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The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest
carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for
large area and multi-temporal applications, however, conventional empirical methods for estimating forest
canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a
new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance
(CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM)
using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky
Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels
which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM
estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field
validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation
index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery.
MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha
error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but
had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM
approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in
the field. Field plots with biomass N1 standard deviation from the field mean (over 30% of plots) had biomass
estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI,
respectively. In addition to providing more accurate overall results and greater stability over the range of
biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as
density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal
ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications
with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in
mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological
modeling and terrestrial biomass and carbon monitoring studies.

© 2009 Published by Elsevier Inc.

1. Introduction

Information about forest stand structure and aboveground bio-
mass (AGB) is used to assess forest ecosystem productivity, determine
carbon (C) budgets, and support studies of the role of forests in the
global carbon cycle (Cihlar et al., 2002; Kurz & Apps, 1999; Lu, 2006;

Palacios-Orueta et al., 2005; Zheng et al., 2004). Currently, the most
established and frequently used methods for estimating AGB are
through the use of field plots or spatial inventory data with statistical
or allometric models (Brown, 2002; Fournier et al., 2003; Parresol,
1999). These conventional methods are difficult to extend over large
areas because they are limited to where inventory data are available,
are spatially incomplete and typically sparse, involve significant
time, labour and field costs, and these methods may not be suited for
future C reporting since the assessment is often done at one time only
(Brown, 2002; Hall et al., 2006). Alternatively, the information
content of satellite remote sensing methods are potentially well
suited for providing efficient and timely estimates of forest structure
and AGB due to the ability to provide both archived and new
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systematic, repetitive, comprehensive observations at local to global
scales (Patenaude et al., 2005) as well as being amenable to providing
other important related information such as landcover, land-use and
photosynthetic functioning at various scales (Cohen et al., 2001; Treitz
& Rogan, 2004; Thomas et al., 2006).

While a number of remote sensing techniques for estimating stand
structure and AGB have been reported (Coops et al., 2004; De Jong
et al., 2003; Fournier et al., 2003; Jensen & Hodgson, 1985; Luther
et al., 2005; Labrecque et al., 2005; Leboeuf et al., 2005; Roy & Ravan,
1996; Thenkabail et al., 2004), the variability in results suggests it
remains a difficult, challenging task (Hyyppä et al., 2000; Foody et al.,
2003; Lu, 2006; Rosenqvist et al., 2003). Statistical techniques are
among those most frequently used, whereby multispectral satellite
data or derived values (e.g. vegetation indices, mixture fractions) are
empirically related to stand structure and biomass (Gerylo et al.,
2002; Hall et al., 2006; Wulder, 1998). Some success has been
reported in applications of these methods in areas of limited terrain
relief (Gerylo et al., 2002; Hall et al., 2006; Hame et al., 1997; Franklin
et al., 2003; Peddle, Brunke, et al., 2001). The relationships between
satellite data and stand characteristics, however, can be adversely
influenced in areas of high topographic variation (Gemmell, 1995,
1998), or in areas where surface features such as exposed rock and soil
can lead to mixed pixels that can further confound the relationship
with biomass (Elvidge & Lyon, 1985).

An alternative to statistical methods is the inversion of canopy
reflectance models (Leblanc & Chen, 2000; Scarth & Phinn, 2000).
Geometric-optical canopy reflectance models in particular provide a
direct physical characterisation of the relationship between forest
stand structure, terrain geometry, view angle, illumination angle,
surface properties, and the radiometric response from satellite data
(Chen et al., 2000; Hall et al., 1997). Inversion of these models
to provide information about forest stand structure has shown
promising results (Wu & Strahler, 1994; Woodcock et al., 1997),
however, the inversion procedure can be computationally intense and
thus inappropriate for large study areas and time sensitive accounting.
Further, some of these models are either non-invertible or yield non-
exact or no solutions. To overcome these problems and increase
the efficiency of canopy reflectance model inversion, it is necessary
to use indirect inversion methods where canopy reflectance is pre-
computed (Kimes et al., 2000). These look-up table (LUT) methods
were subsequently used successfully in agriculture (Weiss et al.,
2000), forestry (Peddle, Franklin, et al., 2003) and a variety of follow-
on studies (Peddle, Franklin, et al., 2003; Peddle, Luther, et al., 2003;
Peddle et al., 2004, 2007; Peddle, Boon, et al., in press; Peddle,
Huemmrich, et al., in press; Soenen et al., 2005, 2008, 2009) involving
first-order biophysical parameters, but has not been extended past
the primary parameter set to obtain second-order biophysical param-
eters such as AGB.

This paper introduces a new method for estimating AGB from
satellite imagery over mountainous terrain using canopy reflectance
models that explicitly characterize the variation in reflectance due to
different vegetation properties, topography, illumination (solar) and
view (sensor) angles. This approach first estimates average tree
crown dimensions and stem density for a satellite image pixel through
indirect inversion of a geometric-optical canopy reflectance model,
then relates the crown dimensions and stem density to average tree
biomass and AGB for the pixel. Accordingly, the objectives of this
study were:

(i) Describe this two-step canopy reflectancemodel based approach;
(ii) Evaluate results against AGB field validation data collected in a

mountainous study area; and
(iii) Compare results from the canopy reflectance model approach

to other multispectral image-based approaches including
spectral mixture analysis and vegetation indices (Peddle,
Brunke, et al., 2001).

The canopy reflectance model approach was hypothesized to
generate more accurate estimates of AGB than those from empirical
multispectral image-based approaches on the basis that (i) the
explicit physically-based context provided by canopy models is theo-
retically more appropriate, (ii) the approach has been demonstrated
as superior to other methods in past studies (Peddle, Franklin, et al.,
2003) and a variety of follow-on studies (Peddle, Franklin, et al., 2003;
Peddle, Luther, et al., 2003; Peddle et al., 2004, 2007; Peddle, Boon,
et al., in press; Peddle, Huemmrich, et al., in press; Soenen et al., 2005,
2008, 2009) involving other biophysical structural estimates, and
(iii) it encompasses an explicit terrain handling module that utilizes
terrain geometry information to advantage, instead of avoiding or
trying to correct for it as in most other studies.

2. Methods

2.1. Study area

The study area (Fig. 1) was centered at 51.02° N, 115.07° W in the
northern part of Kananaskis Country Provincial Park, Alberta, Canada.
The area encompassed 180 km2 of terrain in the east slopes of the
Front Range of the Canadian Rocky Mountains with terrain elevations
ranging from 1400 m to 2100 m above sea level, and slopes ranging
from 0° to 55° over a full range of terrain aspect. The study area
included both Montane and Sub-Alpine vegetation zones (Archibald
et al., 1996). The dominant overstory coniferous species was
lodgepole pine (Pinus contorta var. latifolia Dougl ex. Loud.), as well
as white spruce (Picea glauca (Moench) Voss), Engelmann spruce
(Picea engelmannii Parry ex Engelm.), Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco), and sub-alpine fir (Abies lasiocarpa
(Hook) Nutl.). The dominant deciduous tree species was trembling
aspen (Populus tremuloides Michx.), and balsam poplar (Populus
balsamifera L.), with lesser amounts of white birch (Betula papyrifera
Marsh.). Stand age within the study area was typically between 90 to
120 years for conifer stands and 50 to 90 years for deciduous stands.

2.2. Image and terrain data

Système pour l'Observation de la Terre (SPOT) satellite imagery
covering the study area were acquired August 12, 2004 by the High
Geometric Resolution (HGR; SPOT 5) sensor at a−7.3° off-nadir view
angle. The cloud-free, 10 m multispectral SPOT data were resampled
to 25 m to match the resolution of an associated digital elevation
model (DEM) and orthorectified to within sub-pixel scale (b5 m)
positional error based on an independent ground control point based
assessment.

