracies of 60
to 100 percent for corn and 40 to 80 percent for weed
classes. This study was later expanded (Yang et al., 2003)
to detect four weed species in corn, and the resulting
networks produced accuracies of 54 to 90 percent for corn
and 32 to 100 percent for single weed species.

Few studies, however, have addressed crop/weed
discrimination with ANNs using ground-based hyperspec-
tral data. Plant spectral reflectance characteristics in bands
outside the visible region of the electromagnetic spectrum
provide more information than three-band RGB color imaging
sensors and may increase the feasibility of crop and weed
discrimination (Okamoto et al., 2007). Though imaging
sensors are limited, Moshou et al. (2001) used point based
spectral measurements and self-organizing map network
models to classify corn and sugar beet (Beta vulgaris L.) from
weed species with very high accuracies (corn 96 percent,
weed 90 percent, sugar beet 98 percent, and weed 97 percent).

The objective of this study was to evaluate single date
and multi-temporal classification of several crop and weed
species from very high resolution hyperspectral image data
acquired at ground level. Classification accuracy of the new
hybrid segmentation-Artificial Neural Network (HS-ANN)
classification technique was compared to Maximum Likeli-
hood Classification (MLC) for potential application to future
real-time SSHM practices.

Materials and Methods

Sensor System

The hyperspectral imaging system and image acquisition
software were developed by DeltaTee Enterprises Ltd.
(Calgary, Alberta, Canada). The line scanning system uses
a magnetic carriage to step a linear variable filter across
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a Charge-Coupled Device (ccp) sensor for hyperspectral
(61 wavebands from 400 to 1,000 nm at 10 nm increments)
image acquisition of a static target. The imaging sensor was
manufactured by Point Grey Research (Vancouver, British
Columbia, Canada), and used a 0.5 inch progressive scan ccp
sensor (Sony, ICX414AL). This sensor outputs a 640 pixel X
480 pixel 16-bit image with a signal-to-noise ratio of greater
than 60 dB. The system focuses incoming radiation with an
8 mm C-mount vIS-NIR lens (Schneider Kreuznach, Germany)
fixed to create 44° vertical and 33° horizontal fields-of-view
with the focus and aperture (f/1.4 to £/11) adjusted manually.

Prior to analysis, image radiometric pre-processing
included dark current correction, frequency resampling,
uniformity correction, and conversion to reflectance. The
latter was achieved by imaging a Spectralon® (Labsphere,
Inc., North Sutton, New Hampshire, USA) calibration panel
immediately prior to image acquisition and computing the
ratio of irradiance to radiance with reference to wavelength-
specific panel calibration coefficients.

The hyperspectral camera system was situated on a
boom arm, mounted on a flat-bed truck and centered at
1 m target distance (Figure 1). Imagery acquired from each
target was 1.25 mm X 1.25 mm spatial resolution over the
400 to 1000 nm spectral range at 10 nm intervals. Image
data were acquired under clear sky conditions at nadir
view angle = 2 hours from solar noon (13:38 local time) to
reduce the illumination intensity variation associated with
changes in solar zenith angle and intermittent cloud cover.
Data acquisition was limited to days of negligible wind to
minimize leaf movement during plot imaging.

Image Data Collection

Three crop species (field pea (PEA), Pisum sativum L.;
canola (CAN), Brassica napus L.; and spring wheat (WHT),
Triticum aestivum L.), and two weed species (redroot
pigweed (RRP), Amaranthus retroflexus L.; and wild oat
(wo), Avena fatua L.) were seeded to field plots located at
the Agriculture and Agri-Food Canada Research Centre
(AAFC-LRC) in Lethbridge, Alberta, Canada (49.7°N,
112.833°W). Building on our earlier work at AAFC-LRC (e.g.,
Smith and Blackshaw 2003; Blackshaw et al., 2005 and
2006; Peddle and Smith, 2005; Kokko and Hill, 2005),

Figure 1. Flat-bed truck with sensor mounted on boom
arm for image acquisition. A color version of this figure
is available at the Asprs website: www.asprs.org.
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weed seeds were surface broadcast on plots (5 m X 2.5 m)
prior to seeding the various crops. Seeder movement over
plots allowed broadcast seeds to be embedded in the soil,
facilitating germination.

