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Examining the effects of sampling point densities 
on laser canopy height and density metrics

by K. Lim1, C. Hopkinson2,3 and P. Treitz4

ABSTRACT
Forest resource managers rely on the information extracted from forest resource inventories to manage forests sustainably
and efficiently, thereby supporting more precise decision-making. Light detection and ranging (LiDAR) is a relatively new
technology that has proven to enhance forest resource inventories. However, the relationship between LiDAR sampling
point density (which is directly related to acquisition and processing costs) and accuracy and precision of forest variable
estimation has not yet been established across a range of forest ecosystems. In this study, 2 airborne LiDAR surveys using
the same sensor, but configured with disparate parameters, were carried out over the York Regional Forest near Toronto,
Canada producing 2 data sets characterized by different sampling point densities. The effects of 2 sampling point densi-
ties on 23 laser canopy height and density metrics typically used in forest studies at the plot level were examined with com-
parisons grouped by first and last return data. The minimum (hmin) and maximum (hmax) laser canopy heights were sta-
tistically different for first and last returns. The proportion of laser returns (i.e., canopy density) in the upper (d1) and
lower (d10) range of laser canopy heights was statistically different for the first returns, whereas only a single canopy den-
sity metric was different for the last returns (d9). These results suggest that changes in sampling point density (due to
changes in scan angle and altitude) only affect laser canopy height and density metrics that are characterized by the small
percentage of returns from the very top (hmax; d1) and base of the canopy (hmin; d10) (i.e., those metrics that characterize
the tail ends of the distributions of laser canopy heights). Consequently, higher sampling point densities may add little
value to current LiDAR forest research or operations at the stand level, as metrics derived from the canopy profile can be
implemented for biophysical variable estimation. Implications for forest management are in terms of identifying which
aspects of LiDAR project design: a) impact the quality and cost-effectiveness of derived FRI information; b) should be
specified within a LiDAR request for proposals; or c) scrutinized within LiDAR project tender documentation.
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Introduction
Forest research at the scale of
the individual tree, plot, and
stand using airborne light
detection and ranging
(LiDAR) has progressed rap-
idly in recent years (e.g., Lefsky
et al. 2002, Næsset et al. 2004,
Andersen et al. 2005, Maltamo
et al. 2005, Falkowski et al.
2006, Tickle et al. 2006, Bol-
landsås and Næsset 2007,
Thomas et al. 2008). Parallel to
these research efforts have

been the continued advances in LiDAR technology with com-
mercial sensors now capable of pulse repetition frequencies
(PRFs) exceeding 167 kHz (Optech Inc. 2006) and waveform
digitization (Hug et al. 2004).

Studies that have focused on the estimation and prediction
of various forest biophysical variables (e.g., maximum canopy
height, mean canopy height, Lorey’s height, basal area, crown
closure, diameter at breast height (DBH), biomass, leaf area
index (LAI) and volume at the plot level using LiDAR have
primarily relied on establishing empirical relationships
between various laser canopy height and density metrics, and
the biophysical variables of interest (e.g., Nelson 1997; Nelson
et al. 1997, 2004; Magnussen and Boudewyn 1998; Lefsky et al.
1999; Magnussen et al. 1999; Means et al. 1999, 2000; Næsset
and Bjerknes 2001; Næsset 2002; Lim et al. 2003a; Lim and
Treitz 2004; Hopkinson et al. 2006, Thomas et al. 2006). Næs-
set and Bjerknes (2001) reported that the mean height of dom-
inant trees could be estimated using the laser canopy height
corresponding to the 90th percentile and a canopy density
metric, which was defined as the ratio between the number of
returns from the canopy and total laser pulses transmitted.
The concept of canopy density metrics was extended by Næs-
set (2002) to include proportions of first and last returns at
intervals throughout a forest canopy. Lim et al. (2003a)
demonstrated that the maximum and mean laser height, and
an average height based on LiDAR intensity, could be used to
estimate 10 forest biophysical variables. In some studies, laser
height metrics used in stepwise regression analyses are differ-
entiated by their return type (i.e., only, first, or last return)
(Næsset and Økland 2002, Holmgren 2004). The last return is
accomplished by implementing last return logic in the LiDAR
receiver electronics to sample and hold all returns after the
first return but only record the final return. This last return

can be representative of any part of the canopy profile below
the first return. While the specific laser canopy height and
density predictor variables used in these types of studies may
vary, the general modelling approach and types of metrics
employed are consistent (Lim et al. 2003b).