Atmospheric correction of the SPOT imagery involved several
steps. First, the image data were converted from raw digital numbers
(DN) to at-sensor radiance using published calibration gain and offset
values available from SPOT Image Corporation (SPOT Image, 2004).
Each image band was then calibrated to top of the atmosphere
reflectance based on the earth–sun distance at the time of image
acquisition and the solar irradiance for a given band from SPOT Image
(2004). A further calibration procedure to account for atmospheric
transmission and path radiance was applied to the SPOT data using
field spectral measurements of pseudo-invariant features obtained
near the time of image acquisition (Milton et al., 1997; Schott et al.,
1988). The SPOT data were then transformed using the empirical line
method (Smith & Milton, 1999) to complete this part of the atmo-
spheric correction.

Topographic correction of the SPOT image data was achieved using
the SCS+C method implemented by Soenen et al. (2005) as a
modification of the sub-pixel scale Sun-Canopy-Sensor (SCS) method
of Gu and Gillespie (1998). The SCS framework introduced by Gu
and Gillespie (1998) was a significant advance in topographic
correction as it preserves the geotropic nature of vertical tree growth
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regardless of terrain, view and illumination angles, and is therefore
preferable to traditional photometric Sun-Terrain-Sensor (STS)
methods that violate this fundamental physical relationship. The
SCS+C topographic correction of Soenen et al. (2005) further
modified the SCS approach to account for diffuse atmospheric
irradiance based on an additional C-correction that compensates for
the overcorrection at higher incidence angles experienced by SCS. The
Kananaskis study area in this paper was extensively investigated
in terms of topographic correction by Soenen et al. (2005) in which
it was found SCS+C was superior to SCS and the photometric
STS topographic corrections (cosine, Minnaert statistical–empirical,
C-Correction). In this work, the SCS+C topographically corrected
image data were subsequently used to derive NDVI values and SMA
fractions. However, the SCS+C-correction was not required for MFM
since topography is already included directly in the canopy reflec-
tance model used with MFM in this study, as described in detail in
Soenen et al. (2008) which investigated topographic correction of the
SPOT image data set used here. Since terrain slope and aspect were
incorporated directly in the modeling of forest structure in MFM,
topography was handled internally and no additional external topo-
graphic correctionwas required. Accordingly, the internal MFM-based
topographic correction capability is included as one aspect of the
overall comparison with the other methods.

2.3. Field data

Field data from 36 field plots were collected during two con-
secutive field seasons (2003 and 2004). Twenty one field plots were
located within conifer dominant (N80% stem count) stands and 15
plots were located within deciduous dominant stands. Plot size was

set at 0.04 ha (400 m2) to ensure that at least one 10 m image pixel
would spatially coincide with each plot (i.e. image data were asso-
ciated with field plots based on individual pixels). To ensure an
adequate representation of the range of terrain and stand density
conditions within the study area, a stratified sampling protocol was
used with field plot locations derived randomly within DEM de-
rivative classes and forest classes from the Alberta Vegetation
Inventory (AVI, 1991). AGB validation data were calculated for each
plot from field measurements of diameter at breast height (dbh) and
tree heights. Other data, including crown dimensions and vegetation
spectral response, were recorded for canopy reflectance model
parameterization and to validate initial inversion results.

Measurements of total tree height, height to crown center (HTC),
dbh, horizontal and vertical crown radius were taken for each tree
within a field plot. In addition, species data and stem counts for each
plot were recorded. Tree heights and height to crown center were
measured using a digital clinometer at 20 m distance. Vertical crown
radius was determined by subtracting the height to the base of the
canopy (a parameter easily and accurately measured) from the total
height, and dividing in half. The horizontal crown radius for each tree
was measured using a GRS densiometer to determine the vertical
projection of the edges of the crown to the ground (i.e. the drip-line).
The distance from the drip-line to the trunk was then measured. This
process was repeated perpendicular to the first measurement to
characterize variation in horizontal crown dimensions.

Endmember spectral measurements were acquired in the field for
input to the SMA andMFM procedures. Three endmembers were used
for each tree species: sunlit canopy, sunlit background, and shadow,
consistent with previous MFM and SMA studies in this area using
satellite and airborne imagery, respectively (Peddle & Johnson, 2000;

Fig. 1. Study area, Canadian RockyMountains: A): natural colour satellite image showing field areas and access road; B) looking south from Prairie View across Barrier Lake; northern
flank of Mount Baldy to left; C) general study area location in Kananaskis, Alberta, in western Canada.
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Soenen et al., 2008) as these are the primary image components that
drive pixel level reflectance in this area. Reference (field) spectrawere
required because the spatial resolution of the satellite imagery was
insufficient to use image pixels as endmember values. Using an
Analytical Spectral Devices (ASD) Field-Spec spectroradiometer (ASD,
1998), the spectral properties of sunlit and shadowed vegetationwere
measured throughout 350–2500 nm using optically thick stacks of
Trembling Aspen and Lodgepole Pine samples and used for the sunlit
canopy and shadow endmember for each species, with the sunlit
background endmember spectra acquired for understory vegetation
compositions observed in the field plots, following the protocols
established and tested in Peddle and Johnson (2000). The measure-
ments occurred near the expected satellite overpass time on cloud-
free dates in June and July, 2004. All spectral measurements were
processed to reflectance with respect to calibrated white reference
panel readings following protocols by Peddle, White, et al. (2001) and
used the same surface orientation as the topographically corrected
imagery. To ensure a high signal to noise ratio, the spectroradiometer
was configured to acquire 10 measurements per unit interval which
were then averaged for each sample. Dark current calibrations and
white reference measurements were completed prior to each target
measurement to account for any internal signal noise and illumination
variations during measurement. The field spectra were subsequently
processed to correspond to the specific SPOT imagewavelength bands
based on published spectral response functions for each satellite
sensor band (SPOT Image, 2004).

2.4. Estimating tree biomass from field data

Destructive sampling was not permitted in the Kananaskis study
area to measure tree biomass (B). Instead, aboveground total indi-
vidual tree biomass was calculated for each tree within plot bound-
aries using dbh within the log-transformed power model and
regression coefficients (Table 1) from Case and Hall (2008):

lnðBÞ = b0 + b1 lnðdbhÞ: ð1Þ

It was necessary to apply a correction factor (Table 1) to account
for the skewness in the distribution in arithmetic units when
converting from the logarithm of tree biomass to original biomass
units (Baskerville, 1972). The B (tonnes·tree−1) was then summed
for each plot and divided by the plot area to give total biomass
(tonnes) within the plot and total standing AGB (tonnes ha−1).

2.5. Multiple forward mode retrieval of canopy structural parameters

The SPOT image data were linked to forest canopy structural
conditions through the multiple forward mode (MFM) canopy
reflectance model inversion method using the Li and Strahler
(1992) geometric-optical mutual shadowing (GOMS) canopy reflec-
tance model. The MFM method is an indirect, look-up table based
approach to canopy reflectance model inversion that consists of a set
of algorithms for LUT creation (Kimes et al., 2000; Peddle, Franklin,
et al., 2003) and LUT search and description of potential inversion
solutions (Soenen et al., 2009). MFMhas been applied successfully in a
variety of applications and locations using different sensors and
models (Peddle, Franklin, et al., 2003; Peddle, Luther, et al., 2003;

Peddle et al., 2004, 2007; Peddle, Boon, et al., in press; Peddle,
Huemmrich, et al., in press; Soenen et al., 2005, 2008, 2009) with
broader perspectives on MFM provided in Cihlar et al. (2003) and
Gamon et al. (2004). A detailed description of the MFM method has
been provided by Peddle et al. (2004, 2007) and Soenen et al. (2009)
and is not repeated here. Instead, a brief description of MFM with a
focus on its use within the experimental design (Fig. 2) for deriving
AGB in this study is provided.

In the first MFM stage (Fig. 2), LUTs were created for each image
band from a set of model input canopy structure parameters and the
corresponding modeled reflectance output. Range and increment size
were selected for each model input parameter from which the
parameter sets were generated for the iterative model runs (Table 2).
Two input parameter sets were used for each species: 1) a general
range of structure covering the full range of potential canopy con-
ditions in the area; and 2) a refined range of structure bounded by two
standard deviations from the mean of the observed field structure
conditions. The first parameter set simulated limited knowledge of
field conditions, and the second parameter set was used to determine
if improvements in prediction accuracy could be obtained with a
refined parameter set. Each set of inputs was tested separately using
the standard MFM one-step approach, different than the two (or
more) step optimization procedures implemented in Peddle, Boon,
et al. (in press) for situations of reduced or no input ground data. Each
entry in the LUTwas created through a forwardmode execution of the
GOMS model using the structural parameter sets as input. The
resulting LUTs contained all possible structural input parameter
combinations and the output (forward mode) modeled GOMS reflec-
tance values used for matching with each satellite image band, as
well as the computed scene fractions (not used in this study). The LUT
also contained all associated forest structure, terrain geometry and
illumination and view angles as well as spectral parameters used to
generate each forward mode reflectance output.

