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Abstract. A light detection and ranging (lidar) canopy height study was conducted with 13 datasets collected using four
different models of airborne laser terrain mapper (ALTM) sensors over 13 widely variable vegetation types ranging in
average height from <1 m to 24 m at five sites across Canada between 2000 and 2005. The study demonstrates that the
vertical standard deviation of all topographically detrended first and last laser pulse returns (LSD) is a robust estimator of
canopy height (Ht) for a wide variety of vegetation types and heights and lidar survey configurations. After regressing Ht
against LSD for 77 plots and transects, it was found that Ht could be predicted as a simple multiplication (M) of LSD (M =
2.5, coefficient of determination (r2) = 0.95, root mean square error (RMSE) = 1.8 m, tail probability (p) < 0.01). For forest
plots only, LSD was found to better predict average tree height (r2 = 0.80, RMSE = 2.1 m, p < 0.01) than Lorey’s height (r2 =
0.59, RMSE = 3.0 m, p < 0.01). A test of the LSD canopy height model was performed using stand heights (HtFRI) from an
independent forest resource inventory (FRI) for four vegetation classes. Results from the raw FRI and modelled stand height
comparison displayed close to a 1:1 relationship (HtFRI = 0.97HtLSD, r2 = 0.73, RMSE = 4.7 m, p < 0.01, n = 38). All plot
and transect canopy heights were also compared with the localized maxima of laser pulse returns (Lmax). For individual
surveys over homogeneous vegetation types, Lmax generally provides a better canopy height indicator. Across all surveys and
site types, however, LSD was almost always shown to have a more consistent relationship with actual canopy height. The
only observed exception was in the case of forest plot level Lorey’s mean tree height. The advantages of using a multiplier
of LSD to estimate canopy height are its apparent insensitivity to survey configuration and its demonstrated applicability to a
range of vegetation types and height classes.

Résumé. Une étude lidar (détection et télémétrie par ondes lumineuses) de la hauteur du couvert forestier a été menée à
partir de treize ensembles de données collectés à cinq sites par tout le Canada durant la période 2000 à 2005. Quatre
différents modèles de capteurs lasers aéroportés ont été employés pour effectuer la cartographie du terrain sur treize types de
végétation éminemment disparates et dont la hauteur se situe entre moins d’un mètre jusqu’ à 24 m. L’étude met en évidence
que l’écart type vertical des première et dernière réflections de l’impulsion laser (LET) topographiquement décomposées est
un estimateur robuste de la hauteur (Ht) du couvert sur une large gamme de types de végétation, de hauteurs différentes, et
avec de différentes configurations lidar. La régression Ht par rapport à LET pour 77 plans cadastraux et virées transversales
met en évidence qu’il est possible de prévoir Ht comme simple multiplicateur (M) du (M = 2,5, r2 = 0,95, RMSE = 1,8 m,
p < 0,01). Pour ce qui est exclusivement des plans cadastraux forestiers, il est apparu que LET prévoyait mieux la hauteur
moyenne des arbres que ne le fait la hauteur moyenne des arbres de Lorey (r2 = 0,59, RMSE = 3,0 m, p < 0,01). Un test du
modèle LET pour déterminer la hautuer du couvert a été effectué à partir de mesures de la hauteur des peuplements
enrégistrées dans un inventaire indépendant des ressources forestières (IRF) pour quatre catégories de végétation. La
comparaison des résultats de l’ IRF avec ceux qui avaient été modélisés fait preuve d’une relation avoisinant 1:1 (HtFRI =
0,97HtLET, r2 = 0,73, RMSE = 4,7 m, p < 0,01, n = 38). Toutes les hauteurs des plans cadastraux et virées transversales ont
été comparées aux maxima localisés des réflections de l’impulsion laser (Lmax). Ce dernier (Lmax) fournit généralement un
meilleur indicateur de la hauteur du couvert forestier pour ce qui est des levés individuels de catégories de végétation
homogènes. Toujours est-il que LET a fait preuve d’une relation plus cohérente à la hauteur réelle du couvert dans presque
tous les cas pour tous les levés et tous les types de site. La seule exception notée était la hauteur moyenne des arbres de
Lorey pour la forêt au niveau du plan cadastral. L’intérêt à utiliser un multiplicateur de LET réside dans les faits qu’il serait
apparemment insensible à la configuration utilisée pour lever les données, et ses possibilités d’application à toute une
gamme de types de végétation et catégories de hauteur.
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Introduction
Background