Of interest to these types of studies carried out at the plot
level is how sampling point density and survey configuration
affect laser canopy height and density metrics across different
forest types. As the development of more technologically
advanced LiDAR sensors continues, with advances manifest-
ing most notably as increases in PRFs, the generation of spa-
tially dense LiDAR data sets is becoming more prominent.
However, high sample point densities still require low-alti-
tude data acquisition and/or the adoption of a reduced scan
angle. Flying with this type of configuration can increase
acquisition time by several factors and therefore significantly
increase acquisition costs. However, it remains unknown as to
whether or not LiDAR data characterized by a high sampling
point density are somehow “superior” with respect to the
information content than those characterized by a lower sam-
pling point density for forest studies. Recently, large-scale
high-density commercial LiDAR remote sensing projects for
forest resource inventory have been conducted in Norway.
Næsset (2004a) reported on the validation of one of these
projects and found that the accuracy of LiDAR models of var-
ious structural variables was accurate and consistent across
the forest sampled. Validation revealed low standard errors
for mean height (0.36–1.37 m); dominant height (0.70–1.55
m); basal area (2.38–4.88 m2) and stand volume (13.9–45.9
m3ha-1). These results are encouraging for the implementa-
tion of LiDAR remote sensing for forest resource inventory.
Unfortunately, studies comparing LiDAR sampling densities
for predicting forest biophysical variables within the Cana-
dian context are lacking. Thomas et al. (2006) compared a
low-density to high-density LiDAR dataset for predicting
variables related to tree height for a boreal mixedwood. Vali-
dation of the models against independent field plots revealed
that low- and high-density LiDAR models were highly corre-
lated with mean dominant height, basal area, and average
aboveground biomass (low density: R2 = 0.90, 0.91, and 0.92,
and high density: R2 = 0.84, 0.89, and 0.91). However, the
low-density dataset was not able to accurately model variables
related to canopy density (i.e., crown closure). These results
would indicate that accurate predictions of many forest struc-
tural variables are possible with low-density LiDAR data at
the plot and stand level, a requirement for the inclusion of
LiDAR into cost-effective operational forest inventories. By
furthering our understanding of the relationship between
sampling point densities and laser canopy height and density
metrics, resource managers and data providers will be better
able to configure surveys to satisfy the specifications for given
project goals and collect only data that are necessary to accu-
rately estimate the biophysical properties of interest.

The objective of this research is to compare laser canopy
height and density metrics derived from LiDAR data col-
lected at 2 different sampling point densities. This paper does
not treat the topic of how these variables are used for the esti-
mation of forest biophysical properties, but instead focuses on
the types of variables typically employed and how sampling
point density impacts those variables. Note that we do not
attempt to treat how individual input survey parameters, such
as PRF, scan frequency, scan angle, or beam divergence,
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affects laser canopy height and density metrics as in the case
of Næsset (2004b) or Goodwin et al. (2006), but instead focus
on the effects of sampling point density on these metrics. It is
extremely important to understand the impact that sampling
density has on estimating forest structural variables, in order
that cost-effective surveys can be designed to maximize infor-
mation content while minimizing acquisition costs.

Methods
Study site
The York Regional Forest (YRF) (44°05?N, 79°20?W) extends
over 333 hectares of land near the Town of Whitchurch–
Stouffville, which is located approximately 50 km north of
Toronto, Ontario, Canada (Fig. 1). The YRF consists predom-
inantly of managed red (Pinus resinosa Ait.) and white (Pinus
strobus L.) pine plantations, and unmanaged deciduous
stands largely composed of sugar maple (Acer saccharum
Marsh.) and hickory (Carya spp.). The YRF has been used in
previous studies to: (i) assess plot-level forest metrics (e.g.,
DBH and tree height) using ground-based LiDAR (Hopkin-
son et al. 2004a); (ii) map snowpack depth beneath forest
canopies using airborne LiDAR (Hopkinson et al. 2004b);
and (iii) estimate conifer canopy growth over a 5-year period
(Hopkinson et al. 2008).

Sixty circular plots, representing stands of varying species
composition, age, and forest structure, were systematically
selected over the north tract of the YRF. A single plot located
in an open area/clearing (i.e., non-forested) was excluded
from the analysis reducing the number of sampling units to
59. The spatial configuration of plots was designed so as to
allow a distance of 200 m between the eastings and 100 m
between the northings of the plot centers (Fig. 1). The area of
each plot was 0.04 ha (i.e., 400 m2) in area. Although no spe-
cific ground reference data were collected for the plots, a
recent forest resource inventory (FRI)
was available to assist in interpreting
the characteristics of the stand within
which each plot was located. A total of
52 plots were located in conifer planta-
tions. Of the remaining 7 plots, 4 were
located in upland hardwood stands
and 3 in mixed conifer stands. The
species composition, age, and average
tree height are summarized in Table 1.
The adoption of a systematic spatial
configuration of plots not only
ensured that the study captured a
range of different stands with respect
to their age, species composition, and
forest structure, but also allowed the
study to account for any local spatial
variability in sampling point density
for any given survey.