Structural parameters were retrieved in the second MFM stage
(Fig. 2). The MFM LUT algorithm searches the LUT for modeled
reflectance values that were within a predefined spectral range from
the image reflectance from all SPOT image bands for each pixel.
The spectral range was defined using the relative root mean square
error (RMSE) between measured (ρi) and modeled (ρm) reflectance
for the number of image bands (nb) (Weiss et al., 2000; Soenen et al.,
2009):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nb

∑
nb

i=1

ρi−ρm
ρi

� �2
s

: ð2Þ

The structural parameters in the LUT associated with the matching
modeled reflectance values within the spectral range were then
selected as potential inversion results. The distribution of potential
inversion results contained the following structural parameters of
interest: stem density (d), horizontal crown radius (r), vertical crown
radius (b) and species.

2.6. Estimating tree biomass from a crown spheroid area based empirical
model

A regression model was created to relate r and b parameters,
summarized as crown surface area (SA), to tree biomass for stands of a
uniform age (Fig. 2). The r and b parameters were selected for the
biomass model over height to crown because they can be more
accurately predicted due to their influence on the relative proportions
of the primary drivers of pixel level reflectance: sunlit and shadowed
canopy and ground area. Crown SA was related to biomass as an
analogue to the area of the crown supporting physiological processes.
Surface area was calculated using maximum horizontal and vertical
crown radial extent within spheroid area equations consistent with

Table 1
Tree level regression coefficients, statistics and correction factor (C.F.) from Case and
Hall (2008) used in the estimation of tree biomass from field data.

Species b0 b1 r2 RMSE C.F.

Lodgepole pine −2.021 2.274 0.94 25.2 1.019
Trembling aspen −2.763 2.524 0.94 39.7 1.022

1328 S.A. Soenen et al. / Remote Sensing of Environment 114 (2010) 1325–1337



Author's personal copy

Fig. 2. Flowchart of methods for MFM estimation of AGB.

Table 2
MFM structural and terrain inputs used in creating a general set of LUTS based on a full range of structural inputs with coarser increments, and a refined set of LUTs (input range: ±2
standard deviations of field mean) with finer increments. Parameter set sizes corresponding to number of LUT entries shown for each species and LUT type.

Structural parameter General Refined

Min Max inc Min Max inc

Lodgepole pine Density — λ (trees/m2) 0.05 0.5 0.05 0.06 0.26 0.02
Horizontal crown radius — r (m) 0.5 6.5 1 0.5 2.5 0.5
Vertical crown radius — b (m) 0.5 6.5 2 1 4 1
Height to crown center — h (m) 4 14 2 10 14 1
Height distribution — dh (m) 5 25 5 6 16 2
Slope — α (°) 0 60 10 0 40 5
Aspect — φ (°) 0 315 45 0 315 45
Size of parameter set 529200 445500

Trembling aspen Density — λ (trees/m2) 0.05 0.5 0.05 0.06 0.2 0.02
Horizontal crown radius — r (m) 0.5 6.5 1 1 4 0.5
Vertical crown radius — b (m) 0.5 6.5 2 1 3 1
Height to crown center — h (m) 4 14 2 11 15 1
Height distribution — dh (m) 5 25 5 6 20 2
Slope — α (°) 0 60 10 0 20 5
Aspect — φ (°) 0 315 45 0 315 45
Size of parameter set 829440 302400

1329S.A. Soenen et al. / Remote Sensing of Environment 114 (2010) 1325–1337
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physical parameters of the GOMS model. Equations used for prolate
spheroid area (SAp) and oblate spheroids (SAo) were:

SAp = π 2r2 +
b2

e
ln

1 + e
1−e

� � !
ð3Þ

and

SAo = 2πb b + r
e

1
sin

e

 !
ð4Þ

where e is the ellipticity or eccentricity defined as:

ep =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− r2

b2

s
ð5Þ

eo =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2

r2

s
: ð6Þ

The new SA-based tree biomass allometric equation was created
for both conifer and deciduous trees using linear least squares regres-
sion. Regression models were generated using a dataset consisting of
field measurements of crown dimensions (r, b) and previous cal-
culations of tree biomass from the dbh-based log-transformed power
model for 350 individual trees from each species type.

2.7. Mapping AGB from MFM structural parameter retrieval

After calculating SA from the estimates of r and b in each set
within the distribution of retrieved structural parameters from the
second stage MFM estimates of crown dimension, the SA-based
allometric equations were applied to predict average tree biomass
within the area covered by the image pixel (Fig. 2). Average tree
biomass (B) was then aggregated to total aboveground biomass for all
trees within the area covered by the pixel by multiplying the estimate
of d, in units of trees per unit area, by the average tree biomass
(AGB=B·d). The result was a set of solutions for potential AGB
of the pixel area. The values written to the output AGB map were
summarized from the solution set using the median value that was
shown to be the most suitable statistic for solution distributions
(Weiss et al., 2000).

2.8. AGB estimation using NDVI and spectral mixture analysis

For comparative purposes, biomass density was also estimated
using empirical relationships with the normalised difference vegeta-
tion index (NDVI) and the sub-pixel scale shadow fraction from
spectral mixture analysis (SMA). These two multispectral image
approaches have been used extensively in past studies in flat and low
relief terrain (e.g. Lu et al., 2005; Peddle et al., 1999; Peddle, Brunke,
et al., 2001; Zheng et al., 2004) and thus were deemed as appropriate
methods for comparison with MFM, particularly owing to the exten-
sive set of topographic corrections that had been tested in previous
studies for this study area (Soenen et al., 2005, 2008) that provided
excellent inputs to NDVI and SMA. It was also deemed important to
compare MFM with methods that are familiar and have been used
elsewhere, to provide both context as well as new insight into their
applicability in areas of more complex forest and terrain. Unlike MFM,
which is a physically-based approach that derives biomass from forest
structural output, the NDVI and SMA approaches estimate biomass
by using empirical equations between biomass ground data and
corresponding NDVI and SMA pixel values. NDVI (Rouse et al., 1973)
was calculated using SPOT bands 2 (red) and 3 (near infrared, NIR) as
(NIR−red)÷(NIR+red). Although a large number of other vegetation
indices exist (Bannari et al., 1995; Chen, 1996), NDVI was chosen due

to its popularity, ease of computation, and due to the functional
equivalence of many VI's (Perry & Lautenschlager, 1984; Peddle,
Brunke, et al., 2001).

SMA was performed using the ENVI linear unmixing SMA module
(ENVI, 2005) with endmember spectra collected in the field to
determine the fractions of sub-pixel scale sunlit canopy, background
and shadow for the SPOT imagery. Shadow fractionwas used for input
to the biomass derivations on the basis of scene theory and previous
studies (Franklin et al., 1991; Peddle et al., 1999; Peddle, Brunke, et al.,
2001; Seed & King, 2003) where it was determined that this was the
optimal endmember for predicting forest biophysical structural
variables.

AGB was derived separately from each of NDVI and SMA output
using a standard cross-tabulation (“leave-one-out”) method (Green,
1979; Köhl et al., 2006; van der Heijden et al., 2007). This involved
iteratively removing one AGB plot from the full set, fitting a regression
equation to the remainder of the plots, and applying the equation to
predict AGB for the “left-out” plot. This was repeated for each plot in
the sample to produce the set of plot-based biomass estimates from
each of NDVI and SMA. If a full biomass map was required, these
predictive equations could be aggregated and applied at each pixel in
the image. However, as discussed in Section 3.4.4, only the MFM
biomass map was produced, therefore, an aggregated regression
equation for each of NDVI and SMA was not required.