Field plots of the eleven treatments (5 monocultures and
6 crop/weed combinations) were seeded on four dates to
increase the window of opportunity for collecting timely
(weather/crop stage dependant) image data. Treatments
seeded on 06 July 2005 provided temporal sampling as
image data were acquired at approximately one, two, three,
and four weeks (14 July, 19 July, 26 July, and 03 August,
respectively) after seeding. The 19 July and 26 July acquisi-
tion dates encompassed the timeframe of optimal plant
growth stage for herbicide application and thus were used
for investigation of threshold techniques and evaluation of
ANNs and MLC.

Segmentation

An efficient, rapid threshold method was developed for
defining vegetation pixels based on image data acquired over
field-based crop and weed treatments. The Modified Chloro-
phyll Absorption in Reflectance Index (Mcari) (Equation 1),
designed to be responsive to both chlorophyll variation and
resistant to non-photosynthetic material effects (Daughtry

et al., 2000; Haboudane et al., 2002) was used to separate
vegetation from background. MCARI was calculated as:

MCARI = [(H700 - Rmo] - 0-2*(3700 - HSSO]]*(R7OO/R67O] [1)

where Rsso, Rg70, and Ry, are reflectance at 550, 670, and
700 nm, respectively. The spectral reflectances in these

wavelength regions (550, 670, and 700 nm) were different
between vegetation (foreground) and soil or litter (back-
ground) providing separation in spectral space which lends
itself well to segmentation by threshold techniques.
Defining the minimum McaARrI value for vegetation was
achieved through manual identification of vegetation pixels
in the image data. The lowest value McARI value of sunlit
and shadowed vegetation pixels in the images was observed
to be 0.1. Leaf edge pixels affected by background mixing
showed a MmcaRr! value lower than 0.1 and was defined as
the minimum value for the threshold. A vegetation mask
was created by assigning pixel values >0.1 as green plant
matter and values <0.1 excluded as non-vegetated and,
therefore, not of interest (Figure 2). McarI thresholding
was applied to all field-based image data acquisitions prior
to classification.

Classification

The supervised classification methods (MLC and ANN)
required input training data for each species. Particular
attention was given not only to representation of species
spectrally but also spatially across each image scene.
Accordingly, each image was divided into nine equal
sections. Training samples were defined from regions of
interest (RoI) from leaves using the ENVI image analysis
system (ENVI, 2007). These were selected from one to
four regions per section (based on leaf size) with each
section sampled uniformly across plots (e.g., CAN leaves
were sampled from both cAN/WO and CAN/RRP treatments).
This ensured that any sensor variation across the image

Figure 2. Results from mcARI threshold technique for segmenting vegetation ((a) cAN/RRP and

(d) wHT/RRP) from background. MCARI vegetation index is calculated (b and e€) and a value of 1 was
applied to all pixels with a value of >0.1 to create a mask of only vegetation pixels (¢ and f). A color
version of this figure is available at the Asprs website: www.asprs.org.
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TaBLE 1. PiXELs USED FOR VALIDATION OF FIELD PLOT
CLASSIFICATION OUTPUT

Crop/Weed # Crop Pixels # Weed Pixels
19 July Acquisition
CAN/RRP 10268 2839
WHT/WO 1869 62
PEA/WO 2804 268
WHT/RRP 1301 2739
CAN/WO 8222 27
PEA/RRP 3763 3384
26 July Acquisition
CAN/RRP 35008 5101
WHT/WO 975 339
PEA/WO 4101 358
WHT/RRP 1887 4684
CAN/WO 17379 292
PEA/RRP 4451 5076