LiDAR data
Two leaf-on LiDAR surveys of the
YRF were carried out within a two-
hour window on 24th September 2000
using an Optech ALTM 1225 (Optech
Inc., Toronto, Ontario, Canada). The
surveys were configured so as to yield
2 LiDAR data sets that differed with

respect to sampling density by a ratio of approximately 3:1.
The PRF for the ALTM 1225 is 25 kHz and for any given laser
pulse, the first and last returns are recorded.

The input and output survey parameters for each of the 2
LiDAR surveys are summarized in Table 2. Although the PRF
of 25 kHz and the aircraft velocity of 60 m/s were held con-
stant for both surveys, the height aboveground level (AGL) at
which the plane was flown, scan angle, scan frequency, and
orientation of the flight lines differed. For the first survey, the
LiDAR sensor was configured with a maximum scan angle of
12° and a scan frequency of 30 Hz with the aircraft travelling
in a north–south direction at 800 m AGL. For the second sur-
vey, the LiDAR sensor acquisition settings included a maxi-
mum scan angle of 20° and a scan frequency of 21 Hz. The
flight path was oriented in an east–west direction at 1200 m
AGL. The flight line spacing for the first and second survey
was 200 m and 550 m, respectively, which maintained close to
50% swath overlap for both surveys. As a result, the first sur-
vey was carried out at a lower altitude with a narrower scan
angle and higher scan frequency than the second survey
resulting in the production of a LiDAR data set with a higher
average sampling point density.

The configuration of input parameters for the 2 surveys
resulted in each survey having different laser footprint sizes in
addition to other output survey parameters (Table 2). The
concentrated energy of the laser pulse footprint diameters for
the low- and high-altitude surveys were approximately 24 cm
and 31 cm, respectively. Based on previous research, it was
assumed that such a small difference between laser footprint
sizes would not significantly affect measurements of laser
canopy heights (Nilsson 1996, Næsset 2004b, Hopkinson
2007). The low-altitude survey had a swath of 340 m, whereas
the high-altitude survey had a swath of 870 m. These survey
configurations resulted in laser pulse postings in the across-
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Fig. 1. The geographic location of the York Regional Forest (upper right inset) and the distribution
of plots over the study area displayed against an aerial photograph acquired in the fall of 1999.



and along-track directions of 0.8 m and 0.9 m (low altitude),
and 1.5 m and 1.4 m (high altitude), respectively.

The canopy sampling point densities per 400 m2 for each
plot across the 2 surveys and grouped by laser return class
(i.e., first and last returns) are presented in Fig. 2. Although
there is obvious variability in the density produced from each
survey for each plot, it was consistently higher for the low-
altitude survey, with the ratio typically ranging from 2 to 4
times.

Laser canopy height and density metrics
Classified ground laser returns acquired from a LiDAR sur-
vey of the YRF during deciduous leaf-off and minimum
understory conditions in December 2000 were used to inter-
polate a digital elevation model (DEM). Snow was not pres-
ent in the study area during the December LiDAR acquisi-
tion. These data were collected using a similar Optech ALTM
sensor with all data registered to the same survey monument
and GPS base station as the other surveys. During leaf-off
conditions, there are more samples of the true ground surface,
providing for a more accurate and precise DEM than could be
achieved during leaf-on conditions. A triangular irregular
network (TIN) was constructed from the classified ground
laser returns and then converted using linear interpolation to

a DEM with a cell resolution of 1 m. The accuracy of the
DEM was not critical for this study as the same DEM was
used across both surveys to derive vegetation laser heights. By
using a common (i.e., baseline) DEM to calculate vegetation
laser heights, any bias introduced into laser canopy heights as
a function of DEM inaccuracies will be equally present in
both surveys and therefore of no consequence to the tests per-
formed in this study. The rationale for using a DEM generated
from a leaf-off LiDAR survey (even for a conifer-dominated
study site) was that foliage reduces the ability of LiDAR to
accurately sample the “true” ground surface.

