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Abstract. Coastal estuaries and beach habitat are some of the most important and productive ecosystems in Atlantic Canada.
These sensitive areas are crucial for hundreds of land and marine species. Mapping and monitoring coastal habitat is important
for the protection of species such as the endangered piping plover (Charadrius melodus melodus). Light detection and ranging
(lidar) elevation and intensity data have been used together to successfully classify land-cover types. This study explores the
use of elevation, texture, slope, and intensity to classify coastal habitat. Lidar data were collected over a barrier beach and
estuary on the South Shore of Nova Scotia. Ground validation and training sites were collected using a real-time kinematic
global positioning system. Unsupervised, supervised, and logical filter classifications were compared for separability of various
beach and intertidal habitats. Coastal land classes similar in elevation, texture, and slope, such as mudflats, sand beaches, and
salt marshes, relied heavily on intensity data for separation. Tidal saturation of these areas produced similar intensity returns,
resulting in poor separation between classes. Logical filters applied to the lidar data improved the classification of coastal
habitat compared to standard unsupervised and supervised classifications. Additional logical filters were used to isolate
important nesting and feeding habitat for piping plover. Results of this study suggest that lidar can effectively be used for
classifying coastal habitat if tidal and seasonal factors are taken into consideration.

Résumé. Les estuaires côtiers et les habitats de plage sont parmi les écosystèmes les plus importants et productifs dans la
région atlantique au Canada. Ces zones sensibles sont cruciales pour des centaines d’espèces terrestres et marines. La
cartographie et le suivi des habitats côtiers sont essentiels pour la protection des espèces comme le pluvier siffleur
(Charadrius melodus melodus), une espèce menacée. Des données d’altitude et d’intensité lidar (« light detection and
ranging ») ont été utilisées conjointement avec succès pour la classification des types de couvert. La présente étude explore
l’utilisation de l’altitude, de la texture, de la pente et de l’intensité pour la classification des habitats côtiers. Les données
lidar ont été acquises au-dessus d’un cordon littoral et d’un estuaire sur la côte sud de la Nouvelle-Écosse. Les sites de
validation et d’entraînement au sol ont été collectés en utilisant un système de positionnement global cinématique en temps
réel. Les résultats des classifications non dirigée, dirigée et par filtre logique ont été comparés dans le contexte de la
séparabilité des divers habitats de plage ou intertidaux. La séparation des classes semblables de couvert côtier en termes
d’altitude, de texture et de pente telles que les vasières, les plages sablonneuses et les marais salants reposait fortement sur
les données d’intensité. La saturation par la marée de ces zones a produit des retours d’intensité semblables résultant en une
faible séparation entre les classes. L’application de filtres logiques aux données lidar a permis d’améliorer la classification
des habitats côtiers comparativement aux classifications standards non dirigée et dirigée. Des filtres logiques additionnels
ont été utilisés pour isoler les habitats importants de nidification et d’alimentation pour le pluvier siffleur. Les résultats de
cette étude suggèrent que les données lidar peuvent être utilisées efficacement pour la classification des habitats côtiers si
les facteurs tidaux et saisonniers sont pris en considération.
[Traduit par la Rédaction]

Goodale et al. 533Introduction

Coastal habitats are typically comprised of intertidal and
beach–dune zones in Atlantic Canada. Intertidal zones consist
of estuaries, mudflats, sandflats, and salt-marsh habitats
(Rangeley and Singh, 2000). Beach–dune zones commonly

encompass sand, gravel, or cobble beaches and sand-dune
systems (Department of Fisheries and Oceans Canada, 1996).
Intertidal and coastal beaches are important nesting and feeding
areas for a variety of shorebirds in Eastern Canada. Certain
coastal areas have been identified as critical habitat by the
Canadian Wildlife Service for species such as the endangered
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piping plover (Charadrius melodus melodus). Intertidal
estuaries, ephemeral ponds, sand and gravel beaches, and
shorelines of salt marshes and sand, mud, and algal flats are
essential feeding areas for the piping plover and other migratory
shorebirds (US Fish and Wildlife Service, 1996; Environment
Canada, 2006; Haig and Elliott-Smith, 2004; Morrison et al.,
1995). Classification and delineation of these areas as critical
habitat and preservation of coastal habitat are important for the
recovery of the piping plover (Environment Canada, 2006).