scene would be represented in the classification training
dataset. After the selection of leaf regions, a one of n
sampling procedure reduced the training set to approxi-
mately 500 pixels for each species (Hill et al., 2002).
Training pixels used for classification of the 19
July and 26 July image data were also combined into
a multi-temporal training set to assess the temporal variabil-
ity observed between these two dates. This resulted in
approximately 2,000 pixels (1000 crop and 1000 weed) used
as input to train the multi-temporal series classifications.
Classification accuracy assessment was based on
independent, mutually exclusive data separate from the
training set and obtained from remaining leaves not used in
training (Table 1). As classifications were run on a per plot
basis, the validation sites could not be defined across
treatments as was the case in training. Class validations
were tabulated as contingency tables using the post classifi-
cation assessment modules in ENVI/IDL (ENVI, 2007). Stan-
dard methods of accuracy assessment (overall accuracy,
Kappa co-efficient, user and producer accuracies, and
assessment of spatial patterns of error) were implemented
and used to evaluate and compare results from the classifi-
cation methods tested.

Building Artificial Neural Network Models

Feed-forward ANN modeling was conducted using Predict®
software, version 3.11 (NeuralWare Inc., Pittsburgh,
Pennsylvania) and following protocols developed by Hill
et al. (2002). Multi-layer perceptron model development
involved: (a) selecting internal validation, training, and
internal test data subsets, (b) analyzing and transforming
data, (c) selecting variables, (d) network construction and
training, and (e) model verification. The ANN software was
set to partition training data into subsets with 30 percent
removed to form an intermediate internal test set, and the
remaining 70 percent used to develop ANN models. This
internal test set was separate from the independent,
mutually exclusive validation data set described above
that was used for accuracy assessment and reporting.
Networks were trained using an adaptive gradient learning
rule (a form of back-propagation). The Predict® software
used a constructive method for determining a suitable
neural network architecture. This cascade learning proce-
dure iteratively added processing elements to the hidden
layer until performance on the internal test set showed no
further improvement in prediction (NeuralWare, 2003).
This method of network development produced a different
architecture (varied inputs and number of hidden nodes)
for each prediction model.

The procedure was run over 20 iterations, which
produced 20 prediction models for each crop/weed combi-
nation. The best model was chosen from the set of 20 on the
basis of a suitable NN architecture (i.e., minimum number of
input neurons connected to a hidden layer that had fewer
neurons than the input layer) combined with a high internal
and external validation accuracy. This best model was then
used to classify field plot treatments.

Results and Discussion
Single Date Classification
All classifications used the entire 61 band dataset as input
to the classification algorithms. This provided a test of
classification accuracy for the two methods (MLC and Hs-
ANN) with a single image acquisition. Due to insufficient
emergence of wo, the 19 July classification of can/wo and
WHT/WO combinations could not be considered.

Results from both the MLC and HS-ANN classification
validations are presented in Table 2 and Table 3. Overall

TABLE 2. MLC CLASSIFICATION ACCURACY ASSESSMENT WITH 61 WAVEBANDS INPUT TO CLASSIFICATION FOR
(A) 19 JuLy AND (B) 26 JuLy IMAGE ACQUISITIONS

a Crop Class Accuracy Weed Class Accuracy Overall MLC
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 96.9 80.8 58.2 90.7 82.9 0.59
PEA/WO 97.6 94.1 52.3 67.9 91.8 0.56
WHT/RRP 85.8 95.4 87.8 64.9 85.5 0.65
PEA/RRP 87.7 96.3 95.3 84.9 90.9 0.82
b Crop Class Accuracy Weed Class Accuracy Overall MLC
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 98.6 81.2 44.0 92.3 82.6 0.49
WHT/WO 93.4 67.2 48.3 86.4 72.1 0.43
PEA/WO 95.2 51.0 11.1 70.4 52.6 0.06
WHT/RRP 74.0 61.5 86.0 91.2 82.7 0.56
CAN/WO 99.8 90.7 14.0 89.0 90.6 0.22
PEA/RRP 78.5 85.2 86.5 79.5 82.2 0.64
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TABLE 3. HS-ANN CLASSIFICATION ACCURACY ASSESSMENT WITH 61 BANDS INPUT TO CLASSIFICATION FOR
(A) 19 Jury, AND (B) 26 JuLy IMAGE ACQUISITIONS