To obtain vegetation laser heights, the DEM z-values were
subtracted from the corresponding z-value of each laser
return at matching x–y coordinates. Vegetation laser heights
that were less than 2 m were removed from the LiDAR data
sets of each survey. A “hard” threshold of 2 m was selected to
eliminate laser returns corresponding to the ground and low-
lying vegetation (e.g., brush) and is an approach that has been
adopted by others (e.g., Nilsson 1996, Næsset 2004b).

The minimum (hmin), maximum (hmax), and mean laser
canopy height (hmean), in addition to the deciles (i.e., h1…h9)
and coefficient of variation (hcv) of laser canopy heights, were
derived for each plot across both surveys producing 13 pairs
of metrics (Ritchie et al. 1993, Magnussen and Boudewyn
1998). A set of 10 canopy density metrics (i.e., d1…d10) were
also derived (Næsset 2002). For these, the range of the laser
canopy heights was divided into 10 equal intervals. Each of
the 10 canopy density metrics corresponds to a proportion of
laser canopy heights within a given interval. For example, the
first canopy density metric would correspond to the propor-
tion of laser canopy heights found in the first interval at the
lower range. Conversely, the 10th canopy density metric
would correspond to the proportion of laser canopy heights
in the upper interval at the upper range. These metrics were
selected for analysis as they have been demonstrated in previ-
ous studies, on an individual basis or in combinations, as pos-
sible predictors of various forest biophysical variables (Lim et
al. 2003b). Inclusion of these metrics also provides a suitable
characterization of the canopy height and density profiles.
The characteristics of the 23 metrics considered in this study
are summarized in Table 3.

Data analysis
Paired t-tests were performed to determine if a canopy height
or density metric from the low-altitude survey was statisti-
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Table 1. Species composition, age, average tree height, and the general classification of each plot based on the forest resource
inventory data where available

Age (years) Average Tree Heighta (m)

Species n Min. Max. Mean Min. Max. Mean Category

Red Pine 41 11 72 38.7 15.2 26.0 20.6 Plantation
Red & White Pine Mix 4 13 72 52.5 20.0 28.0 25.3 Plantation
White Pine 1 71 71 71 N/A N/A N/A Plantation
Jack Pine 6 73 73 73 15.6 17.5 16.2 Plantation
Pine/Cedar 3 70 70 70 26.0 26.0 26.0 Mixedwood
Sugar Maple 4 75 75 75 30.3 30.3 30.3 Upland Hardwood

aAverage tree heights were not available for all plots.
Red Pine – Pinus resinosa Ait.; White Pine – Pinus strobus L.; Jack Pine – Pinus banksiana Lamb.; Cedar – Thuja occidentalis L.; Sugar Maple – Acer saccharum Marsh.

Table 2. Input and output parameters for the low- and high-
altitude surveys

Low-altitude High-altitude 
Survey Survey

Input Parameters
PRF (kHz) 25 25
Scanner Frequency (Hz) 30 21
Scan Angle (°) 12 20
Aircraft Velocity (ms-1) 60 60
Flying altitude (m AGL) 800 1200
Line spacing (m) 200 550

Output Parameters
Across track pulse spacing (m) 0.8 1.5
Along track pulse spacing (m) 0.9 1.4
Footprint (cm) 24 36
Swath width (m) 340 870



cally different from its corresponding metric from the high-
altitude survey. To strengthen the comparison, first and last
return data for the low- and high-altitude surveys were com-
pared separately, providing 2 samples by which sampling den-
sity could be tested. Twenty-three comparisons were carried
out for each of the first- and last-return classes. Problems that
may arise from multiple comparisons or simultaneous statis-
tical inference are discussed by Miller (1981). In short, as the
number of statistical tests performed increase, the probability
of making a Type I error increases. For example, assuming the
alpha value is 0.05, given a single statistical test, in no more
than 1 in 20 tests will a significant difference result when in

fact there is none. However, as the
number of statistical tests increase to 5
and 10, the probability of making a
Type I error increases to 0.22 and 0.40,
respectively. Given the large number of
paired t-tests performed in this study,
Bonferroni corrections were applied to
control for the increase in Type I
errors. Following from the recommen-
dations of Chandler (1995), i.e., to
limit the probability of Type II errors,
an experiment-wise error rate of 0.15
was applied, which resulted in a Bon-
ferroni-corrected alpha value of 0.007
(i.e., 0.15/23) instead of 0.05.

