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ABSTRACT 

The Newfoundland Fibre Inventory Project (NFIP) aims to meet the increased emphasis on 
wood fibre value as a criterion of production rather than volume as traditionally measured by the 
forest industry.  Wood fibre attributes such as wood density, fibre length, coarseness and 
microfibril angle measured from tree cores at 69 ground sample plots are to be correlated 
against metrics derived from airborne laser scanner (ALS) data acquired as transects covering 
~1193 km2 of commercial forest area of Newfoundland.  The resulting models will in turn be 
used to support province-wide mapping of forest fibre quality for inclusion into the 
Newfoundland forest inventory system. 

The substantial volume of points (~3.6 billion), large spatial distribution of the transects, number 
of derived metrics (~200) and the ultimate need to apply the resulting models to new lidar 
transect collections necessitated the development of a customized suite of tools.  This software 
automatically performs data segmentation of the transects, point processing (filtering and 
classification), metric extraction (both points and rasters) and model computations (rasters). 

This paper discusses the capabilities of the software and how it addresses the needs of NFIP.  
Of particular interest is the potential of the software to be used by other agencies and 
stakeholders as a means to produce and maintain more comprehensive forest inventories.  
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INTRODUCTION 

The use of Airborne Laser Scanner (ALS) technology for producing and updating forest 
inventory data has been a topic of research for over a decade.  During this time, awareness of 
the wide variety of information that can be extracted and derived from ALS data has steadily 
increased. 

An emerging technique is to utilize ALS data to construct predictive models from plot-level cloud 
metrics as an intermediary “calibration” step toward stand-level attributes and regional forest 
inventories (Hopkinson et al., 2011a).  Models are derived to predict attributes such as basal 
area, gross merchantable volume and above-ground biomass which are then used to estimate 
inventory variables at the stand and forest scale (Woods et al., 2008). 

Recently, the Canadian Forest Service (CFS) under guidance of the Canadian Wood Fibre 
Centre (CWFC) initiated a research program which aims to expand upon such models to predict 
wood fibre quality attributes with the goal to provide better forest inventory information for the 
Newfoundland commercial forest industry (Pitt & Pineau, 2009). 

Forestry related prediction models tend to be species and region specific and often require 
careful selection of predictor variables and regression models.  Moreover, the ALS data must be 
representative of the various height ranges, crown densities and tree species expected to be 
modelled. 

An exhaustive “wall to wall” survey of a region may ensure this but is fiscally impractical when 
considering provincial-scale mapping.  Hopkinson et al. 2011b and Luther et al. 2012 address 
this by acquiring long sample transects that coincide with a large variety of ground sample plots 
(Figure 1). 

The data processing workflows necessary to translate these large raw ALS datasets into their 
respective derivative products (classified point clouds, data metrics and attribute grids) often 
involve multiple software applications, data conversions and manual calculations.  Such 
complex workflows can become barriers to productivity and may impact their adoption by 
interested organizations. 

To address this, Gaiamatics Solutions Inc., in cooperation with the Newfoundland Fibre 
Inventory Project (NFIP), enhanced their LiDAR processing suite, Pulse, to provide greater 
capacity for researchers to develop and implement their forest attribute models. 

The primary objective of this project was to develop a suite of tools that would (i) streamline and 
automate ALS point cloud processing; (ii) extract a variety of point cloud metrics for analysis & 
modelling; (iii) apply derived single and multi-variable models to ALS data to produce grids of 
predicted forest attributes; and (iv) be flexible in configuration to allow further development of 
attribute metrics & models to a range of forest-related applications. 

PROCESSING WORKFLOW 

Overview 

The workflow begins with a calibrated but unclassified ALS point cloud organized into strips, 
typically one per sample transect, stored in LAS format.  Through automated tools, the user 
proceeds to (i) process the point cloud to create preliminary products (classifications, 
normalized heights & grids); (ii) extract point cloud metrics from the classified points that 
correspond to sample plots; (iii) analyze metrics to determine optimal predictors and models 
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(performed externally using software such as R); (iv) apply the derived models to the classified 
point cloud to generate grids of predicted forest attributes outside of the sample plots. 

 

Figure 1. Distribution of ALS survey data for the Newfoundland Fibre Inventory Project.  
Approximately 1193 km2 of commercial forest was covered with average point densities from 1 
to 4 points/m2. 

Point Cloud Processing 

The first step is to optimize the ALS data from its original strip form and prepare the point cloud 
for additional processing.  As an automated process the following tasks are performed with the 
outputs being organized into a rigorous folder structure: 

(i) Segmentation.  Long sample transects are typically too large to load into memory and 
thus are segmented spatially into regions containing approximately 10 million points.  A 
small amount of overlap is maintained between segments to avoid classification and 
gridding seamlines. 