Airborne light detection and ranging (lidar) systems have
been used in many coastal applications from coastal flood risk
assessments (Webster et al., 2005) to shoreline change (Gibeaut
et al., 2001). The unique feature of these systems is the
collection of high-resolution elevation data over large areas at
decimetre levels of accuracy for the production of detailed
surface models. Topographic features along coastal beaches
and estuaries can be accurately mapped with lidar systems
(Baltsavias, 1999; French, 2003). These areas are usually
devoid of thick overstory vegetation, allowing for optimal
ground reflectance from laser pulses, which results in detailed
elevation models showing subtle changes in terrain. More
recently, lidar intensity data coupled with elevation data have
been used for land-cover classifications (Brennan and Webster,
2006; Beasy et al., 2005; Charaniya et al., 2004; Song et al.,
2002). Intensity is an index of the maximum amount of energy,
in the near-infrared portion of the electromagnetic spectrum,
reflected by the returned laser signal (Wehr and Lohr, 1999)
and is controlled by the peak power and footprint area of the
emitted pulse (Hopkinson, 2007). Intensity values can be
gridded to produce an image comparable to that of grey-scale
digital photography. This study examines the use of lidar
intensity and elevation-derived data products to classify coastal
beach and estuary habitat. In addition, the use of a logical filter
classification is compared to standard classification methods.

Study area

Coastal beaches and intertidal sand, mudflats, and algal flats
along the South Shore of Nova Scotia are used extensively by
shorebirds for nesting, feeding, and migration habitat during
the spring, summer, and fall months (Morrison et al., 1995).
Johnston’s Pond Beach is located 3 km southwest of the
community of Port L’Hebert along the South Shore of Nova
Scotia (see Figure 1). The area consists of an 800 m long
coastal barrier beach with an inlet channel leading into an
estuary with expansive mudflats and salt marsh. On the coastal
side of the beach is a raised cobble barrier beach with flat sandy
areas within the intertidal zone. On the lagoon side of the beach
is an area of sand, mixed sand, and cobble along with small
dunes with patches of marram grass (Ammophila sp.). The
sandy area leads into mudflats, salt marsh, and thickly
vegetated, small stabilized dune systems. A maximum of nine
adult pairs of piping plover were observed on the beach in
1983. Over the last few years, two pairs of piping plover have
consistently nested on Johnston’s Pond Beach (Boates et al.,
1994).

Johnston’s Pond Beach is of particular interest owing to its
variety of beach and intertidal zone substrates. Furthermore,
this area has been identified as critical habitat for piping plover
because of the long history of nesting at this site (Boates et al.,
1994; Environment Canada, 2006). Johnston’s Pond also
provides nesting habitat for other avian species, such as the
common tern (Sterna hirundo) and willet (Catoptrophorus
semipalmatus), and feeding habitat for a variety of shorebirds
during migration, such as the semipalmated plover (Charadrius
semipalmatus), semipalmated sandpiper (Calidris pusilla), and
dunlin (Calidris alpina). In addition, the small beach size
allowed for detailed ground measurements and validation for
comparison with the lidar data.