Airborne light detection and ranging (lidar) combines
knowledge of the speed of light, the location and orientation
of a laser pulse emitting and receiving instrument in space,
and the time between laser pulse emission and the return of
backscattered energy to survey the three-dimensional
coordinates of objects at or near the earth’s surface. Utilizing
scanning technology, laser pulses can be redirected across the
line of flight, resulting in a swath of laser pulse return (LPR)
survey points beneath the aircraft. The resultant point data can
be used to create high-resolution digital elevation models
(DEMs) of the ground or digital surface models (DSMs) of
vegetation canopy. Current technology can collect multiple
laser pulse returns at pulse repetition frequencies (PRF) up to
100 kHz and can cover a ground swath greater than 3000 m,
depending on flying altitude and scan angle. The resultant
LPR positional accuracy is typically at the decimetre level.
Most lidar sensors can be placed in one of two categories:
(i) large-footprint (several metres) full waveform return or
(ii) small-footprint (decimetres to metres) discrete elevation
returns. For a more detailed introduction to lidar technology,
see Baltsavias (1999) and Wehr and Lohr (1999).

Many studies using small-footprint discrete return airborne
scanning lidar data have demonstrated strong empirical
relationships between LPR metrics and vegetation height.
Although much recent research is increasingly focusing on
individual tree height estimation (e.g., St-Onge et al., 2000),
most attention has been on comparing plot-level tree heights
with some LPR-derived height metric. For example, Naesset
(1997) found that for conifer stands ranging in height from 8 to
24 m, maximum LPR heights above the ground level correlated
well with Lorey’s mean tree height over a given area.
Magnussen and Boudewyn (1998) expanded upon this work by
investigating a canopy LPR quantile-based approach for
estimating height for conifer plots ranging in height from 15 to
27 m. Similar LPR metrics were tested to estimate height and
other biometric properties of tolerant hardwood plots of
varying treatment and ranging in height from 10 to 30 m (Lim
et al., 2003a). For a summary of research into tree height
estimation from lidar data, the reader is referred to Lim et al.
(2003b).

Common to the majority of lidar canopy height studies is
(i) the tendency to focus on forest vegetation with canopy heights
several metres above the ground; (ii) the derivation of LPR
height metrics from canopy returns only, with ground-level
returns typically used only for DEM generation; and (iii) the use
of a single lidar sensor and survey configuration (e.g., flight
altitude, scan angle, PRF, footprint size, and resolution).
Consequently, many such studies have conceded that the derived
LPR canopy height models are necessarily limited in their
application.

There has been little effort thus far to identify an accurate yet
potentially universal method of relating laser pulse return data

to canopy height. Due to limited data availability, most lidar
canopy height studies have favoured accuracy within a limited
sample environment over universal applicability. This study
presents a method that shows some promise in the search for a
more universally applicable LPR canopy height model across a
wide range of canopy height, canopy openness, vegetation
type, and data collection configuration.

There is a large number of studies that have demonstrated high
correlations between certain LPR metrics, such as maximum
LPR height (Lmax), and 90th or 95th percentile LPR distribution
height within the canopy, and there are good reasons why these
metrics should correspond with average canopy height.
However, the challenge in identifying a universal LPR – canopy
height relationship is that the shape of the LPR frequency
distribution through the canopy can be influenced by
(i) vegetation structural characteristics such as foliage density
(e.g., Magnussen and Boudewyn, 1998), canopy height, and
canopy openness; and (ii) lidar data acquisition factors such as
pulse spacing, pulse size, pulse energy, and scan angle (e.g.,
Holmgren et al., 2003). The simplest and most robust approach
yet adopted to infer canopy height is to isolate the localized
maximum LPR elevation and subtract the associated ground
elevation (e.g., Naesset, 1997). Incidentally, this is usually the
approach implicitly adopted during the rasterization of lidar data
to create DSMs for grid-based canopy height models (CHMs).
The localized maxima approach is simple and robust but has
some limitations in its application to estimates of average canopy
height: (i) maximum canopy height is not necessarily related to
average canopy height; (ii) the probability of Lmax capturing the
highest foliage within a sample area is influenced by pulse
spacing and the shape of tree crown apices; and (iii) LPRs cannot
be split into first and last returns in short vegetation canopy
environments (Optech Incorporated, personal communication,
2005), and so only a single return is recorded from somewhere
within the foliage.

Few studies have investigated the estimation of short (near
ground surface) vegetation height from small-footprint discrete
return scanning lidar. The work of Davenport et al. (2000) and
Cobby et al. (2001) demonstrated that crop vegetation up to
approximately 1.2 m in height could be predicted from the
standard deviation of topographically detrended laser pulse
returns (LSD). Contrary to most studies focusing on forest
canopy height estimation, the analysis presented in these two
studies utilized all LPRs rather than just those identified as
having returned from above the ground surface. An advantage
of including all returns is that, if the overall proportion of
ground returns is high, it is implied that canopy density (and
therefore mean canopy surface height) is low and will act to
pull the LPR distribution towards the ground and reduce the
LSD.