Results
Canopy height
The results from the paired t-tests for
the first and last returns are summa-
rized in Table 4. A graphical represen-
tation of canopy height metrics is pro-
vided in Fig. 3 for LiDAR first return
data. The maximum laser canopy
heights (hmax) from the low- and high-
altitude surveys for the first and last
returns were statistically different from
each other (p = 0.0002 and p < 0.0001,
respectively). The mean difference
(high altitude–low altitude) for the
first returns was -0.04 m with a stan-
dard deviation of 0.84 m. For the last
returns, the mean difference was -0.72
m with a standard deviation of 1.12 m.
The minimum laser canopy heights
(hmin) from each survey for the first
and last returns were also statistically
different (p = 0.0015 and p = 0.0054,
respectively). The mean difference was
0.83 m for the first returns with a stan-
dard deviation of 1.91 m, whereas the
last returns were characterized by a
mean difference of 1.20 m and a stan-
dard deviation 3.20 m.

No significant differences were
found for the mean laser canopy
heights (hmean) for the first (p = 0.8733)
and last (p = 0.5214) returns. The
mean differences were -0.01 m for the

first returns and 0.08 m for the last returns. The standard
deviations for this metric were 0.40 m and 0.92 m for the first
and last returns, respectively. In the case of the coefficient of
variation of laser canopy heights (hcv), no significant differ-
ences were observed for the first and last returns (p = 0.3377
and p = 0.0101, respectively). The mean difference for the first
returns was 0.61 m with a standard deviation of 4.89 m,
whereas the mean difference for the last returns was -2.23 m
with a standard deviation of 6.44 m.

As for the deciles of laser canopy heights, there was not a
single comparison of first and last returns that resulted in a
statistically significant difference (i.e., all p > 0.1044 for first
returns and all p > 0.0122 for last returns). For first returns,
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Fig. 2. Sampling point density per plot (area = 400 m2, z > 2 m) from each survey and
grouped by class of laser return.



the mean differences ranged from -0.09 m to 0.27 m whereas
the standard deviations for these differences ranged from 0.37
m to 1.67 m. The greatest mean differences and largest stan-
dard deviations for first returns tended to be observed for the
lower deciles (e.g., h2 and h1). The range of mean differences
for the last returns was -0.25 m to 0.51 m. The standard devi-
ations of the mean differences for the last returns ranged from
0.61 m to 2.67 m. In general, the mean differences and stan-
dard deviations for the decile metrics were greater for the last
return data than for the first return data.

Canopy density
For the first return canopy density metrics, comparisons
revealed 2 metrics that were statistically different. The d1 met-
ric was statistically different across the 2 surveys (p = 0.0001)
with a mean difference of -3.63% and a standard deviation of
6.97%. The second metric that was significantly different was
the d10 metric (p = 0.0069). Its mean difference and corre-
sponding standard deviation was 2.55% and 6.96%, respec-
tively. No significant differences were observed for the
remaining first-return canopy density metrics (i.e., d2…d9)
(all p > 0.0469). The mean differences for the remaining
canopy density metrics ranged from -1.83% to 0.51%,
whereas the standard deviation of these differences ranged
from 4.52% to 8.49%.

In the case of the last-return canopy density metrics, only
the d9 metric from the 2 surveys was significantly different (p
= 0.0048). The mean difference of d9 was -4.50% with a stan-
dard deviation of 11.77%. The remaining canopy density met-
rics (i.e., d1…d8 and d10) were not significantly different for
the 2 surveys (all p > 0.0707). The range of these remaining
metrics was -0.43% to 1.85% and the standard deviation of
the mean differences range from 4.92% to 13.39%.

Discussion
The issue of whether or not different sampling point densities
influence distributions of canopy height measurements,
specifically canopy height profiles, is a contentious one. Some
would argue that it is counterintuitive to examine sampling
point density because if it is found to influence how canopy
height measurements are derived, then one is unable to iden-
tify whether it is sampling point density itself or one of the
many survey parameters (e.g., pulse repetition frequency,
scan angle, scan frequency, aircraft velocity), which collec-
tively determine sampling point density, that is the contribut-
ing factor. What is often not realized is that there exists trade-
offs between individual sensor and flight configuration-based
data collection parameters. Such trade-offs make attempts to
assess the effects of individual survey parameters on canopy
height measurements challenging due to the need for experi-
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Table 3. Summary of laser canopy height and density metrics grouped by return class

First returns Last returns

High-altitude Survey Low-altitude Survey High-altitude Survey Low-altitude Survey