a Crop Class Accuracy Weed Class Accuracy Overall HS-ANN
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 98.4 94.5 82.7 94.5 94.5 0.85
PEA/WO 99.3 95.6 66.8 93.3 95.4 0.75
WHT/RRP 94.2 89.0 79.2 88.5 88.8 0.75
PEA/RRP 94.6 94.0 93.3 94.1 94.0 0.88
b Crop Class Accuracy Weed Class Accuracy Overall HS-ANN
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 98.4 93.9 68.3 89.5 93.4 0.74
WHT/WO 88.8 74.6 51.2 70.9 73.7 0.41
PEA/WO 98.6 77.5 25.3 86.9 78.2 0.30
WHT/RRP 74.9 91.8 96.4 87.6 88.8 0.74
CAN/WO 99.8 90.1 13.0 87.4 90.1 0.20
PEA/RRP 81.8 84.9 86.3 83.4 84.1 0.68

accuracies of over 80 percent were obtained with the

MLC except in two cases (WHT/WO and PEA/WO on 26 July).
However, the more robust Kappa co-efficient statistic revealed
several discrepancies. The highest mLC Kappa co-efficient
occurred for the 19 July PEA/RRP classification (0.82), how-
ever, Kappa values for other crop/weed combinations ranged
from 0.06 to 0.65. These values indicated confusion between
classes, which were assessed further using individual class
user and producer accuracies. The 19 July classifications
provided high accuracies (86 to 97 percent and 81 to 97
percent user and producer) in terms of crop classes, but the
weed class accuracies ranged from 52 to 95 percent. The 26
July validation did not show the same trend, as both crop and
weed classes had low user and producer accuracies, espe-
cially in the crop/wo combinations. When considering overall
MLC accuracy using the Kappa statistic, the best results were
observed in classification of the PEA/RRP combination

Figure 3. Single date mLc classification of PEA (white)
and RRP (grey) on (a) 19 July and (b) 26 July image
data. A color version of this figure is available at the
ASPRS Website: www.asprs.org.

(for both acquisition dates), with the later date showing
slightly lower class accuracy (Figure 3).

HS-ANN classification accuracies were markedly improved
over the MLC based on overall percent accuracies and Kappa
coefficients (Table 3a and 3b). The weed class user accuracies
for 19 July were low (PEA/WO: 67 percent, CAN/RRP: 83 percent)
but not as low as those observed in the MLC (up to 52 percent).
The 26 July classifications produced less encouraging results
than those obtained on 19 July. The highest weed class
errors occurred in commission of PEA (75 percent) and CAN
(87 percent) pixels to the wo class on 26 July.

In terms of the location and spatial pattern of classifica-
tion error in field plots, RRP was classified better by MLC
(Figure 4e and Figure 5e), but darker and shadowed caN and
WHT pixels were classified incorrectly (Figure 4b and Figure
5b). Crop species were classified with higher accuracy using
the HS-ANN technique, with error restricted to leaf edges

Figure 4. mLc (b and e) and Hs-ANN (¢ and f) classifica-
tion of 19 July caAN (a, b, and c)/RRrP (d, e, and f)
treatment. A color version of this figure is available at
the AsPrs website: www.asprs.org.
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Figure 5. mLc (b and e) and Hs-ANN (¢ and f) classifica-
tion of 19 July wHT (a, b, ¢)/RRP (d, e, and f) treat-
ment. A color version of this figure is available at the
ASPRS website: www.asprs.org.

Figure 6. mLc (b and e) and Hs-ANN (¢ and f) classifica-
tion of 19 July Pea (a, b, and c¢)/wo (d, e, and f)
treatment. A color version of this figure is available at
the AsPrRs website: www.asprs.org.

(Figure 4c) and darker pixels in RRP incorrectly classified
(Figure 4f and Figure 5f).