Rationale

The study presented here expands on previous research by
investigating the relationship between LSD and average canopy
height across a range of sample sizes, vegetation functional
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groups, and canopy heights. For comparison, the analysis is
also performed using the localized LPR maxima (Lmax), as this
is a robust and often-applied method of canopy height
estimation.

It is common knowledge that for a normally distributed
sample the range in the data can be approximated by a
multiplier (M) of the standard deviation (σ) (at the 95% and
99% confidence interval levels, M = 4σ and 6σ, respectively).
The relationship between σ and total sample range varies with
sample size and the shape of the distribution. In the case of
vertical LPR distributions through vegetated plots of varying
characteristics, however, we cannot expect sample size to
remain fixed and, unlike normal sample populations, the range
is limited by the vertical extent of the vegetation canopy. The
knowledge, therefore, that each of the two tails of the LPR
distribution represents ground level and upper canopy surface
and that the confidence interval range within the tails of normal
distributions can be estimated from sample standard deviation
provides a reasonable basis for testing the relationship between
LSD and average canopy surface height.

For forest vegetation, the first pulse canopy distributions
tend to be skewed towards the upper canopy surface, and near
ground last returns skewed towards the actual ground surface,
often resulting in a bimodal distribution. Short vegetation,
however, tends not to display a bimodal distribution (e.g.,
Hopkinson et al., 2005), and this can be attributed to (i) more
homogeneous vegetation structure from ground to canopy
surface (Cobby et al., 2001); and (ii) limitations in older
generation lidar sensors preventing first and last LPR
separation for ranges below �4–5 m (Optech Incorporated,
personal communication, 2005). In bimodal or skewed
unimodal cases, the sample data are not tightly clustered
around the mean, and so it is to be expected that the sample σ
would be greater than that for a normal distribution displaying

the same range, and therefore M describing the relationship
between σ and range should be lower.

This study addresses the following research questions:

(1) Can average canopy height (Ht) be estimated as a
multiplication factor (M) of the detrended first and last
LPR vertical sample distribution standard deviation (LSD)?
That is, by testing the following hypothesis:

H Ht

H Ht

A SD

0 SD

:

:

=

≠

ML

ML
(1)

(2) If H0 is rejected, does M vary for bimodal and unimodal
LPR distributions (i.e., tall and short vegetation)?

(3) If H0 is rejected, how do LSD and Lmax compare for the
estimation of average canopy height and Lorey’s mean
tree height?

Data collection
The airborne lidar and canopy height data presented were

collected across the following five study sites (Figure 1) within
four Canadian forest ecozones: (i) a hilly northern Great Lakes
(NGL) site in the Turkey Lakes watershed, 60 km north of Sault
Ste. Marie (Lim et al., 2003a); (ii) a rolling southern Great
Lakes (SGL) site within the York Regional Forest, 50 km north
of Toronto (Hopkinson et al., 2004a; 2004b); (iii) a montane
site in the Canadian Rockies (RM) 100 km north of Banff,
Alberta; (iv) a flat wetland dominated site in the Utikuma Lake
area of the Western Boreal (WB) plains of Alberta (Lindsay and
Creed, 2005; Hopkinson et al., 2005); and (v) a flat valley site
near Nictaux in the Acadian forest ecozone of Nova Scotia
(NSA), 150 km west of Halifax. Canopy height data were
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Figure 1. Study site locations within Canada. BOW, Bow Valley; TLW, Turkey Lakes
watershed; YRF, York Regional Forest.



collected for the following vegetation cover classes within
these five study areas: (1) tolerant hardwood (TH), (2) black
spruce (BS), (3) trembling aspen (AS), (4) red pine plantation
with no understory (RP), (5) mixed montane pine and fir
species (PF), (6) mixed birch and spruce forest (MF), (7) willow
shrubs (WS), (8) aquatic marshland vegetation (AQ), (9) grass
and herbs (GH), and (10) low shrubs (LS).