Metric Range Mean Range Mean Range Mean Range Mean

hmax (m) 3.71–27.88 17.86 4.89–28.84 18.29 3.84–28.36 17.47 4.90–28.92 18.19
h9 (m) 3.25–26.67 16.16 3.93–26.62 16.20 3.41–26.40 15.97 3.89–26.52 16.17
h8 (m) 3.21–26.11 15.35 3.60–26.06 15.42 3.26–25.55 15.08 3.60–25.95 15.33
h7 (m) 3.11–25.68 14.67 3.35–25.50 14.76 2.83–25.23 14.42 3.36–25.26 14.50
h6 (m) 2.94–25.16 14.14 3.10–25.08 14.18 2.77–24.40 13.48 2.86–24.20 13.69
h5 (m) 2.86–24.72 13.54 2.74–24.46 13.60 2.68–23.38 12.29 2.73–23.74 12.46
h4 (m) 2.63–24.15 12.88 2.52–24.04 12.97 2.56–22.24 10.78 2.55–22.2 10.27
h3 (m) 2.43–23.49 12.08 2.38–23.47 12.13 2.39–21.26 9.30 2.34–21.13 8.80
h2 (m) 2.24–22.55 10.98 2.21–22.40 10.90 2.24–20.07 7.59 2.27–19.58 7.47
h1 (m) 2.13–21.41 9.22 2.14–21.39 8.95 2.09–19.53 7.59 2.10–18.81 5.62

hmin (m) 2.01–14.75 4.74 2.00–14.65 3.91 2.01–16.66 3.70 2.00–15.63 2.50
hmean (m) 2.78–24.28 13.03 2.98–24.16 13.04 2.87–21.85 11.53 2.97–21.88 11.45

hcv (%) 9.14–56.35 26.52 7.49–55.59 25.90 4.00–72.92 37.06 5.71–77.39 39.29
d1 (%) 0.93–28.57 7.67 0.00–45.62 11.30 1.12–50.00 14.80 0.67–42.03 15.23
d2 (%) 0.00–28.57 6.28 0.00–24.32 6.09 0.00–44.83 9.38 0.00–28.41 8.96
d3 (%) 0.00–29.35 7.21 0.00–28.57 7.26 0.00–30.00 7.65 0.00–34.55 7.31
d4 (%) 0.00–28.57 7.21 0.00–29.41 7.28 0.00–25.64 7.14 0.00–24.57 7.40
d5 (%) 0.00–25.49 8.02 0.00–22.45 7.51 0.00–26.09 6.74 0.00–25.00 6.15
d6 (%) 0.00–26.00 8.58 0.00–21.89 9.66 0.00–23.08 5.85 0.00–15.73 5.36
d7 (%) 0.00–24.05 11.57 0.99–31.13 13.03 0.00–30.00 8.09 0.00–29.41 6.25
d8 (%) 0.00–45.74 16.08 0.00–41.22 17.91 0.00–50.00 11.05 0.00–38.98 11.32
d9 (%) 0.00–54.17 16.68 0.00–39.83 16.17 0.00–54.55 14.35 0.00–54.55 18.85
d10 (%) 1.27–40.00 10.70 0.67–40.25 8.16 1.32–57.14 14.94 0.72–53.57 13.18



mental control (e.g., Hopkinson 2007) and the cost of multi-
ple data collections.

For example, in order to maintain an even sampling point
density in the across- and along-track flight directions any
increase in scan angle necessitates a decrease in scan fre-
quency. Increases in flying altitude increase the laser footprint
because laser footprint is a function of flying altitude and
beam divergence. Perhaps more importantly, changes in pulse
repetition frequency lead to changes in laser pulse power out-
put and the distribution of laser power within the footprint
(Chasmer et al. 2006, Hopkinson 2007). Clearly, synergies
between individual survey parameters exists, but are not often
acknowledged.

Evans et al. (2001) raise the issue of how the actual patterns
of sample points (e.g., Z-shaped from a scanning mirror) can
potentially miss the apex of trees in regularly-spaced planta-
tions. Magnussen and Boudewyn (1998) indirectly state that
scan angles greater than ±10° will have impacts on tree height
measurement. Holmgren et al. (2003) simulated the effects of
scan angle on tree height measurements. However, their
results may be inconclusive, given that they were employing
solid geometric models with zero transmittance and ray trac-
ing without factoring for beam divergence. These earlier stud-
ies did not have the benefit of current LiDAR technologies
engineered for high pulse repetition frequencies and operation
at higher altitudes, nor do they consider how overlapping
flight lines can compensate for these potential sources of error.