Spatially, mis-classification was similar in the
Crop/wo classifications for both MLC and Hs-ANN tech-
niques. wo was classified well (Figure 6e and 6f, and
Figure 7e and 7f) with mis-classification occurring mainly
in PEA tendrils (Figure 6b and 6c) and caN petioles and
leaf veins (Figure 7b and 7c).

Overall, the crop/rrp classifications were less prone to
error than the crop/wo in both the MLC and HS-ANN output.
Higher classification accuracy was also obtained on the
earlier plant stage (19 July), and represented a trend
observed with both classification methods.

Multi-temporal Classification
The two dates of image acquisition enabled comparison of
the classification algorithms regarding not only spatial

Figure 7. mLc (b and e) and Hs-ANN (¢ and f) classifica-
tion of 26 July caN (a, b, and ¢)/wo (d, e, and f)
treatment. A color version of this figure is available at
the AsPrs website: www.asprs.org.

variation but also variability of spectral reflectance in the
temporal domain. This series of classifications used both
19 July and 26 July data for training the MLC and ANNs.
Once the models were built, crop/weed combinations from
each date were classified.

In examining the MLC class validation (Table 4a and 4b),
with the exception of the PEA/RRP combination, generally
poor results were obtained with low user accuracies on both
July 19 (33 to 84 percent) and July 26 (7 to 78 percent) and
producer accuracies on 19 July (67 to 84 percent) for the
weed classes. Crop producer accuracy was also low (34 to
80 percent) for all combinations on the later acquisition
date. The best results occurred with the 19 July PEA/RRP
combination (91 percent, Kappa = 0.82) followed by
WHT/RRP (85 percent, Kappa = 0.64) (Figure 8a and 8b).
Similar to the single date MLC classifications, the earlier date
showed higher class accuracies than 26 July.

Figure 8. Multi-temporal mLc classification output of
crop (white) (Pea (a), wHT (b)) and weed (grey) (RRP
(a and b)) combinations acquired on 19 July. A color
version of this figure is available at the Asprs website:
www.asprs.org.
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TABLE 4.

CLASSIFICATION ACCURACY ASSESSMENT FOR MULTI-TEMPORAL CLASSIFICATIONS OF MLC FOR
(A) 19 JuLy AND (B) 26 JuLy

a Crop Class Accuracy Weed Class Accuracy Overall MLC
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 94.6 76.0 51.5 84.3 77.8 0.48
PEA/WO 97.3 86.8 32.7 66.8 85.1 0.38
WHT/RRP 86.9 93.4 83.7 67.1 84.9 0.64
PEA/RRP 89.1 94.4 93.3 87.2 91.0 0.82
b Crop Class Accuracy Weed Class Accuracy Overall MLC
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 99.9 56.1 24.9 97.4 61.4 0.24
WHT/WO 97.1 38.0 35.2 96.8 53.2 0.22
PEA/WO 95.7 51.0 11.6 74.0 52.8 0.07
WHT/RRP 77.9 34.0 78.5 96.1 78.3 0.37
CAN/WO 100 78.5 7.2 98.6 78.8 0.11
PEA/RRP 83.9 80.3 83.9 86.4 83.6 0.67

Similar to the trend observed in the single date
classifications, the multi-temporal HS-ANN overall accura-
cies were also better (3 to 31 percent) than the MLC, with
19 July (Figure 9, and Table 5a) out performing 26 July
(Table 5b). Low user accuracies (14 to 74 percent) were
observed for both dates in the weed class with the excep-
tion of the wHT/RRP and PEA/RRP combinations. The
crop class accuracies were high for all combinations
between both dates, except for wHT/RRP, which exhibited
79 percent and 71 percent user accuracy on 19 July and
26 July, respectively. The wHT/WO classifications which
proved difficult in the single date analyses, improved
with the use of the Hs-ANN method and multi-temporal
data (85 percent, Kappa = 0.61). As was observed with
the multi-temporal MLC classifications, the best results
were achieved with the PEA/RRP on both dates, with
crop/RRP classifications generally better than the crop/wo
combinations.