Methodology
Field validation

Using a Leica SR530 RTK global positioning system (GPS),
points were collected for validating lidar elevations and image
classifications. The horizontal and vertical positional
accuracies of the RTK system are documented as 10 + 1 ppm
(root mean square (rms)) and 20 + 1 ppm (rms), respectively
(Leica Geosystems AG, 1999). To validate lidar coordinate
elevations, over 400 GPS points were collected along the length
and width of the runway that the survey aircraft took off from.
A further 40 GPS points were collected around the edge of a
nearby large flat building roof to validate horizontal point
coordinate locations. In addition, 78 random points were
collected around the Johnston’s Pond area to validate the lidar
land-cover classifications. Points were also collected in
transects across land covers and as polygons to delineate
various beach features to be used as training sites for the coastal
habitat classifications. Transect locations were determined
based on areas that best represented the majority of substrate
and vegetation types found in the area. Polygons covered
homogeneous features representing substrate and vegetation
types. Areas of interest for coastal habitat training sites were as
follows: (i) sand, (ii) cobble (1–20 cm diameter) – bedrock,
(iii) mixed (>10% sand mixed with cobble (i.e., pebbles, stones,
rocks)), (iv) mudflat–sandflat (organic–sand mixtures and
saturated sand), (v) vegetated mudflat (mudflat covered in
vegetation (i.e., grasses, salt-marsh vegetation)), (vi) patchy
dune vegetation (<75% cover), (vii) thick dune vegetation
(≥75% cover), and (viii) trees and shrubs.

Sand, mixed, and patchy vegetation habitat classes are key
nesting areas for piping plover on the South Shore of Nova
Scotia (Flemming et al., 1992). Conversely, thick vegetation,
trees and shrubs, and cobble areas are unlikely to be used for
nesting (Flemming et al., 1992). Thick vegetation and shrubs
provide shelter for approaching predators, and therefore open
and sparsely vegetated areas are preferred for viewing
approaching threats (Burger, 1987). Sand and pebble substrates
are required for producing nest scrapes, which are shallow
depressions used for nesting. Pure sand, pebbles, and sand
mixed with cobbles are substrates that provide varying degrees
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of camouflage for the eggs which is important for protection
from predators (Flemming et al., 1992; Haig and Elliott-Smith,
2004). Open sand, mudflats, or sandflats immediately adjacent to
nesting grounds are critical feeding areas for juvenile piping
plover before they can fly (Environment Canada, 2006), whereas
densely vegetated mudflats are more difficult to access.

Lidar processes

The lidar system used was an Optech Airborne Laser Terrain
Mapper (ALTM) 3100 system from the Applied Geomatics
Research Group (AGRG), Centre of Geographic Sciences
(COGS), installed on a Cessna Skymaster survey aircraft. The
data were collected on 4 October 2005 from an airborne
platform altitude of 2000 m above the ground. A pulse
repetition frequency (PRF) of 50 kHz and a scan frequency of
24 Hz resulted in an approximate resolution of 0.6 m point
spacing at ground level. The lidar data were processed at the
AGRG, and the raw laser points were classified into ground,
non-ground, and all-hits using a TerraScan (version 005.005)
module running on the Bentley Microstation software platform
(V8 2004 edition).

To validate the lidar X–Y–Z coordinate data, three sets of six
lines were flown over the runway used for the survey flight and
a nearby large building. Elevation (Z) was tested by flying six
lines perpendicular to the runway and collecting full swaths of
lidar data that could be directly compared with the GPS
validation points. Validation of lidar coordinates in the along-
track flight direction (X) was performed by flying
perpendicular to the building edge and collecting six profiles
(0° scan angle) of points over the building edge break line.
Validation of lidar coordinates in the cross-track flight direction
(Y) was performed by flying along the building edge and
scanning a swath of points left and right across the building
edge break line. The comparison of lidar coordinates and GPS
validation data was performed using Auto Calibrator (version
1.3.0.27), a proprietary software package provided by Optech,
the ALTM manufacturer. For the elevation validation, all lidar
points within a 0.5 m radius of a GPS point were compared and
a summary of the statistics for each flight line was provided.
For the horizontal X and Y positional validation, Auto
Calibrator filters the lidar point data to identify the break-line
position at which the lidar scan or profile encounters the
building edge. The lidar break lines are then compared with the
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Figure 1. South shore of Nova Scotia, Canada, showing the location of Johnston’s Pond Beach.



surveyed building edge, and the horizontal offsets calculated
and summarized per flight line.