These studies have focused on tree height and not on the
vertical distribution of canopy height. The emphasis has been
on the direct measurement of the top of the canopy instead of
those measurements found within the canopy. In contrast, the
approach adopted in this study has been to conceptualize the
problem as a statistical sampling problem. LiDAR data char-
acterize canopy structure by sampling the vertical distribu-
tion of biomass through the canopy profile/volume. In statis-
tical terms, canopy structure is the population parameter and
the laser canopy height returns represent samples from this
population. By collecting a sufficient number of laser canopy
height returns it is possible to characterize the nature of the
canopy height distribution. Increasing sample size will not
improve the nature of the normal distribution, with the
exception that the tail ends of the distribution may be better
described. Analyses that focus on individual trees implicitly
deal with the tails of the distributions of canopy height meas-
urements, which are likely more susceptible to individual sur-
vey parameter effects.

Here, we adopt the premise that LiDAR is sampling
canopy structure (i.e., the population). Previous research has
suggested that canopy structure is the foliage component of
the canopy sampled (Magnussen and Boudewyn 1998). The
approach to the issue presented here is related to the funda-
mental question of how different sampling intensities affect
the characterization of the population of interest. Distribu-
tions of canopy height or the collective set of samples can be
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Table 4. Mean differences (D; high altitude–low altitude) between laser canopy height and density metrics for high and low alti-
tude surveys and the standard deviation of those differences grouped by return class

D, first returns D, last returns

Metrica Mean Std. Dev. p-valueb Mean Std. Dev. p-valueb

hmax (m) -0.04 0.84 0.0002* -0.72 1.12 <0.0001*

h9 (m) -0.03 0.47 0.6100 -0.21 0.61 0.0122
h8 (m) -0.07 0.45 0.2490 -0.25 0.84 0.0271
h7 (m) -0.09 0.42 0.1044 -0.09 0.90 0.4697
h6 (m) -0.05 0.37 0.3125 -0.22 2.04 0.4165
h5 (m) -0.06 0.47 0.3077 -0.17 1.71 0.4558
h4 (m) -0.09 0.49 0.1650 0.51 2.37 0.1024
h3 (m) -0.04 0.64 0.5973 0.51 2.17 0.0791
h2 (m) 0.08 1.17 0.6033 0.12 1.54 0.5606
h1 (m) 0.27 1.67 0.2234 0.28 2.67 0.4207

hmin (m) 0.83 1.91 0.0015* 1.20 3.20 0.0054*

hmean (m) -0.01 0.40 0.8733 0.08 0.92 0.5214
hcv (%) 0.61 4.89 0.3377 -2.23 6.44 0.0101
d1 (%) -3.63 6.49 0.0001* -0.43 6.78 0.6304
d2 (%) 0.19 5.61 0.7949 0.41 7.12 0.6571
d3 (%) -0.05 5.27 0.9428 0.34 6.61 0.6904
d4 (%) -0.08 4.90 0.9010 -0.26 6.49 0.7602
d5 (%) 0.51 4.52 0.3855 0.58 6.16 0.4690
d6 (%) -1.08 4.81 0.0894 0.49 4.92 0.4429
d7 (%) -1.46 5.51 0.0469 1.85 7.70 0.0707
d8 (%) -1.83 8.49 0.1027 -0.27 9.33 0.8279
d9 (%) 0.51 7.74 0.6164 -4.50 11.77 0.0048*

d10 (%) 2.55 6.97 0.0069* 1.76 13.39 0.3168

ahmax = max. laser canopy height (LCH); hmin = min. LCH; hmean = mean LCH; h1 through h9 = deciles of LCH; hcv = coefficient of variation of LCH; d1 through d10 = canopies den-
sities or proportion of all laser returns in each interval.
bBonferroni-corrected · = 0.007 used for significance testing.
*Significant difference



a function of several parameters, which we have chosen to
amalgamate into the parameter “sampling point density.”
Finally, if a sample properly characterizes a population,
increasing the sampling intensity will not provide any value-
added information, with the exception that high sampling
intensity may further characterize the tails of the distribution.

The results presented here support this framework and
indicate that the majority of laser canopy height and density
metrics from the first and last return classes are insensitive to
variable laser sampling point densities produced from 2 dif-
ferent survey configurations and across different types of for-
est plots. The exceptions observed suggest that the tail ends of
the distributions of laser canopy heights (i.e., hmax and hmin)
in both return classes are affected by different sampling point
densities. Likewise, the proportion of first returns at the upper
and lower range of laser canopy heights (i.e., d1 and d10) is
affected by laser sampling point density. Only the d9 laser
canopy density metric for the last returns was found to be
affected by variable laser sampling point density.