Conclusions

Segmentation of ground-based image data prior to classifi-
cation is an efficient way of simplifying the classification
of crop and weed species. Through the prior elimination of
background pixels, only foreground classes need be dis-
criminated, thus reducing the number of classes required
for image generalization. The McCARI-based thresholding
method provided a simple yet efficient method to derive
consistent results in defining leaf matter under full sun or
shaded scenarios and thus was functional in defining
pixels of vegetation from high spatial resolution image
data. This allowed for more focused and therefore efficient
classification which is a critical factor towards developing
real-time systems.

Typically, ANN model development could be considered
more difficult and time consuming than MLC when taking
into account network architecture, training parameters and
analyst experience required to build accurate models. This
difficulty can be somewhat mitigated by using specialized
software that simplifies network development and which
may be reasonably comparable to that of MLC training
procedures in terms of user requirements. Regardless of

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Figure 9. Multi-temporal Hs-ANN classification output of
crop (white) (caN (a), WHT (b), PEA (d) and weed (grey)
(RRP (a,b,and c¢), wo (d)) combinations acquired on 19
July. A color version of this figure is available at the
ASPRS website: www.asprs.org.
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TABLE 5. CLASSIFICATION ACCURACY ASSESSMENT FOR HS-ANN MULTI-TEMPORAL CLASSIFICATIONS FOR
(A) 19 JuLry, AND (B) 26 JuLy

a Crop Class Accuracy Weed Class Accuracy Overall HS-ANN
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 97.2 91.4 74.5 90.3 91.2 0.76
PEA/WO 99.6 89.8 47.2 95.9 90.3 0.58
WHT/RRP 78.8 86.0 93.0 89.0 88.0 0.73
PEA/RRP 90.6 91.7 90.7 89.4 90.6 0.81
b Crop Class Accuracy Weed Class Accuracy Overall MLC
User Producer User Producer Accuracy Kappa
(%) (%) (%) (%) (%)
CAN/RRP 97.9 91.6 60.0 86.6 61.4 0.24
WHT/WO 91.3 88.4 72.4 73.5 53.2 0.22
PEA/WO 97.3 84.8 29.6 72.4 52.8 0.07
WHT/RRP 70.5 90.1 95.5 84.8 78.3 0.37
CAN/WO 99.5 92.4 14.3 75.1 78.8 0.11
PEA/RRP 88.3 84.6 87.0 90.1 83.6 0.67

training difficulty, however, once network models are
developed, integration into a real-time SSHM processing
chain would be relatively straightforward.

Single date and multi-temporal classifications were
evaluated for discriminating between single crop/weed
combinations. The single date series of classifications set a
baseline evaluation of the capability of MLC and ANN algo-
rithms to address species discrimination when only a single
image is acquired, and from class validation this initial test
provided promising results. The multi-temporal classifica-
tions enabled assessment of weed and crop discrimination,
accounting for not only spatial variation but also variation
in reflectance characteristics over time. This procedure
would lend itself better to operational or end-use applica-
tions as training data for these methods, which account for
spectral variation over the optimal herbicide application
periods, could be built into the processing procedure.

The earlier plant stage (19 July) showed consistently
better classification results than the latter 26 July acquisi-
tion, suggesting that optimal species discrimination can
be obtained at early plant growth stages. Higher class
accuracies were observed with multi-temporally trained
HS-ANNS (84 to 92 percent), with improvements in accura-
cies up to 13 percent (19 July) and 31 percent (26 July)
compared to MLC. MLC was hindered somewhat by the
addition of the second date and was not well suited to this
type of application.

From these validated classification results it is con-
cluded that the HS-ANN classification models out performed
MLC and showed that HS-ANN classification techniques are
better suited to real-time SSHM in terms of species discrimi-
nation accuracy for the crop and weed types tested. This
hybrid segmentation - artificial neural network approach has
demonstrated an important and highly practical application
of advanced a1 techniques and has potential for develop-
ment of operational, real-time ssum for protection and
enhancement of vital food crops.
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