2.9. AGB validation against field data

The accuracy of each biomass estimation approach (MFM, SMA,
and NDVI) was then assessed against the field-derived biomass
validation data. Error (difference between estimated and field data)
was determined for each approach for all plots. This was also assessed
separately for the individual sets of conifer and deciduous plots to
provide species-specific AGB validation. To further assess the capa-
bility of each approach to estimate the full range of biomass values
found throughout the study area, a further analysis was performed in
which the field AGB data were separated into the set of field plots that
were within one standard deviation (1 SD) of the overall field biomass
mean, and those plots that had biomass values that exceeded 1 SD of
the overall mean. This was done for each of conifer, deciduous, and the
combined sets of plots. In all cases, the results from MFM, SMA and
NDVI were compared, and where possible, placed in the context of
results obtained from other studies.

3. Results

3.1. Measured forest stand structure and biomass within field plots

Field measurements and field-derived biomass data for lodgepole
pine and trembling aspen plots are summarized in Table 3. Aspen
trees in the study area were slightly larger than pine, with an average

Table 3
Descriptive statistics for field measured horizontal crown radius (r), vertical crown
radius (b), tree height (h), diameter at breast height (dbh), stem density (λ), and AGB
measured within lodgepole pine and trembling aspen validation plots.

r
(m)

b
(m)

h
(m)

dbh
(cm)

λ
(stems/ha)

Biomass
(t/ha)

Lodgepole Mean 1.0 3.0 15.1 17.3 1500 141
Pine SD 0.4 1.2 3.3 5.4 600 34
Plots=21 Minimum 0.2 0.5 4.3 5.0 775 73
Trees=1221 Maximum 3.1 8.4 24.7 34.8 3025 213
Trembling Mean 1.6 1.6 14.6 18.8 1200 155
Aspen SD 0.6 0.8 3.2 5.1 400 46
Plots=15 Minimum 0.3 0.4 7.9 8.1 725 67
Trees=667 Maximum 3.4 4.3 22.9 37.2 1850 243
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dbh of 18.8 cm and 17.3 cm respectively. Heights were similar
between the two species with mean conifer stand height only 0.5 m
greater than deciduous stand height. Stem density ranged from 725
stems/ha to 3025 stems/ha, with the majority of plots ranging from
800 to 1600 stems/ha, with higher densities on average occurring
within conifer dominant stands. Vertical crown radius ranged from
0.4 to 8.4 m and was typically larger and more variable in conifer
stands than in deciduous stands. The range of horizontal crown radius
was similar between the two species types, though deciduous stands
had a larger r on average. The average conifer stand AGB (141 t/ha)
was smaller than deciduous stand AGB (155 t/ha), a result of its larger
average basal area (Table 3). The range of AGB was also wider for
deciduous stands than for conifer stands (Table 3).

3.2. AGB and biomass density models

Using the tree biomass data and crown surface area calculated
from r and b, new tree-biomass allometric equations were fit based
on the observed linear relationship for both pine and aspen (Fig. 3).
The crown SA data were related to tree biomass with a coefficient of
determination (r2)=0.63 and root mean square error (RMSE)=
32.7 t/ha for 350 pine trees and an r2=0.52 and RMSE=69.8 t/ha for
350 aspen trees (Table 4). The RMSE values observed in these new
crown SA models were higher than the RMSE reported for the same
species based on dbh models (Case & Hall, 2008) or height and dbh
models (Singh, 1982), however, the crown SA models were most
appropriate for use with the output from the MFM-GOMS inversion
due to the accurate b and r predictions.

3.3. Forest stand structure estimates from MFM inversion

Estimates of density obtained through MFM inversion were most
accurate when the refined LUTs bounded by field observations and a
smaller discrete increment through the structural parameter range
were used (Table 2). Using these refined LUTs, average prediction
error determined by absolute RMSE for density estimates was 590
stems/ha for pine plots and 310 stems/ha for aspen dominant plots.
For the refined LUTs, the relative absolute error was 40% for pine and
27% for aspen. Although no comparable studies of AGB in mountain-
ous areas exist for the range of terrain, density and tree species
encountered here, we note that Wu and Strahler (1994) predicted
stem density for nine lower-density conifer dominant stands over less
variable terrain at 18% relative absolute error. The average prediction
error for density estimates obtained from the general LUT, created
using general structural inputs, was 1050 stems/ha for pine plots and
530 stems/ha for aspen. The aspen estimate error was similar in
magnitude to the precision (discrete increment size) of density within
the LUTs used for retrieval. This was expected since it was unlikely
that the minimum average error would surpass the precision or

increment size of the LUTs used in the estimation technique. Pine
estimate error, however, was approximately double the increment
size indicating that the precision of the LUTwas not the limiting factor
on the minimum average error in that case.

Average prediction error for conifer horizontal crown radius (r)
and vertical crown radius (b) was 0.4 m and 0.8 m RMSE respectively
using the refined LUTs. Using the general LUTs, prediction error
increased to 1.1 m for r and 1.2 m for b. Prediction error for deciduous
r and b was 0.4 and 0.9 m RMSE respectively using the refined LUTs
and 0.9 m and 1.0 m RMSE using the general LUTs. Thus, LUTs using
a priori knowledge of field conditions and smaller increment sizes
were more effective for predicting crown structure and reducing
input error in subsequent biomass modeling. This relationship be-
tween parameter range and precision is at the foundation of the MFM
full-blind processing method (Peddle, Boon, et al., in press) that uses
general LUT ranges and coarse increments as the initial conditions in
an optimization procedure that iteratively determines refined LUT
ranges and increments automatically, thus removing the requirement
for user-specified input range from ground data or other sources. This
capability thus has implications for future regional scaleMFMbiomass
retrievals.

3.4. Mapping forest biomass density from MFM inversion

3.4.1. Overall biomass results
Results for all plots are shown in Table 5 and summarized in Fig. 4.

MFM had the lowest error (31.7 t/ha) of the three methods (SMA:
32.6 t/ha; NDVI: 34.7 t/ha). MFM output was also more similar to field
values in terms of range (field: 67–243 t/ha; MFM: 79–249 t/ha)
compared with SMA (134–191 t/ha) and NDVI (130–173 t/ha), and
absolute range (field: 176 t/ha; MFM: 170 t/ha; SMA: 57 t/ha; NDVI:
43 t/ha). Mean values were all similar to the field, however, for
standard deviation (SD), the only method similar to the field SD
(38.2 t/ha) was MFM (SD: 41.7 t/ha), whereas SMA was 11.5 t/ha
and NDVI 8.3 t/ha. This immediately indicates that SMA and NDVI
have a considerably more narrow breadth of biomass output (see
Figs. 5 and 6) and may be limited in this regard, yet MFM provided a
more comprehensive range of biomass density for most of those
values. In terms of high correspondence, 16 of the 36 validation
plots had differences b20 t/ha using MFM (SMA: 13; NDVI: 11). MFM

Fig. 3. Scatterplot of crown surface area and calculated individual tree biomass. Left: lodgepole pine. Right: trembling aspen.

Table 4
Regression parameters, predictive strength (r2) and standard error (S.E.) for crown
surface area vs. calculated individual tree biomass for lodgepole pine and trembling
aspen. p-valueb0.05.

n b0 b1 r2 S.E.

Lodgepole pine 350 21.000 2.337 0.63 32.7 t/ha
Trembling Aspen 350 17.121 4.388 0.52 69.8 t/ha
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results also had a greater consistency and lower overall error mag-
nitude across a greater range of biomass field values when the field
data set was assessed by SD categories. Higher error was found
with SMA (65.5 t/ha) and NDVI (67.5 t/ha) compared with MFM
(37.9 t/ha) for the 11 field plots beyond 1 SD of the field biomass
mean, with much smaller differences (b10 t/ha) between MFM and
the other methods for plots within 1 SD.

3.4.2. Conifer results
For conifer plots (Table 6 and Fig. 7), the accuracies for all methods

were within 30 t/ha (MFM: 23.0 t/ha; SMA: 27.9 t/ha; NDVI: 29.7 t/ha).