Classification of lidar imagery

Four parameters were used in the classification of beach
habitat on Johnston’s Pond Beach: intensity, elevation, texture,
and slope. Intensity coupled with elevation data has been
shown to be effective for land-cover classifications (Wehr and
Lohr, 1999; Song et al., 2002; Charaniya et al., 2004; Brennan
and Webster, 2006). In addition, Beasy et al. (2005)
successfully completed a classification of shoreline features on
a beach along the Bay of Fundy, Nova Scotia, using intensity
and surface texture attributes that were derived from the lidar
elevation data. The ALTM sensor used in this study can read up
to four simultaneous returns from the laser signal. Usually, in
the case of multiple signal returns from a single emitted pulse,
the first return is reflected from above-ground structures such
as treetops, for example, and the last return reflects from or near
to ground level. Last returns are usually filtered to remove non-
ground returns, and the remaining ground level returns are used
to derive digital elevation models (DEMs), whereas first and

intermediate returns from above the ground surface are useful in
determining the vertical profile of objects such as forest canopies
or buildings (Burtch, 2002; Wehr and Lohr, 1999). Texture is a
measure of variation in heights from the DEM and non-ground
laser returns. By subtracting the intersecting DEM raster
elevation values from the non-ground laser return points, the
residuals can be gridded to show landscape texture. Furthermore,
the slope of the terrain can be derived from the DEM.

Using the software package Surfer (version 8, Golden
Software Inc.), an intensity raster was created from the “all hits”
ALTM intensity return values using an inverse distance weighted
(IDW) interpolation method. A DEM was created using ArcGIS
3D Analyst (version 9.1, Environmental Systems Research
Institute Inc.) by interpolating the ground laser returns using a
linear interpolated triangulated irregular network (TIN), which
was then converted to a raster. By subtracting the DEM from the
raw non-ground laser pulse returns, the height above ground was
determined for each laser pulse. Using the Surfer data metrics
range interpolation option, height ranges within a 2 m search
radius were converted to a raster to show landscape texture.
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Figure 2. Workflows for creating DEM, intensity, texture, and slope rasters. Input parameters are shown for creating DEM and slope rasters
using ArcGIS 3D Analyst. Inputs for creating intensity and texture rasters were applied using Surfer.



Lastly, a slope raster was created from the DEM using the 3D
Analyst slope option (see Figure 2).

Supervised, unsupervised, and logical filter image
classifications were completed with ArcGIS Spatial Analyst
(version 9.1, Environmental Systems Research Institute Inc.)
using all four rasters (DEM, intensity, slope, and texture). The
purpose of the classifications was to separate nine habitat classes
from the four raster layers: water, mudflat–sandflat, vegetated
mudflat, sand, mixed, cobble, patchy vegetation, thick vegetation,
and trees–shrubs. Supervised and unsupervised classifications are
standard methods for classifying imagery (Jensen, 2005), and
therefore both methods were used to determine an optimal method
for classifying lidar data. The logical filter classification procedure
was developed as an alternative method for classifying imagery
compared to the standard classification methods. Habitat class
signatures were created using the training sites collected on

Johnston’s Pond, and a supervised classification was completed
using a maximum likelihood algorithm (see Figure 3). To
complete the unsupervised classification, the natural clustering of
all four raster bands for nine classes was determined using the
isodata clustering algorithm as described within Spatial Analyst
(ESRI, 2005). The result of the clustering algorithm was used in a
maximum likelihood algorithm to complete the unsupervised
classification (see Figure 3). The Spatial Analyst raster calculator
was used to develop a logical filter image classification (see
Figure 4). The filter involved a preliminary classification that
used the range of values between the minimum and maximum cell
values extracted from the training sites of all four rasters.

These values were adjusted to create a more refined
classification for each habitat class. Many beach classes had
overlapping values within all four raster layers, making it
difficult to classify some areas. If habitat classes overlapped,
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Figure 3. Illustration of the supervised and unsupervised classification workflows. Nine training sites were used as signatures to classify the
four input rasters using a supervised classification method. The unsupervised classification method used an isoclustering algorithm to create
the class signatures. For optimal results, the four rasters were transformed to the same data ranges. The newly transformed data ranges were
grouped into nine class signatures after 50 iterations of the clustering algorithm. Each pixel was sampled and grouped into a minimum class
size of 30 pixels. Both the supervised and unsupervised classifications methods used a maximum likelihood classification to classify the
pixels into one of the classes represented in the signature files.



then classes were arranged hierarchically or a new class was
created (see Table 1). In some cases a proximity filter was used
to classify conflicting habitat classes. For example, vegetated
mudflat was classified in intertidal areas along the coastline
that should have been classified as mudflat–sandflat. To solve
this problem, any pixels classified as vegetated mudflat within
30 m of the coastline were classified as mudflat–sandflat.