All lidar surveys were conducted with airborne laser terrain
mapper (ALTM) sensors (Optech Incorporated, Toronto, Ont.)
collecting both first and last LPRs with different pulse repetition
frequencies (PRF) between sensors (see Table 1). Lidar data
processing to provide Universal Transverse Mercator (UTM)
coordinates (northings, eastings, and elevations) for all first and
last LPRs was carried out by the data providers. Due to the
ALTM limitation of a minimum range separation between first
and last returns, there is a systematic LPR sampling bias for
canopy heights below approximately 4 m in height. Canopies
above this height tend to display both first (nearer to the canopy
surface) and last (nearer to the ground) LPRs, whereas canopies
below this height only display single LPRs and are less likely to
display a bimodal distribution. For this reason, the vegetation
classes investigated have been separated into categories of short
and tall vegetation. Classes 6–8 displayed average heights below
2 m and are in the short category. Classes 1–5 displayed average
canopy heights above 4 m and were considered tall vegetation. In
all cases, the field plots and transects were surveyed using a
differential global positioning system (GPS). In all but the NGL
plots, the positional error in field GPS data is at the centimetre
level. Summary data collection statistics are provided in Table 1.

Turkey Lakes watershed (TLW)

Vegetation height data were collected at the TLW study area
in July 2000 as described by Lim et al. (2003a). The northern
tolerant hardwood (NGL–TH) stands comprise mainly sugar
maple (Acer saccharum Marsh) and yellow birch (Betula
alleghaniensis Britton) and were divided into plots of the
following three treatment types: natural = untreated (n = 14);
selection = uneven-aged silvicultural system in which mature
trees have been removed, individually or in small groups (n =
5); and shelterwood = the removal of mature trees in a series of
cuttings that extend over a short portion of the rotation to
promote even-aged reproduction under the partial cover of seed
trees (n = 9). Plots were circular with a radius of 11.3 m (area =
400 m2) and were georeferenced using GPS with an estimated
accuracy of 5 m. Tree heights for all stems with a diameter at
breast height (DBH) >9 cm were measured using a Vertex sonic
clinometer (Haglof, Madison, Mo.) with an approximate
measurement error of up to 1 m for some deciduous trees (Lim
et al., 2001). The airborne lidar data collection was carried out
in August 2000 using an ALTM 1225 and is described in Lim et
al. (2003a). A summary is provided in Table 1.

York Regional Forest (YRF)

Two plots were set up in the York Regional Forest (YRF)
area. The first was a tolerant hardwood (SGL–TH) plot

comprised mainly of sugar maple (Acer saccharum) and
bitternut hickory (Carya cordiformis Wangenh.), similar in
character to the NGL–TH plots with no treatment. The second
plot was within a mature red pine (Pinus resinosa Ait.)
plantation (SGL–RP) with uniform upper canopy and no
understory. These plots represent endmember canopy
structures in the southern Ontario Great Lakes forest ecozone.
The associated data collections are discussed in Hopkinson et
al. (2004a) and Chasmer et al. (2006). Field data collection was
undertaken in September 2000 and July 2002. The plot sizes
were 35 m × 35 m (1225 m2), and mensuration procedures
followed those noted for the TLW plots. In addition, the
regional geographic information system (GIS) forest resource
inventory (FRI) for the entire North Tract was provided by
Silv-Econ Ltd. (Newmarket, Ont.) for the purpose of an
independent test of canopy height models derived from the
LPR data. The regional FRI was compiled over a period of
approximately 2–3 years prior to 2000, with stand boundaries
delineated by the Ontario Ministry of Natural Resources from
aerial photography collected in 1999. Average height was
measured using a Suunto optical clinometer from a small
selection of trees that were assumed to be representative of
each stand. Growth corrections could not be applied to the FRI
height data, as the exact dates of measurement for the small
selection of stands investigated were not available. Due to the
relatively short time period involved, however, it is anticipated
that any height differences would be minimal.

Lidar data collection was carried out nine times between
September 2000 and November 2004 using various ALTM
sensors and a range of survey configurations (Table 1). Two
summer, or leaf-on, acquisitions (September 2000 and July
2002) were used for the analysis of the tolerant hardwood plot,
whereas all nine acquisitions were analyzed for the pine plot. It
was expected that the pine plantation would exhibit minimal
change in canopy conditions regardless of season. See
Hopkinson et al. (2004b) for a description of the first two lidar
surveys over the YRF.

Canadian Rockies

Nine plots were set up at 200 m intervals either side of the
Icefields Parkway between Banff and Jasper, Alberta, on steep
mountain slopes during August 2002. The plots traversed an
elevational gradient from 1700 to 2000 m above sea level (asl)
within the montane zone. The plots (RM–PF) were dominated
by mature Douglas fir (Pseudotsuga menziesii Mirb.),
subalpine fir (Abies lasiocarpa Hook.), and lodgepole pine
(Pinus contorta Dougl.). The canopies tended to be more open
and irregular than those noted earlier. Mensuration followed the
same procedures outlined previously, and the plot dimensions
were 20 m × 20 m (400 m2).