Although direct comparisons with other studies elsewhere cannot be
made definitively, we note that this level of error is comparable to that
reported by Hall et al. (2006) for a boreal conifer study (37.6 t/ha), and
less accurate than the 20 t/ha difference reported by Hall et al. (1995)
and the 18 t/ha in amixed forest application reported by Peddle, Luther,
et al. (2003), all of which were not in mountainous terrain.

Error levels for a minority of plots were considerably higher than
average in both conifer and deciduous validaton sets. In particular,
errors for three of the lodgepole pine validation plots were con-
sistently high (N60 t/ha) regardless of method. The majority of the
remaining lodgepole pine validation plots had error values less than
40 t/ha. The maximum difference between estimated and measured
biomass from all methods ranged from 75–81 t/ha, with minimum
error 0 t/ha. The overall error was thus affected by a few plots with
error levels considerably larger than the majority. Of the 21 conifer
validation plots, 13 had a difference of b20 t/ha using MFM (SMA: 9;
NDVI 6), and 16 had a difference of b40 t/ha (SMA: 16; NDVI 15).

3.4.3. Deciduous results
There was less distinction amongst the three methods for decidu-

ous biomass results (Table 7 and Fig. 8) compared to conifer plots.
Overall, error for each of the three methods was within 4.5 t/ha. The
average difference for deciduous using MFM was 43.8 t/ha, more
than both NDVI (41.7 t/ha) and SMA (39.3 t/ha), and in all cases the
biomass error was more than 10 t/ha greater than the corresponding
conifer result by method. There were also plots within the deciduous
validation set where the difference between measured and estimated
values was considerably larger than the average. The maximum dif-
ferences for all methods ranged from 97 to 107 t/ha, with minimum
differences b4 t/ha. Using MFM, 3 of the 15 validation plots had

Fig. 4. Comparison of biomass estimation error for all conifer and deciduous plots from MFM, SMA and NDVI. Results shown for all plots (n=36), plots within 1 standard deviation
(b1 SD) of the biomass plot mean (n=25), and plots outside 1 SD (n=11).

Fig. 5. Conifer biomass estimated using (L-R): MFM inversion, NDVI, and SMA shadow fraction. Results plotted against field-derived biomass validation data.

Table 5
Biomass results for all deciduous and conifer plots (n=36) showing field data and
estimates from NDVI, SMA and MFM. Result subsets shown for the 25 field plots that
were within 1 standard deviation (b1 SD) of the overall biomass mean from all plots,
and for the remaining 11 plots (N1 SD) to assess results over the full biomass range. All
results in tonnes/hectare (t/ha).

All plots n (plots) Biomass avg StDev Min Max Range

Field 36 150.1 38.2 67 243 176
NDVI 36 156.1 8.3 130 173 43
Error (all plots) 36 34.7 27.1 4 107 103
Error (plotsb1 SD) 25 20.2 13.0 4 49 45
Error (plotsN1 SD) 11 67.5 21.4 42 107 65
SMA 36 149.5 11.5 134 191 57
Error (all plots) 36 32.6 25.1 0 102 102
Error (plotsb1 SD) 25 20.0 12.8 0 44 44
Error (plotsN1 SD) 11 65.5 18.5 46 102 56
MFM 36 153.2 41.7 79 249 170
Error (all plots) 36 31.7 28.4 0 97 97
Error (plotsb1 SD) 25 29.0 24.6 0 97 97
Error (plotsN1 SD) 11 37.9 36.3 0 93 93
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differences b20 t/ha (SMA: 4; NDVI: 5) and 8 had differences b40 t/ha
(SMA: 8; NDVI: 7).

As with the conifer results, there were considerable differences in
MFM performance vs. SMA and NDVI across the range of biomass
values. MFM error was relatively consistent for all biomass values,
whereas SMA and NDVI errors were much higher for almost half (7 of
15) of the plots with biomass values greater than 1 SD from the
biomass field mean. In those cases, SMA and NDVI errors were
between 68 and 71 t/ha, whereas MFM error was 44.6 t/ha. Values
closer to the mean were considerably more accurate using SMA and

NDVI in those cases, however, given the narrow range of these values
for all plots (Table 7), it is difficult to confirm a true discriminatory
capability beyond the clustering of values around the mean, some
of which correspond. Regarding direction of error, there was no
observed trend in error (e.g. overestimation, underestimation) in
either the conifer or deciduous results (note: the absolute value of
differences was used in all summary statistics of errors reported).

3.4.4. Biomass mapping
MFMwas chosen for mapping AGB for the study area (Fig. 9) based

on the superior biomass results obtained compared to SMA and NDVI,
and also owing to the more direct, physically-based biophysical
structural output that required application of only the established
crown SA to biomass relationship to provide biomass output, unlike
both SMA and NDVI which would require development of empirical
equations within a statistical model for biomass. MFM AGB results
were aggregated into four classes for mapping purposes. The spatial
patterns of biomass density included, as expected, low values near
roads, trails, cut-lines and cut-blocks, with higher biomass density
values found primarily on north-northwest facing slopes and in high
density lodgepole pine stands. Pixels for which no MFM structural
solutions were possible occurred when there was no match between
the image pixel and LUT values after all solution set processing was
applied (Soenen et al., 2009). These pixels were assigned to a “no
solution” structural class that was then propagated directly through
to the biomass map as a mask (areas mapped as black in Fig. 9). This
corresponded to areas including rivers, roads, rocky slopes and
mountain summits, as well as Barrier Lake, however, the algorithm
also masked areas of deep topographic shadowing. This erroneous
masking, while not significant in extent, would have some effect on

Fig. 7. Comparison of biomass estimation error for conifer plots fromMFM, SMA andNDVI. Results shown for all conifer plots (n=21), plotswithin 1 standarddeviation (b1 SD) of conifer
biomass plot mean (n=17), and plots outside 1 SD (n=4).

Fig. 6. Deciduous biomass estimated using (L-R): MFM inversion, NDVI, and SMA shadow fraction. Results plotted against field-derived biomass validation data.

Table 6
Biomass results (t/ha) for conifer plots (n=21) showing field data and estimates from
NDVI, SMA and MFM. Result subsets shown for the 17 conifer plots that were within 1
standard deviation (b1 SD) of the overall biomass mean from all conifer plots, and for
the remaining 4 conifer plots (N1 SD) to assess results over the full conifer biomass
range.

Conifer n (plots) Biomass avg StDev Min Max Range

Field 21 141.0 34.0 73 213 140
NDVI 21 157.0 6.5 148 173 25
Error (all plots) 21 29.7 20.5 5 81 76
Error (plotsb1 SD) 17 22.2 12.6 5 49 44
Error (plotsN1 SD) 4 61.8 16.0 42 81 39
SMA 21 142.3 3.8 134 153 19
Error (all plots) 21 27.9 20.5 0 76 76
Error (plotsb1 SD) 17 20.1 12.7 0 40 40
Error (plotsN1 SD) 4 60.8 12.1 50 76 26
MFM 21 146.0 30.6 79 208 129
Error (all plots) 21 23.0 22.4 0 75 75
Error (plotsb1 SD) 17 22.3 20.1 0 66 66
Error (plotsN1 SD) 4 26.3 34.2 2 75 73
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any subsequent biomass accounting and would likely be best
addressed using macro-level terrain processing that was not consid-
ered here.

4. Discussion

The MFM inversion method for biomass density has advanced the
MFM biophysical parameter estimation methodology by extending
the capabilities toward prediction of second-order forest stand attri-
butes that cannot be directly derived from satellite imagery. The
results showed that the MFM method was suitable for making
estimates of forest stand biomass density from multispectral image
data, and the level of accuracy surpassed other empirical methods
(SMA and NDVI). In mountainous terrain, the ability of MFM to
incorporate terrain variability directly in the analysis (Soenen et al.,
2008) meant that a separate topographic correction was not required.
This is an important consideration as the influence of terrain on
biomass estimation can be significant. This study provided a unique
test-bed in this regard as the SPOT image data set had previously been
subjected to extensive topographic corrections from various methods,
from which the best non-MFM correction was available to this study
using the SCS+C approach (Soenen et al., 2005). The direct handling
of topography in MFM-GOMS is therefore part of the advantage
of MFM in comparison with other methods. Furthermore, the MFM
inversion method has several other key advantages such as use of
more refined parameter classes with flexible class ranges and

Table 7
Biomass results (t/ha) for deciduous plots (n=15) showing field data and estimates
from NDVI, SMA and MFM. Result subsets shown for the 8 deciduous plots that were
within 1 standard deviation (b1 SD) of the overall biomass mean from all deciduous
plots, and for the remaining 7 deciduous plots (N1 SD) to assess results over the full
deciduous biomass range.