Another type of logical filter classification was performed to
identify important feeding and nesting habitat for piping plover.
Environment Canada (2006) identified gently sloping beach habitat
as a key habitat attribute. Unpublished research has shown that
preferred habitat exhibited a beach slope of 3° (D.L. Amirault-
Langlais and A.W. Boyne, personal communication). Furthermore,

habitats such as mixed substrate, sand, and patchy vegetation have
been identified as important nesting features (Environment Canada,
2006; Stewart, 2004; Flemming et al., 1992). Using the slope raster
and logical filter classification, a new classification was completed
to identify nesting habitat. The same method was also used for
identifying feeding habitat, with feeding occurring primarily on
sand, algal flats, and mudflats (Loegering and Fraser, 1995;
Goossen et al., 2002; Stewart, 2004). The logical statements for
these classifications are shown in Table 2.

To validate the three different classifications, the 78 GPS
points collected in the Johnston’s Pond study area were
manually classified into one of the eight defined areas of
interest based on the actual ground characteristics observed in
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Figure 4. Illustration of the logical filter classification workflow. Pixel value ranges for the four input rasters were obtained from the training
sites. The pixel ranges were then used to create preliminary classifications for all nine classes. Beach substrate and intertidal flats were
identified through merging various classes using logical statements (see Table 1). From the intertidal flats output, pixels classified as
vegetated mudflat that fell within 30 m of the coastline were classified as mudflat–sandflat. The newly classified mudflat–sandflat and
intertidal flats outputs were merged to create the intertidal–beach classification. Patchy vegetation was determined if thick vegetation
overlapped sand, mixed, or cobble. The remaining classes along with the intertidal–beach and patchy vegetation classifications were merged
together to create the final classification. From the final classification, specific slopes and classes were used to identify critical feeding and
nesting habitats (see Table 2).



the field. Furthermore, each point was taken in a homogeneous
area of at least 2 m in diameter to be compared with the 1–2 m
classified pixels. Using these GPS points, the classification
values from the corresponding pixel locations were extracted in
ArcMap and a comparison was completed in Microsoft Excel
2003 (Microsoft Corporation). If the classified GPS points
matched the corresponding pixel classifications, then the
classified pixel was considered to be correctly classified.
Conversely, classified pixels that did not meet the
corresponding GPS points were considered to be incorrectly
classified.

Results
Each classified image was examined for accuracy using the

ground validation points and training sites. The percentage of
pixels correctly classified by the unsupervised, supervised, and
logical filter classifications when compared with the training
sites and validation points is shown in Tables 3 and 4,
respectively.

Lidar validation

The results of the lidar validation collected on the same day
as the survey flight demonstrate that the ALTM sensor was
operating within the manufacturer-specified tolerance of
0.15 m for elevation and 1 m (1/2000 of the flying height) in the
horizontal. A summary of the validation results for all 18 flight
lines is provided in Table 5.

Unsupervised classification versus training sites

The unsupervised classification produced the most
inaccurate classification when compared with the training sites.
The mixed class overlapped with patchy vegetation and trees–
shrubs and therefore was not classified. Cobble and thick
vegetation were poorly classified, with less than 60% of the
pixels being correctly separated. Conflict occurred between
cobble and trees–shrubs, with 39% of the pixels being
classified as trees–shrubs. Thick vegetation conflicted with
patchy vegetation, resulting in 72% of the pixels being
separated as patchy vegetation. However, mudflat, vegetated
mudflat, sand, patchy vegetation, and trees–shrubs were all
correctly classified above 80%.