(ii) Data Cleaning. Several commonly used point filtering routines (e.g. isolated, low 
points, high points, etc.) are applied to remove errors such as atmospheric scattering or 
multi-path through the canopy. 

(iii) Ground Classification. A variant of a widely adopted ground filtering algorithm 
(Axelsson, 1999) is applied which iteratively adds points to a Triangulated Irregular 
Network (TIN) to identify “ground” and “non-ground” points. 

(iv) Elevation Normalization.  A TIN derived from the identified ground points is used to 
derive “height from ground” elevations for each LiDAR point.  Both the original points 
and normalized points are output. 
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(v) Gridding. Digital Terrain Models (DTM), Digital Surface Model (DSM), Canopy Height 
Models (CHM), hillshades and data density grids (points/m2) are generated from the 
classified points. 

Metric Extraction 

After the ALS data has been prepared, data metrics for sample plots can be extracted from the 
classified points.  The user provides a set of polygons delineating the regions to query along 
with a list of which metrics to compute.  It is expected that the user will extract metrics multiple 
times as they progress through their analysis and refine their choice of predictors. 

For each metric, the user is able to precisely describe the calculation to perform and which 
points are to be used (e.g. “Mean Normalized Height of First Returns above 2m”) by combining 
the following parameters: 

(i) Source. Metrics can be computed on normalized heights, DTM elevations, CHM 
elevations, or intensity values. 

(ii) Selection Criteria. Points can be filtered according to echo (first, last or all returns) 
and thresholds (above the ground, mean, mode, or a constant value).  The filtered points 
can also be organized into multiple bins according to height ranges (e.g. 2m to 5m 
above ground), deciles (i.e. 10 bins of equal intervals) or percentiles (e.g. points 
between the 70th and 80th percentile). 

(iii) Metric. Points meeting the above criteria are then used to compute a particular 
metric.  A variety of metrics are supported including number of returns, basic statistics 
(mean, mode, standard deviation, etc.), moments (skewness & kurtosis), L-moments (L1 
to L4, L kurtosis, L skewness, etc.), percentiles, return ratios (e.g. % of first returns), 
volume/area ratio and rumple index. 

Grid Modelling 

When predictive models have been derived from the metrics, they can be applied to ALS point 
cloud data to generate? attribute? grids.  A coarse grained grid (e.g. 20m cells) is overlaid upon 
the data with the points of each cell being used to compute the model’s respective metrics. 

Predictive (attribute?) grids are then created by evaluating (implementing?) the equations for 
each model.  For example, to implement the regression model: 

 [Biomass] = -19.761 + (16.091 x [Hgt_P95]) + (-14.292 x [CHM_Rumple]) 

the software computes the 95th percentile of normalized heights and the rumple index for the 
canopy height model elevations; then combines these grids with the model coefficients to 
produce an estimate of “biomass”. 

Multiple models can be defined and computed together with output grids being generated for all 
corresponding predictor variables and model results. 

NFIP RESULTS 

The NFIP transects (3.6 billion points) were processed (in 16 hours) with 1524 summary grids 
(DTM, DSM, CHM & point density) output.  A total of 201 metrics were computed from 69 
permanent sample plot locations. 
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Ten preliminary models for coniferous strata were derived from 11 metrics (Height max, mean, 
standard deviation, 95th percentile, and % first returns above 2m; DTM min, max and rumple; 
CHM mean, standard deviation and rumple) to predict attributes such as DBH, average height 
of dominant trees, stem density, basal area, gross merchantable volume and above ground 
biomass with R2 values ranging from 0.496 to 0.850 (Luther et al., 2012). 

These plot-level models were applied to the entire ALS dataset and in 8 hours of processing 
4191 metric grids (11 metrics for each ALS data segment) and 3180 attribute grids (10 models 
per ALS data segment) at the cell-level (20m x 20m area) were produced.  These attribute grids 
will be further used to derive fibre quality information at the stand-level ultimately leading to an 
enhanced forest inventory for the province. 

CONCLUSIONS 

The suite of tools presented herein tightly integrate and automate the complex workflow 
associated with ALS-based forest model development.  The need for such automation is evident 
when considering the number of outputs generated during these preliminary stages of the NFIP 
project.  By streamlining this workflow, the complications and limitations experienced by Woods 
(2011?) and Hopkinson et al. (2011a, 2011b) are reduced enabling other organizations and 
initiatives such as the NFIP to adopt and expand upon the methodology. 

Support for forest type and species specific models is planned to further refine this new 
workflow.  This will incorporate a GIS forest type or species layer to determine which of the 
multiple predictive models is to be applied to each output grid cell; eliminating the need for the 
user to integrate the individual output grids. 

Finally, a plug-in architecture for the metric generation tool is under consideration.  Users would 
be able to add their own customized metric calculations enabling them to expand the scope of 
their projects with a minimum of effort. 
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