Deciduous n (plots) Biomass avg StDev Min Max Range

Field 15 155.0 46.0 67 243 176
NDVI 15 154.7 10.4 130 167 37
Error (all plots) 15 41.7 33.9 4 107 103
Error (plotsb1 SD) 8 16.1 13.6 4 41 37
Error (plotsN1 SD) 7 70.9 24.5 43 107 64
SMA 15 159.7 10.9 145 191 46
Error (all plots) 15 39.3 30.0 1 102 101
Error (plotsb1 SD) 8 19.8 13.7 1 44 43
Error (plotsN1 SD) 7 68.7 22.2 46 102 56
MFM 15 163.2 53.2 92 249 157
Error (all plots) 15 43.8 32.1 0 97 97
Error (plotsb1 SD) 8 43.1 28.5 4 97 93
Error (plotsN1 SD) 7 44.6 38.3 0 93 93

Fig. 8. Comparison of biomass estimation error for deciduous plots from MFM, SMA and NDVI. Results shown for all deciduous plots (n=15), plots within 1 standard deviation (b1
SD) of conifer biomass plot mean (n=8), and plots outside 1 SD (n=7).

Fig. 9. Right: SPOT image (bands 3,2,1). Left: map of forest biomass density from MFM inversion, with results aggregated to 50 t/ha classes (black shows areas with no inversion
results such as water, roads, bare rock, mountain summits etc.).
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increments, the explicit physical parameterisation of sun-canopy-
sensor geometry as well as forest stand attributes, the suitability to
multi-image studies (different seasons and solar/view geometries are
handled explicitly), and, perhaps most importantly, the ability to
function fully with minimal or no field or a priori information (Peddle
et al., 2007; Peddle, Boon, et al., in press).

With the canopy reflectance model inversion procedure, it is
possible to operatewith little or nofield data to obtain forest structural
outputs. If used to derive second-order parameters such as biomass,
the physical relationship between first-order canopy variables (i.e.
direct MFM output) and the parameter of interest (e.g. biomass) must
be known or derived. Otherwise, general allometric relationships and
biomass prediction equations could be used. To construct an empirical
model, linear regression methods would require a spatially represen-
tative sample of the structural parameter of interest be acquired from
the field. For large areas, particularly those that include remote,
inaccessible terrain (Turner et al., 2004), the required resources are
likely excessive and impractical, yet the increased variation for a given
parameter makes a larger sample size essential for valid statistical
testing. Alternatively, MFM can be run in partial or full-blind mode
(Peddle, Boon, et al., in press) in which no a priori field or other
information is required, and themethod instead derives the necessary
inputs automatically using a multi-stage optimisation procedure.

In regular MFM-mode (as used in this study), the minimum
requirement for operation of the canopy reflectance model inversion
method is spectral information for the primary overstory species,
understory background, and shadowed vegetation. These spectral
signatures can be measured in the field, extracted directly from the
imagery, obtained from spectral libraries, or modeled, with hybrid
approaches also feasible (e.g. Peddle et al., 1999). If, however, spectral
signatures for endmembers are not available, MFM can determine
these inputs internally based on partial or full-blind MFM procedures
(Peddle, Boon, et al., in press), progressively increasing the precision
of spectral ranges, similar to any other parameter. It should also be
noted that, when a priori structural or other information is available,
there are no constraints imposed, and even general structural infor-
mation can increase estimation accuracy by bounding input ranges
within the canopy reflectance model inversion method. This also
results in faster computing times.

The minimal field data requirements of the MFM inversion
procedure also have forest management implications since it is
possible to characterize and map large swaths of forested area
with limited field measurements. The MFM method is also scalable
to coarser resolution data that allows larger areas of interest to
be considered and may provide information about spatial distri-
bution of AGB and how it relates to topography and forest stand
characteristics.

In terms of biomass estimation (Tables 5–7), although subsets
of results by terrain (slope, aspect), density and other properties
was not explored directly in this paper, the canopy reflectance
model based method appeared to provide superior results across a
greater range of forest stand types and terrain conditions given the
diversity of plots analysed. Additionally, the capability for biomass
estimation was considerably different across the range of biomass
validation values. Results indicated that SMA and NDVI had less
discriminatory power across the full range of biomass values com-
pared to MFM, a finding that has important implications when
contemplating these various methods for larger area, regional scale
applications.

Within the study, any unknown error introduced through dis-
crepancies in tree measurements and inherent error within the dbh-
based biomassmodel is likely to have propagated through to theMFM
inversion estimates. While determining the source and extent of this
error is beyond the scope of this study, it is important to acknowledge
the existence of these potential errors that are external to the MFM
modeling domain.

5. Conclusions

A newmethod was presented for estimating forest biomass which
extends the capabilities of the existingMFM canopy reflectancemodel
inversion toward deriving second-order parameters that cannot be
directly estimated from satellite imagery. The method used indirect
look-up table based canopy reflectance model inversion to obtain
estimates of canopy dimensions and stand density. These first-order
parameterswere then related to biomass through empirical modeling.
The MFM approach provided improved biomass density estimates
compared to empirical NDVI and SMA methods, and offered con-
siderable further advantages in terms of flexibility, reduced field
requirements, suitability for larger areas involving multi-image/
multi-temporal/multi-sensor data, and robustness of processing and
analysis. The results also showed that MFM was suitable for a greater
range of biomass densities compared to the other methods. Concep-
tually, the approach developed here provides flexibility and potential
within a powerful and mature canopy reflectance model inversion
context for deriving detailed biophysical information.

Acknowledgments

This research was supported in part by grants to Dr. Peddle and
collaboration from the Natural Sciences and Engineering Research
Council of Canada (NSERC), Alberta Ingenuity Centre forWater Research
(AICWR), Prairie Adaptation Research Collaborative (PARC), Natural
Resources Canada, NASA Goddard Space Flight Centre/University of
Maryland, Alberta Research Excellence Program, Center for Remote
Sensing, Boston University (GOMS model), and the University of
Lethbridge. Computing resources were provided through the Western
Canada Research Grid (West-Grid NETERA c3.ca). SPOT imagery was
acquired from Iunctus Geomatics Corporation and the Alberta Terres-
trial Imaging Centre (ATIC), both of Lethbridge Alberta. We are grateful
to SamLieff, AdamMinke, andKristin Yaehne forfield assistance and the
staff at the Kananaskis Field Stations for logistical support in the field.

References

Archibald, J. H., Klappstein, G. D., & Corns, I. G. W. (1996). Field guide to ecosites of
southwestern Alberta. Vancouver, B.C: UBC Press Special Report 8.

ASD. (1998). Fieldspec FR user's guide.Boulder, CO: Analytical Spectral Devices Inc.
47 pp.

AVI (1991). Alberta Vegetation Inventory Standards Manual Version 2.1. Edmonton, AB:
Alberta Environmental Protection, Resource Data Division, Data Acquisition Branch.

Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices.
Remote Sensing Reviews, 13, 95−120.

Baskerville, G. L. (1972). Use of logarithmic regression in estimation of plant biomass.
Canadian Journal of Forestry, 2, 49−53.

Brown, S. (2002). Measuring carbon in forests: Current status and future challenges.
Environmental Pollution, 116, 363−372.

Case, B. S., & Hall, R. J. (2008). Assessing prediction errors of generalized tree biomass
and volume equations for the boreal forest region of West-Central Canada. Cana-
dian Journal of Forest Research, 38, 878−889.

Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for
boreal applications. Canadian Journal of Remote Sensing, 22(3), 229−242.

Chen, J. M., Li, X., Nilson, T., & Strahler, A. H. (2000). Recent advances in geometrical
optical modelling and its applications. Remote Sensing Reviews, 18, 227−262.