Lidar data collection was carried out the week after field
mensuration using an ALTM 2050. The general study area and
a description of a previous lidar campaign in the area are
discussed in Hopkinson et al. (2001). Due to the mountainous
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nature of the study site, the survey altitude and laser pulse
density over the plots varied (see Table 1).

Utikuma Lake

Utikuma Lake was the only survey site where both short
vegetation and forest categories were sampled. Four 15 m ×
15 m (225 m2) plots were set up of trembling aspen (Populus
tremuloides Michx.) (WB–AS) and four of black spruce (Picea
mariana Mill.) (WB–BS), as they are representative of
deciduous and coniferous species of the western boreal forest
ecozone. Mensuration of the aspen plots followed the same
methods as outlined earlier. However, applying a >9 cm DBH
rationale to the measurement of tree height in the black spruce
plots was impractical, as a high proportion of stems had a DBH
of <9 cm and still made up a significant part of the canopy
surface. Therefore, all stems above 2 m in height were
measured to ensure that all major canopy elements were
included in the samples (Hopkinson et al., 2005).

An ALTM 2050 lidaShort vegetation was measured at
intervals of 0.5–2.0 m along transects of 30–65 m in length. The
height of the mean maximum vegetation surface (canopy
height) within 0.5 m of every GPS-surveyed transect point was
visually approximated and measured with a measuring staff
(measurement error up to 0.1 m). In areas of variable canopy
height, three measurements were taken and the mean was
recorded as shown in Figure 2. Vegetation along each transect
was classified according to the Ducks Unlimited Canada (2002)
land cover classification scheme into aquatic vegetation (WB–
AQ), grass and herbs (WB–GH), low shrubs (WB–LS), and tall

shrubs (WB–WS). Willow shrub (WB–WS) vegetation (genus
Salix) was classified as tall shrub, and the mean height was
above 4 m for each transect and therefore representative of tall
vegetation. Willow canopy heights were estimated by
extending the survey staff into the canopy (measurement error
up to 0.3 m). Given the small area coverage (<1 m2) of each
individual transect canopy height measurement, all height
measures were combined and averaged per transect. For the
three short vegetation classes (AQ, LS, and GH) none of the
height measurements exceeded 2 m.r survey was carried out
coincident with field data collection in late August 2002. The
study area was surveyed with 50% side lap between flight lines,
effectively providing 200% data coverage and a dense LPR
distribution on the ground of up to five pulses per square metre
(Hopkinson et al., 2005).

Nictaux

Five 11.3 m radius mixed forest (MF) plots were set up
within uneven-aged natural regeneration areas near Nictaux in
the Annapolis Valley of Nova Scotia. The plots comprised
predominantly yellow birch (Betula alleghaniensis), with
occasional pine (Pinus) and spruce (Picea) trees interspersed
throughout. An additional 60 m long grass transect was
traversed across a hay field to provide additional data for the
short vegetation component of the study. Field mensuration
took place in August 2005 and was carried out as noted earlier.
Lidar data collection was carried out within 2 weeks of all field
mensuration using an ALTM 3100 (Table 1).
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Figure 2. Method of estimating short vegetation canopy height along transects.



Analysis
Airborne GPS trajectory, ground GPS base station, on-board

inertial reference system, scan angle, and raw laser range data
were combined within the Optech REALM software to generate
UTM coordinates for every first and last LPR collected over the
study areas. The service providers classified LPRs into ground
and vegetation using proprietary filtering techniques (e.g., Raber
et al., 2002). The ground returns from all surveys were
interpolated to a 1 m raster DEM of the ground beneath the
vegetation canopy using an inverse distance weighted algorithm
(Lloyd and Atkinson, 2002). The data were then topographically
detrended by subtracting the corresponding heights of the
ground DEM from all LPRs. This procedure removed the
influence of topography and resulted in LPR heights that were
now measured relative to ground height. Some interpolation
error is expected in the lidar DEMs, but this is expected to be at
the centimetre to decimetre level (e.g., Töyrä et al., 2003;
Hodgson and Bresnehan, 2004; Hopkinson et al., 2005) and of
negligible influence to the calculation of LSD.

Using the field-measured GPS coordinates, the detrended
LPR data corresponding to each field plot and transect were
isolated so that LSD and Lmax could be calculated. Average plot
and transect canopy heights were regressed against the
corresponding LSD and Lmax for short vegetation classes (≤2 m),
tall vegetation classes (≥4 m), and all vegetation (unfortunately,
none of the classes sampled fell in the range 2 m to >4 m). For
tall vegetation, LSD and Lmax were also compared with plot-
level Lorey’s mean tree height.