Unsupervised classification versus validation points

Examining the validation point values compared with the
unsupervised classification, it was found that 69% of the
mudflat class was correctly classified, with the majority of the
incorrectly classified areas occurring as sandy areas (some
incorrectly classified data also occurred in vegetated mudflat
and water areas). The highest percentage of correctly classified
pixels occurred in the sand class at 80%, with 20%
misclassified as thick vegetation. The remaining classes were
poorly classified, with only 63% or less of the points being
correctly classified. Mixed substrate and patchy vegetation
could not be separated using the unsupervised classification,
and therefore the patchy vegetation class was chosen to
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Classification Logical statement

Beach substrate If mixed substrate overlaps sand and cobble, then classify as mixed
If sand overlaps cobble, then classify as sand

Intertidal flats If beach substrate overlaps mudflat, vegetated mudflat, or sandflat, then keep beach
substrate classification

If mudflat overlaps vegetated mudflat and sandflat, then classify as mudflat
If vegetated mudflat overlaps sandflat, then classify as mudflat
Merge mudflat and sandflat into one class (mudflat–sandflat)

Thirty metre (30 m) coastline buffer If vegetated mudflat (from intertidal flats output) is within 30 m of the coastline, then
classify as mudflat–sandflat

Intertidal–beach classification Merge 30 m coastline buffer output with intertidal flats output
Patchy vegetation If thick vegetation overlaps sand, mixed, or cobble, then classify as patchy vegetation
Final classification Merge trees–shrubs over patchy vegetation over thick vegetation over water over

intertidal–beach classification

Table 1. Logical and hierarchical statements used in the logical filter for the intermediate and final classifications of
Johnston’s Pond.

Piping plover habitat classification Logical statement

Critical feeding If slope is less than or equal to 3.0° and beach habitat is classified as mudflat–sandflat
or sand, then classify as feeding habitat

Critical nesting If slope is less than or equal to 3.0° and beach habitat is classified as sand, mixed, or
patchy vegetation, then classify as nesting habitat

Table 2. Logical statements used to classify critical piping plover nesting and feeding habitats.
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represent these overlapping areas, since more correctly
classified pixels fell within the patchy vegetation class.

Supervised classification versus training sites

As expected, the supervised classification produced a high-
quality classification when compared to the training sites. All
classes except for patchy vegetation and thick vegetation
showed good separability, with over 80% of the pixels being
correctly classified. Not surprisingly, some conflict occurred
between thick vegetation and patchy vegetation, 20% of pixels
were misclassified as thick vegetation within the patchy
vegetation training site, and 24% of the pixels were classified as
patchy vegetation within the patchy vegetation training site.

Supervised classification versus validation points

The supervised classification was more effective at classifying
beach habitat. Based on a priori knowledge of the area, the
classification was suitable for classifying vegetated mudflat, sand,
cobble, and patchy vegetation. Compared with the validation
points, the vegetated mudflat class had the highest number of
correctly classified pixels (84%) when judged against the other
two classification methods. The supervised classification matched
the results of the logical filter classification by accurately
classifying sand (80%) and trees–shrubs (83%). Lower quality
classifications occurred for the cobble–bedrock and patchy
vegetation classes at 67% and 63%, respectively. Poor
classifications (less than 50% correctly classified pixels) were
found within the mudflat, thick vegetation, and mixed classes.

Logical filter classification versus training sites

When compared to the training sites, the logical filter
classification produced a very good classification. All classes
were above 90% except for mixed substrate and patchy
vegetation. Mixed substrate was misclassified as patchy
vegetation, cobble, and sand, resulting in only 75% of the
pixels being correctly classified. Not surprisingly, patchy
vegetation was mostly misclassified as thick vegetation, with a
small portion misclassified as mixed substrate. This resulted in
only 28% of the pixels within the patchy vegetation training site
being correctly classified.

Logical filter classification versus validation points

The logical filter classification produced the best results out
of the three classification methods (see Figure 5). Mudflat,

sand, cobble, thick vegetation, and trees–shrubs all were
validated, with 80% or more of the pixels correctly classified.
The mixed class had a slightly lower percentage of 75%, and
vegetated mudflat and patchy vegetation were less than 70%.