Cihlar, J., Denning, S., Ahern, F., Anno, O., Belward, A., Bretherton, F., et al. (2002).
Initiative to quantify terrestrial carbon sources and sinks. EOS. Transactions of the
American Geophysical Union, 83(1), 6−7.

Cihlar, J., Guindon, B., Beaubien, J., Latifovic, R., Peddle, D., Wulder, M., et al. (2003).
From need to product: A methodology for completing a land cover map of Canada
using Landsat imagery.Canadian Journal of Remote Sensing, 29(2), 171−186 Special
Issue on Landsat-7.

Cohen, W. B., Maiersperger, T. K., Spies, T. A., & Oetter, D. R. (2001). Modeling forest
cover attributes as continuous variables in a regional context with Thematic
Mapper data. International Journal of Remote Sensing, 22, 2279−2310.

Coops, N. C., White, J. D., & Scott, N. A. (2004). Effect of forest fragmentation on broad
scale estimates of forest biomass accumulation. International Journal of Remote
Sensing, 20(4), 819−838.

De Jong, S. M., Pebesma, E. J., & Lacaze, B. (2003). Above-ground biomass assessment of
mediterranean forests using airborne imaging spectrometry: The DAIS Peyne
Experiment. International Journal of Remote Sensing, 24(7), 1505−1520.

Elvidge, C. D., & Lyon, R. J. P. (1985). Influence of rock–soil spectral variation on the
assessment of green biomass. Remote Sensing of Environment, 17, 265−279.

1335S.A. Soenen et al. / Remote Sensing of Environment 114 (2010) 1325–1337



Author's personal copy

ENVI. (2005). ENVI/IDL image analysis system— User manual. Boulder Colorado, USA: ITT
Visual Information Solutions.

Foody, G. M., Boyd, D. S., & Cutler, M. E. J. (2003). Predictive relations of tropical forest
biomass from Landsat TM data and their transferability between regions. Remote
Sensing of Environment, 85(4), 463−474.

Fournier, R. A., Luther, J. E., Guindon, L., Lambert, M. C., Piercey, D., Hall, R. J., et al.
(2003). Mapping aboveground tree biomass at the stand level from inventory
information: Test cases in Newfoundland and Quebec. Canadian Journal of Forest
Research, 33, 1846−1863.

Franklin, J., Davis, F. W., & Lefebvre, P. (1991). Thematic mapper analysis of tree cover
in semiarid woodlands using a model of canopy shadowing. Remote Sensing of
Environment, 36, 189−202.

Franklin, S. E., Hall, R. J., Smith, L., & Gerylo, G. R. (2003). Discrimination of conifer
height, age, and crown closure classes using Landsat-5 TM imagery in the
Canadian Northwest territories. International Journal of Remote Sensing, 24(9),
1823−1834.

Gamon, J. A., Huemmrich, K. F., Peddle, D. R., Chen, J., Fuentes, D., Hall, F. G., et al. (2004).
Remote sensing in BOREAS: Lessons learned.Remote Sensing of Environment, 89(2),
139−162 BOREAS Special Issue.

Gemmell, F. (1995). Effects of forest cover, terrain, and scale on timber volume
estimation with thematic mapper data in a rocky mountain site. Remote Sensing of
Environment, 51, 291−305.

Gemmell, F. (1998). An investigation of terrain effects on the inversion of a forest
reflectance model. Remote Sensing of Environment, 65, 155−168.

Gerylo, G. R., Hall, R. J., Franklin, S. E., & Smith, L. (2002). Empirical relations between
Landsat TM spectral response and forest stands near Fort Simpson, Northwest
Territories, Canada. Canadian Journal of Remote Sensing, 28, 68−79.

Green, R. (1979). Sampling design and statistical methods for environmental biologists.
Toronto: Wiley Press.

Gu, D., & Gillespie, A. (1998). Topographic normalization of Landsat TM images of
forests based on subpixel Sun-Canopy-Sensor geometry. Remote Sensing of
Environment, 64, 166−175.

Hall, F. G., Knapp, D. E., & Huemmrich, K. F. (1997). Physically based classification and
satellite mapping of biophysical characteristics in the southern boreal forest.
Journal of Geophysical Research, 102(D24), 29567−29580.

Hall, F. G., Shimabukuro, Y. E., & Huemmerich, K. F. (1995). Remote sensing of forest
biophysical structure using mixture decomposition and geometric reflectance
models. Ecological Applications, 5(4), 993−1013.

Hall, R. J., Skakun, R. S., Arsenault, E. J., & Case, B. S. (2006). Modeling forest stand structure
attributes using Landsat ETM+data: Application tomappingof aboveground biomass
and stand volume. Forest Ecology and Management, 225, 378−390.

Hame, T., Salli, A., Andersson, K., & Lohi, A. (1997). A new methodology for the
estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data.
International Journal of Remote Sensing, 18(15), 3211−3243.

Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y. -H. (2000). Accuracy
comparison of various remote sensing data sources in the retrieval of forest stand
attributes. Forest Ecology and Management, 128, 109−120.

Jensen, J. R., & Hodgson, M. E. (1985). Remote sensing forest biomass: An evaluation
using high resolution remote sensor data and loblolly pine plots. Professional
Geographer, 37(1), 46−56.

Kimes, D. S., Knyazikhin, Y., Privette, J., Abuelgasim, A., & Gao, F. (2000). Inversion
methods for physically based models. Remote Sensing Reviews, 18, 381−440.

Köhl, M., Magnussen, S., & Marchetti, M. (2006). Sampling methods, remote sensing and
GIS multiresource forest inventory. New York: Springer-Verlag Press.

Kurz, W. A., & Apps, M. J. (1999). A 70-year retrospective analysis of carbon fluxes in the
Canadian forest sector. Ecological Applications, 9, 526−547.

Labrecque, S., Fournier, R. A., Luther, J. E., & Piercey, D. E. (2005). A comparison of four
methods to map forest biomass from Landsat-TM and inventory data in Western
Newfoundland. Forest Ecological and Management, 226, 129−144.

Leblanc, S. G., & Chen, J. M. (2000). A windows graphic user interface (GUI) for the five-
scale model for fast BRDF simulations. Remote Sensing Reviews, 19, 293−305.

Leboeuf, A., Beaudoin, A., Fournier, R. A., Guindon, L., Luther, J. E., & Lambert, M. -C.
(2005). A shadow fraction method to map biomass of Northern boreal black spruce
forest using QuickBird imagery. Remote Sensing of Environment, 110, 488−500.

Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of
the discrete crown vegetation canopy: Effect of crown shape and mutual
shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30, 276−292.

Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation.
Review article. International Journal of Remote Sensing, 27, 1297−1328.

Lu, D., Batistella, M., & Moran, E. (2005). Satellite estimation of aboveground biomass
and impacts of forest stand structure. Photogrammetric Engineering and Remote
Sensing, 71(8), 967−974.

Luther, J. E., Fournier, R. A., Piercey, D. E., Guindon, L., & Hall, R. J. (2005). Biomass
mapping using forest type and structure derived from Landsat TM imagery. Inter-
national Journal of Applied Earth Observation and Geoinformation, 8, 173−187.

Milton, E. J., Lawless, K., Roberts, A., & Franklin, S. E. (1997). The effect of unresolved
scene elements on the spectral response of calibration targets: An example. Ca-
nadian Journal of Remote Sensing, 23(3), 126−130.

Palacios-Orueta, A., Chuvieco, E., Parra, A., & Carmona-Moreno, C. (2005). Biomass
burning emissions: A review of models using remote sensing data. Environmental
Monitoring and Assessment, 104, 189−209.

Parresol, B. R. (1999). Assessing tree and stand biomass: A review with examples and
critical comparisons. Forest Science, 45(4), 573−593.

Patenaude, G., Milne, R., & Dawson, T. P. (2005). Synthesis of remote sensing approaches
for forest carbon estimation: Reporting to the Kyoto Protocol. Environmental Science
and Policy, 8, 161−178.

Peddle, D. R., Brunke, S. P., & Hall, F. G. (2001). A comparison of spectral mixture analysis
and ten vegetation indices for estimating boreal forest biophysical information from
airborne data. Canadian Journal of Remote Sensing, 27(6), 627−635.