A comparison of the derived LSD and Lmax canopy height
regression models was made using independent FRI data from
a 1.5 km × 1.0 km area within the YRF. This area was selected
because it contained 19 stands of conifer and deciduous species
displaying variable height characteristics, 12 of these having at
least 90% of their area fully within the study area. Within the
area selected there were also hay fields that had not been
included in the FRI but were noted on the ground at the time of
the September 2000 survey to be approximately 1 m in height.
The FRI height data were converted from stand-level polygons
to a raster grid. Grid cells of 50 m × 50 m were chosen, as the
stand boundaries have an error of ±20 m in places, and this
resolution provides enough grid cells for meaningful analysis
(n = 297). This approach inevitably leads to mixed cells at stand
boundaries, but a higher resolution would not improve the
analysis because it would lead to a greater number of
misclassified cells. Most grid cells were located over mature
forest stands, biasing the sample distribution towards tall
canopy heights and therefore introducing heteroscedacity. To
remove heteroscedacity, the sample data were systematically
thinned to provide an even distribution of FRI heights (n = 38),
and the regression analysis was performed again.

Results and discussion
Establishing the M factor

Examples of ALTM first and last LPR frequency
distributions from canopy to ground level for each vegetation
class studied are presented in Figure 3. The height and
frequency axes are presented as percentiles (10% increments)
to enable direct comparison of each vegetation class LPR
distribution, regardless of height or number of pulses. For tall
vegetation classes (Figure 3A), it is apparent that the sample
distributions tend to be bimodal, with modes at canopy and
ground level. The relative magnitude of each of these modes
will depend somewhat on canopy openness and laser pulse
penetration through the canopy. Of note, however, is that one
tall vegetation class, Rockies montane (RM–PF), does not
display a distinct bimodal distribution in the example provided.
Such distributions are weighted downwards due to increased
ground- and low-level canopy returns as a result of these plots
containing a sparse tree coverage displaying various heights
with no uniform upper canopy surface. For the short vegetation
transects sampled (Figure 3B), the LPR distributions from
ground to canopy display a single strong mode. All vegetation
classes display at least one dominant mode with a frequency
ranging between 15% and 50% of all LPR data within the
vertical distribution.

For the short vegetation transect data (Figure 4), the null
hypothesis of no relationship between mean maximum canopy
height and LSD can be rejected at the 99% confidence level. The
M factor relating LSD to short vegetation canopy height is 2.7,
with 75% of the variance explained by the linear regression
model (if the slight outlier to the right of Figure 4A is removed,
M remains at 2.7 but the coefficient of determination r2 reduces
to 0.55). This result is comparable with that of Cobby et al.
(2001), in that their r2 of 0.8 and RMSE of 0.14 m are similar to
the findings here. However, the relationship established
between Ht and LSD by Cobby et al. was logarithmic, predicted
Ht to be less than LSD at around 4 m above the ground, and
therefore has a range of application that is limited to Ht < �2 m.
For the results presented in Figure 4A, logarithmic regression
returned an r2 of 0.70 with an RMSE greater than 0.2 m and was
considered unsatisfactory compared with the linear model. A
linear model was also favoured here because it has the potential
to be useful for a wider range of Ht values, i.e., for both short
and tall vegetation. The same analysis applied to Lmax resulted
in slightly poorer results, with only 49% of the variance
explained and an RMSE of 0.23 m (Figure 4B).

A limitation of the application of a simple multiplier of LSD
for the estimation of canopy height is that for small values of
LSD, there will always be a positive value for Ht due to the
inherent noise in the lidar data. From Hopkinson et al. (2005) it
was found that for lidar data collected over flat unvegetated
ground, LSD was approximately 0.07 m. This would therefore
lead to a minimum Ht value of �0.19 m if the M factor of 2.7
were applied to areas of very short or no vegetation. Another
difficulty is that LSD will tend to increase in areas of steep slope,
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regardless of vegetation height, as a result of lidar positional
inaccuracy (Hodgson and Bresnehan, 2004). For such sloping
areas it might be possible to adjust M downwards based on the
angle of slope in the ground DEM. Unfortunately, the influence
of slope on M was not quantified due to the methodological
necessity for flat areas to enable controlled LSD and Ht
measurements for the short vegetation classes. Fortunately,
however, the influence of noise and slope to LSD diminish as
vegetation height increases and are likely insignificant
components of LSD for the tall vegetation classes.