Classification of nesting and feeding habitat

Figure 6 shows identified nesting and feeding habitat based
on optimal slope (<3°) and the logical filter classification.
Based on a priori knowledge of the area and field observations
of where piping plover nest and feed, this method of classifying
habitat was generally accurate. Piping plovers have been
observed in the mudflats and sandy areas immediately adjacent
to nesting sites, which are accurately identified in Figure 6.
However, the identified nesting and feeding areas in the
northeast end of the map are less likely to be used by plovers
because they are not adjacent to nesting sites. Upon closer
examination of the 2005 nesting sites, it was found that the
nests were not located within the classified nesting areas,
although nesting habitat was identified within a few metres of
the nest locations. The reason for this was that the chosen logic
for an optimal slope value of 3° in the slope-based
classification resulted in any areas with a steeper slope not
being classified as nesting habitat. Both nests occurred on
steeper slopes (approximately 7°) in 2005, and the nesting sites
were correctly classified as nesting habitat when the slope
parameter was increased to 7°. Figure 6 also shows how the
main nesting and feeding areas are closely related with the
delineated critical habitat boundary. This exercise illustrates
how renewed or updated understanding of a landscape or
habitat process can be incorporated within a logical filter
classification to maintain accurate results.

Discussion
Laser pulse intensity was found to be the most important

layer of information when classifying coastal habitat using
lidar data. Elevation played an important role in separating
certain classes such as mudflats from the dune areas, which
were classed as thick vegetation and patchy vegetation. Dunes
are at elevations higher than sea level, whereas the mudflats are
very close to sea level, and thus the classification could easily
separate the difference between these classes. Slope was found
to play a role in separating features such as cobble beach from
mudflats, since exposed coastal beaches are generally sloped
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Offset statistic Elevation (Z) Along-track flight direction (X) Cross-track flight direction (Y)

Min. (M) –0.28 –0.09 –0.83
Max. (M) 0.60 0.79 0.85
RMSE (M) 0.14 0.40 0.32
Avg. (M) –0.09 0.35 –0.15
No. of samples 1424 points 12 edge crossings 508 edge crossings

Note: RMSE, root mean square error.

Table 5. Lidar vertical and horizontal validation statistics for 18 flight lines.



owing to wave action compared with the protected salt-marsh–
mudflat areas, which are extremely flat.

With the exception of areas of tall trees and shrubs, texture did
not seem to have a strong influence on the classifications, as
originally anticipated. Texture was only minimally useful to
separate vegetated areas. The majority of marram grass covering
the dune systems was around 0.30–0.50 m in height. Laser pulse
returns in areas of thick marram grass could have reflected off the
surface of the grass without any ground returns or more likely may
have penetrated through the grass because of the minimal planar
surface area exposed by the stalks (e.g., Hopkinson et al., 2005;
Töyra et al., 2003). In this case, areas would be classed as having
an artificially low surface height range (texture), which would
produce a textural result similar to that of sand or mudflat areas.

The water, mudflat, vegetated mudflat, and sand
classifications were found to conflict with one another. These
landscape features were the most difficult classes to separate
using the logical filter classification. Upon close examination,

these areas were found to be nearly identical in their slope,
texture, and elevation values, with much overlap. The intensity
raster values were the most important data separating these
classes; however, these values also overlapped between
classes. Based on photographs and field ground-truthing, the
overlapping mudflat and vegetated mudflat areas were found to
be supersaturated with water at the time of lidar capture. Lidar
intensity is determined in the near-infrared portion of the
electromagnetic spectrum and thus will be absorbed by water or
saturated substrates. Since the lidar survey was flown in the
fall, much of the grass and vegetation covering the mudflat had
died or was losing its vigor. Laser pulses were most likely not
reflecting strongly off the dead vegetation but rather were
hitting the saturated soil, which resulted in an intensity return
similar to that of mudflat. Sandy areas were most likely
misclassified, since any sandy areas that were damp from rain
or ocean spray may have produced intensity values similar to
those of saturated mudflat or vegetated mudflat.
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Figure 5. Logical filter classification of coastal habitat on Johnston’s Pond Beach.