Peddle, D.R., Boon, S., Glover, A.P. & Hall, F.G., in press-a. Forest structure without
ground data: Adaptive full-blind multiple forward-mode canopy reflectance model
inversion with applications in a mountain pine beetle damaged forest. International
Journal of Remote Sensing, 31(8).

Peddle, D.R., Huemmrich, K.F., Hall, F.G., Masek, J.G., Soenen, S.A. & Jackson, C.D., in
press-b. Applications of the BIOPHYS algorithm for physically-based vegetation
continuous fields and forest disturbance. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing (IEEE J-STARS).

Peddle, D. R., & Johnson, R. L. (2000). Spectral mixture analysis of airborne remote
sensing imagery for improved prediction of leaf area index in mountainous terrain,
Kananaskis Alberta. Canadian Journal of Remote Sensing, 26(3), 176−187.

Peddle, D. R., Johnson, R. L., Cihlar, J., & Latifovic, R. (2004). Large area forest
classification and biophysical parameter estimation using the 5-scale canopy
reflectance model in multiple-forward mode.Remote Sensing of Environment, 89(2),
252−263 BOREAS Special Issue.

Peddle, D. R., Johnson, R. L., Cihlar, J., Leblanc, S. G., Chen, J. M., & Hall, F. G. (2007).
Physically-based inversion modeling for unsupervised cluster labeling, indepen-
dent forest classification and LAI estimation usingMFM-5-scale. Canadian Journal of
Remote Sensing, 33(3), 214−225.

Peddle, D. R., Franklin, S. E., Johnson, R. L., Lavigne, M. A., & Wulder, M. A. (2003).
Structural change detection in a disturbed conifer forest using a geometric optical
reflectance model in multiple-forward mode. IEEE Transactions on Geoscience and
Remote Sensing, 41(1), 163−166.

Peddle, D. R., Luther, J. E., Pilger, N., & Piercey, D. (2003). Forest biomass estimation
using a physically-based 3-D structural modeling approach for Landsat TM cluster
labeling. Proceedings, 25th Canadian Symposium on Remote Sensing, Montreal, PQ.,
Canada. Oct. 14–17, 2003Canadian Remote Sensing Society, 12 pp. — on CD-ROM.

Peddle, D. R., White, H. P., Soffer, R. J., Miller, J. R., & LeDrew, E. F. (2001). Reflectance
processing of remote sensing spectroradiometer data. Computers & Geosciences, 27,
203−213.

Peddle, D. R., Hall, F. G., & LeDrew, E. F. (1999). Spectral mixture analysis and geometric
optical reflectance modeling of boreal forest biophysical structure. Remote Sensing
of Environment, 67(3), 288−297.

Perry, C. R., Jr., & Lautenschlager, L. F. (1984). Functional equivalence of spectral
vegetation indices. Remote Sensing of Environment, 14, 169−182.

Rosenqvist, A., Milne, A., Lucas, R., Imhoff, M., & Dobson, C. (2003). A review of remote
sensing technology in support of the Kyoto Protocol. Environmental Science &
Policy, 6, 441−455.

Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing
data — An investigation on possible approaches for natural forest. Journal of
Biosciences, 21(4), 535−561.

Rouse, J. W., Jr., Haas, R. H., Deering, D. W., & Schell, J. A. (1973). Monitoring the vernal
advancement and retrogradation (greenwave effect) of natural vegetation. NASA
Goddard Space Flight Centre: GSFC Type II Report, Greenbelt, MD, USA. October 1973
Available at [verified August 28, 2009]: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/19740004927_1974004927.pdf

Scarth, P., & Phinn, S. (2000). Determining forest structural attributes using an inverted
geometric-optical model in mixed eucalypt forests, Southeast Queensland,
Australia. Remote Sensing of Environment, 71, 141−157.

Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). Radiometric scene normalization
using pseudoinvariant features. Remote Sensing of Environment, 26, 1−16.

Seed, E. D., & King, D. J. (2003). Shadow brightness and shadow fraction relations with
effective LAI: Importance of canopy closure and view angle in mixedwood boreal
forest.Canadian Journal of Remote Sensing, 29, 324−335 Special Issue on LAI.

Singh, T. (1982). Biomass equations for ten major tree species of the prairie provinces.
Canadian Forest Service, Northern Forest Research Centre, Edmonton, Alta. Information
Report NOR-X-242.

Smith, G. M., & Milton, E. J. (1999). The use of the empirical line method to calibrate
remotely sensed data to reflectance. International Journal of Remote Sensing, 20,
2653−2662.

Soenen, S. A., Peddle, D. R., Coburn, C. A., Hall, R. J., & Hall, F. G. (2009). Canopy
reflectance model inversion in multiple forward mode: Forest structural informa-
tion retrieval from solution set distributions. Photogrammetric Engineering &
Remote Sensing, 75(4), 361−374.

Soenen, S. A., Peddle, D. R., Coburn, C. A., Hall, R. J., & Hall, F. G. (2008). Improved
topographic correction of forest image data using a 3-D canopy reflectance model
in multiple forward mode. International Journal of Remote Sensing, 29(4),
1007−1027. doi:10.1080/01431160701311333.

Soenen, S. A., Peddle, D. R., & Coburn, C. A. (2005). SCS+C: A modified sun-canopy-
sensor topographic correction in forested terrain. IEEE Transactions on Geoscience
and Remote Sensing, 43(9), 2149−2160.

SPOT Image (2004). SPOT sensor calibration, response functions and illumination
geometry. Toulouse, France: SPOT Image Corporation.

Thenkabail, P. S., Stucky, N., Griscom, B.W., Ashton, M. S., Diels, J., Van Der Meer, B., et al.
(2004). Biomass estimations and carbon stock calculations in the oil palm
plantations of African derived savannas using IKONOS imagery. International
Journal of Remote Sensing, 25(23), 5447−5472.

Thomas, V., Finch, D. A., McCaughey, J. H., Noland, T., Rich, L., & Treitz, P. M. (2006).
Spatial modelling of the fraction of photosynthetically active radiation absorbed by
a boreal mixedwood forest using a lidar-hyperspectral approach. Agricultural and
Forest Meteorology, 140, 287−307.

Treitz, P. M., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-
cover and land-use change — An introduction. In P. M. Treitz (Ed.), Remote

1336 S.A. Soenen et al. / Remote Sensing of Environment 114 (2010) 1325–1337



Author's personal copy

Sensing for Mapping Land Cover and Land Use ChangeProgress in Planning, vol. 61
(3). (pp. 269−279).

Turner, D. P., Ollinger, S. V., & Kimball, J. S. (2004). Integrating remote sensing and
ecosystem process models for landscape- to regional-scale analysis of the carbon
cycle. BioScience, 54(6), 573−584.

van der Heijden, G. W. A. M., Clevers, J. G. P. W., & Schut, A. G. T. (2007). Combining
close-range and remote sensing for local assessment of biophysical characteristics
of arable land. International Journal of Remote Sensing, 28(24), 5485−5502.

Weiss, M., Baret, F., Myneni, R. B., Pragnere, A., & Knyazikhin, Y. (2000). Investigation of
a model inversion technique to estimate canopy biophysical variables from spectral
and directional reflectance data. Agronomie, 20, 3−22.

Woodcock, C. E., Collins, J. B., Jakabhazy, V. D., Li, X., Macomber, S. A., & Wu, Y. (1997).
Inversion of the Li-Strahler canopy reflectance model for mapping forest structure.
IEEE Transactions on Geoscience and Remote Sensing, 2, 405−414.

Wu, Y., & Strahler, A. H. (1994). Remote estimation of crown size, stand density, and
biomass on the Oregon transect. Ecological Applications, 4(2), 299−312.

Wulder, M. A. (1998). Optical remote sensing techniques for the assessment of forest
inventory and biophysical parameters. Progress in Physical Geography, 22, 449−476.

Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J., et al. (2004).
Estimating aboveground biomass using Landsat 7 ETM+ Data across a managed
landscape in Northern Wisconsin, USA. Remote Sensing of Environment, 93,
402−411.

1337S.A. Soenen et al. / Remote Sensing of Environment 114 (2010) 1325–1337