For the 57 tall vegetation plots, the null hypothesis of no
relationship between average height and LSD was rejected at the
99% confidence level. The M factor relating LSD to Ht was
slightly lower (2.5) than that for short vegetation (2.7), with
85% of the variance explained by the linear regression model
(Figure 5A). However, this difference in M was not statistically
significant. After plotting all short and tall vegetation together,
it was found that M = 2.5 (r2 = 0.95, n = 77, RMSE = 1.8 m). As
with short vegetation, the analysis yielded slightly poorer
results for Lmax (Figure 5B), but the multiplier of 0.73 was also
not statistically different from the short vegetation analysis
result of 0.75. It is worth noting that in Figure 5A most of the
data plot close to the regression line, with the exception of
NGL–TH. If the NGL–TH data are removed from the analysis,
the RMSE improves to 1.3 m.

Increased spread around the regression line in the NGL–TH
data could be related to imprecise field GPS data, leading to
relatively poor colocation of field and lidar plots. Of note,
however, is that different TH treatments scatter either side of the

regression line, with the height of natural plots underestimated
and shelterwood treatments overestimated. This difference in
LSD height estimation could be due to (i) different LPR
distribution properties in each of the treatment types leading to a
change in M, or (ii) an overestimation of the plot-level average
height due to the omission of smaller trees in the plots. Certainly,
the >9 cm DBH measurement method for the NGL plots would
ignore the influence of smaller trees in the plot and result in an
overestimation of average plot-level height. This effect would be
less apparent in natural plots where the canopy is comprised
almost exclusively of mature trees but enhanced in the
shelterwood treated plots where mature trees have been
removed. The possibility of a canopy structure type dependent M
factor must also be considered, as 11 of the 14 natural TH plot
heights and four of the five natural MF plot heights from the
NGL, SGL, and NSA locations plot above the Ht versus LSD
regression line (Figure 5). However, the data available for this
study are insufficient to enable quantification of the subtle
differences in M due to vegetation canopy structure.

In this study, LSD has been compared with average canopy
height, whereas some studies have focused on the relationship
between LPR distribution metrics and plot-level Lorey’s height
(e.g., Naesset, 1997; Magnussen and Boudewyn, 1998). From
the lower RMSE (2.1 m compared with 3.0 m) and increased
explanation of the variance (r2 = 0.80 compared with 0.59) in
Figure 6A, it appears that for the data used in this study LSD is a
better estimator of average canopy height than Lorey’s mean
tree height. This is probably because LSD is related to the entire
vegetation column and is influenced by the ground and canopy
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Figure 3. Vertical LPR distributions for a range of vegetation classes: (A) tall vegetation
(≥4 m) with possibility of dual pulse returns; (B) short vegetation (<2 m) with only single
LPRs. AQ, aquatic marshland vegetation; AS, trembling aspen; BS, black spruce; GH, grass
and herbs; LS, low shrubs; PF, mixed montane pine and fir species; RP, red pine plantation
with no understory; RM, Rocky Mountains; SGL, southern Great Lakes; TH, tolerant
hardwood; WB, Western Boreal plains; WS, willow shrubs.



frequency distribution modes, whereas Lorey’s height is
related to dominant trees in the canopy and therefore the upper
tail of the LPR distribution. This is further evidenced in the
observation that Lmax appears to be a better indicator of Lorey’s
mean tree height than LSD (Figure 6B). These results suggest
that LPR metrics that are biased towards the upper limits of the
LPR distribution might be appropriate if tall elements in the
canopy are of interest; however, if mean canopy surface height
is of primary interest, then a metric that is based on the entire
LPR distribution such as LSD might be more appropriate.

Testing the M factor

Grids of independent FRI Ht and LSD-derived Ht for the
North Tract of the YRF are illustrated in Figure 7. The most
obvious difference between the two grids is that the LSD heights
are more spatially variable. This is to be expected, as the FRI
stand polygons are colour coded to average stand height and
provide no information on within-stand variation, whereas the
LSD heights are calculated on an individual grid cell basis.
There are some similarities in the two grids, namely some of
the shorter vegetation polygons are clearly discernible in both,
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Figure 4. Short vegetation canopy heights (<2 m) plotted against (A) LPR distribution
standard deviation (LSD), and (B) LPR distribution maximum height (Lmax). Error bars denote
standard deviation in transect height measurements.



and the overall average heights are similar. However, the
heights of the tallest FRI stands have been underestimated in
the LSD height grid. Of note is that the tallest stands are of the
tolerant hardwood (TH) class and are similar in canopy
characteristics to the NGL and SGL TH plots investigated. It is
apparent from Figure 5 that the TH natural plot data lie slightly
above the regression line, suggesting that a slightly higher M
factor would be more appropriate for this class.