Mixed substrate was misclassified as either sand or cobble in
some of the classifications. In addition, cobble seemed to be
misclassified as sand or mixed because they most likely have
similar intensity values. Patchy vegetation had the poorest
separability, with many pixels being misclassified as thick
vegetation. The patchy vegetation class was difficult to categorize,
since it can be comprised of patches of vegetation that may
resemble thick vegetation, and the areas between the vegetation
patches may be classified as sand, mixed, or cobble substrate.

As expected, the logical filter classification generally
produced the best results. However, there was one notable
exception in that the supervised classification produced better
results for classifying vegetated mudflat.

Although the logical filter was effective on Johnston’s Pond
Beach, it is unlikely that this logical classification model could
be applied in its current form to other beaches or even the same

beach at a different time and attain comparable results.
Training sites and validation points should be collected on all
beaches around the same time as the airborne lidar collection.
Using the logical filter methodology with site-specific training
sites and validation points will ensure quality results.

Conclusions
Lidar offers a means of using combined spectral and

elevation data to classify coastal habitat. This study has
demonstrated that intensity and elevation data can be used
effectively to classify coastal habitat using a logical filter
classification model. However, completely accurate
differentiations between complicated and overlapping feature
classes such as mixed substrate and patchy vegetation versus
thick vegetation may not be possible. To increase the chance of
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Figure 6. Logical filter classification showing nesting and feeding habitat for piping plover on Johnston’s Pond Beach. The map shows
nesting locations in 2005 and delineated critical habitat boundaries in relation to the classified habitat.



successful classifications over coastal habitats, it is
recommended that lidar data be acquired in the summer months
when vegetation is vigorous for better separability between
mudflat–sandflat and vegetated mudflat land-cover classes.
Furthermore, flying in dry conditions coincident with or
immediately following lowest low tide would be optimal to
reduce the effects of overlapping intensity values from
saturated sand and mudflats. Classifications would likely be
improved by the addition of further high-resolution remote
sensing data layers such as luminance derived from true colour
digital orthorectified photographs or lidar systems with an
optical sensor.

Using a logical filter classifier, it is possible to isolate
important physical habitat characteristics that are elevation and
substrate dependent, such as piping plover nesting and feeding
habitat. An advantage of such an approach over traditional
supervised and unsupervised techniques might be that as
updated data or renewed understanding of coastal habitat
processes becomes available, this new understanding can
readily be applied to the physically based logical classification
model, without the need to retrain the entire classification.

Lidar is being increasingly applied in coastal and riparian
zones for flood impact assessments all around the world
(Heinzer et al., 2000; Gutierrez et al., 2001; Brock et al., 2002;
FEMA, 2003; Lane et al., 2003; Webster et al., 2003; 2004;
2005; 2006; Rath and Pasche, 2004; Haile, 2005; Balmforth
and Dibben, 2006; Webster and Forbes, 2006). Consequently, a
large volume of lidar data is accumulating in these types of
environments. Coastal flooding is an important and growing
social concern and constitutes enormous justification for the
collection of costly lidar data for flood risk mapping. However,
flood risk mapping is only one application in coastal areas.
There is a growing body of literature showcasing the
application of lidar in coastal and riparian environments for a
wide variety of applications such as monitoring beach change
(Gibeaut et al., 2001; Adams and Chandler, 2002; Revell et al.,
2002; Woolard and Colby, 2002; Sallenger et al., 2003;
Mitasova et al., 2003) and coastal–riparian mapping (Brock et
al., 2001; Populus et al., 2001; Weber et al., 2005; Xiaojun,
2005). Through these additional applications, the value of
coastal zone lidar datasets increases, and the cost of obtaining
them is further justified. Although coastal habitat mapping is
not likely a profitable application on its own, there is a genuine
need to develop these types of applications so that we can
derive useful “value-added” products. We can then maximize
the use of coastal lidar datasets and benefits to our coastal
ecosystems.
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