The almost 1:1 relationship between independent grid cell
FRI data and LSD-modelled vegetation heights in Figure 8A
suggests that the M factor of 2.5 established from the training
datasets is appropriate when dealing with several different

vegetation heights and classes. It can be argued that, with an
RMSE of 4.7 m and only a 73% explanation of the variance,
this simple model is of limited value. However, it also needs to
be noted that the FRI data used for this test were collected prior
to the lidar data and were imprecisely collected compared to the
training data used, and the 50 m cell size probably introduced
additional random error due to stand edge effects. Bearing
these factors in mind, a high RMSE and intermediate r2 would
be expected. As with the training data collected from various
sites across Canada, FRI stand heights predicted using the Lmax
model (Figure 8B) demonstrated a higher RMSE (8.2 m) and a
lower explanation of the variance (58%).
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Figure 5. Plot-level average canopy heights for tall (≥4 m) willow and forest classes plotted
against (A) LPR distribution standard deviation (LSD), and (B) LPR distribution maximum
height (Lmax). Legend abbreviations as in Table 1 and Figure 3.



Conclusions
It has been demonstrated that the mean canopy surface height

for combined aquatic, grass–herb, and low shrub classes of short
vegetation (all < 2 m in height) can be estimated using a simple
multiplier (M factor) of the vertical laser pulse return (LPR)
distribution standard deviation (LSD). For tall vegetation classes
(>4 m) the average canopy height calculated from all individual
stem height measurements was also related to LSD. M was 2.7
and 2.5 for short and tall vegetation, respectively, but was 2.5
when all data were combined (r2 = 0.95, n = 77, RMSE = 0.18 m,
p < 0.01). For forest vegetation, LSD and Lorey’s mean tree

height were not well correlated. This was considered due to
Lorey’s height being a function of dominant canopy elements,
which should be represented in the upper tail of the canopy
distribution, whereas LSD is sensitive to the high-frequency
modes within the entire distribution from canopy to ground.
Lorey’s mean tree height was better estimated using the
localized maximum height of the vertical LPR distribution
(Lmax).

Although there are numerous other LPR distribution
estimators of canopy height, LSD is useful in that it is a function
of the overall distribution shape from ground to canopy and,
provided there is a sufficient number of laser pulses in the area
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Figure 6. Plot-level average forest canopy and Lorey’s mean tree height plotted against
(A) LPR distribution standard deviation (LSD), and (B) LPR distribution max height (Lmax).



of interest, is insensitive to LPR density. Grid-based maximum
LPR height (Lmax), although potentially better than LSD after
calibration and on an individual data collection basis, varies
with LPR sample density and crown morphology and therefore
cannot be universally applied with the same expectation of
accuracy.

The average M factor of 2.5 slightly underestimates the
heights of hardwood species in both the training data and the
model, and so there probably is some vegetation-class
dependence to the M factor, i.e., a larger value for M seems

appropriate for vegetation with canopy characteristics similar
to those of the TH and MF classes. As a robust first
approximation to mapping canopy height over large areas of
varying height and vegetation type, however, an M factor of 2.5
provides reasonable results. The advantages of using a
multiplier of LSD to estimate average canopy height are as
follows: (i) it has a wide application to a range of vegetation
types and height classes and lidar data collection
configurations; and (ii) it is based on the statistical property that
a sample range can be related to its standard deviation. To make
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Figure 7. FRI Ht grid (A) compared with LSD Ht model grid (B). Grid cell average heights are
in metres.



the LSD M factor of practical use in canopy height mapping
applications across multiple lidar datasets and environments,
further study is needed to quantify the subtle variations in M
with vegetation structural characteristics, terrain slope, and
different lidar sensor technologies.

Acknowledgements
The Canadian Consortium for LiDAR Environmental

Applications Research is acknowledged for coordinating both

ground and airborne data collection logistics for all of the study
sites apart from TLW, and Optech Incorporated is acknowledged
for collecting and processing some of the airborne lidar data. Dr.
Hopkinson gratefully acknowledges postdoctoral funding and
Kevin Lim and Laura Chasmer acknowledge Ph.D. funding
through a grant awarded to Dr. Treitz by the Centre for Research
in Earth and Space Technologies, an Ontario Centre of
Excellence.

© 2006 CASI 151

Canadian Journal of Remote Sensing / Journal canadien de télédétection

Figure 8. Vivian forest grid cell modelled heights for the September 2000 low-altitude survey:
(A) FRI versus LSD; (B) FRI versus Lmax. FRI data >14 m height thinned to remove
heteroscedacity.
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