While the study by Næsset (2004b) represents a study sim-
ilar in nature to that presented here, the results from these 2
studies are not directly comparable. First, Næsset (2004b) did
not intend to address the issue of how laser sampling point
density affects various laser canopy and density metrics.
Instead, his study examined how changing the flight altitude
and hence, the laser footprint size, affected laser canopy
height and density metrics equivalent to the h10, h50, h90, hmax,
hmean, and hcv metrics considered in this study. Second, while
Næsset (2004a) applied Bonferroni corrections to control for
Type I errors, the experiment-wise error rate was not adjusted
to control for Type II errors as suggested by Chandler (1995),
and without the p-values reported, direct comparisons of
results from the 2 studies are not possible. Goodwin et al.
(2006) compared normalized canopy height profiles obtained
from different flying altitudes for a Eucalyptus forest in Aus-

tralia. The authors found that at the
plot level, there was no significant dif-
ference between the relative distribu-
tion of LiDAR returns for canopy
height profiles derived from 3 different
altitudes (1000 m, 2000 m and 300 m),
indicating that flying altitude and foot-
print size do not appear to affect
canopy height profile estimation.

The results from this study corrob-
orate the finding of Goodwin et al.
(2006) and suggest that for forest stud-
ies based on plot-level canopy data
modelling, a higher laser sampling
point density does not necessarily pro-
duce data that are “superior” with
respect to information content (i.e.,
canopy height and density metrics). It
is postulated that the primary advan-
tage of using a higher laser sampling
point density lies with a more precise
characterization of the upper and
lower forest canopy components and
potentially for terrain surface model-
ing. However, for studies where this
type of information is not as impor-

tant, such as those forest studies that use deciles of laser
canopy height and intermediate laser canopy density metrics
for estimation of forest biophysical variables, data character-
ized by a lower laser sampling point density may suffice.

Combining the results of this study with existing related
literature, it is becoming apparent that for many stand-level
FRI applications sampling density specifications may be less
critical than other elements of survey configuration. For
example, while sampling density will undoubtedly influence
the probability of sampling tree crown apices, parameters
such as pulse power, beam divergence and swath overlap can
influence the entire frequency distribution. The implications
for the forest manager are in terms of identifying which
aspects of LiDAR project design actually: a) impact the qual-
ity of derived FRI information; and therefore, b) need to be
included within a data collection request for proposals or
scrutinized within the follow-up tender document. The chal-
lenge ahead lies in determining what the optimal laser sam-
pling point density should be for a given type of forest study
and/or application.

Conclusions
This study examined how 2 sampling point densities across
different types of forest plots affected 23 laser canopy height
and density metrics typically used in studies that focus on the
estimation of forest biophysical variables at the plot-level.
Nonetheless, only 4 (i.e., hmax, hmin, d1, d10) of the 23 laser
canopy height and density metrics were found to be signifi-
cantly different across the 2 surveys when the first returns
were considered. Likewise, for the last return data, only 3 laser
canopy height and density metrics (i.e., hmax, hmin, d9) were
statistically different from one another. These laser canopy
height and density metrics corresponded to metrics charac-
terizing the tails of the distributions of laser canopy heights.
This suggests that plot-level data characterized by a higher
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Fig. 3. Canopy height metrics for LiDAR first returns collected from 2 altitudes (maximum
laser canopy height [hmax], decile laser canopy heights [i.e., h1…h9], and minimum laser
canopy height [hmin]).



laser sampling point density do not necessarily equate to data
that are richer in information content. Consequently, higher
sampling point densities may add little value to current
LiDAR forest research at the stand level as these studies tend
to focus on LiDAR returns found within the canopy profile as
opposed to at its extremes. Combined with research indicat-
ing that laser pulse power is a key parameter in controlling the
representation of forest canopy attributes (e.g., Chasmer et al.
2006, Hopkinson 2007), the observations here suggest that
sampling density alone is not a critical aspect of LiDAR sur-
vey design for operational stand-level FRI attribute extrac-
tion. Therefore, it may be feasible to obtain suitable estimates
of forest inventory variables using LiDAR data collected at
low sampling densities, and hence at reduced cost. This study
helps support the need for a systematic collection and analy-
sis of multiple sampling densities for a range of forest ecosys-
tems to determine appropriate sampling rates for accurate
and precise estimation of forest structural variables required
by forest managers in government and industry. This work is
currently being conducted by a team of researchers from gov-
ernment, industry and academia at study sites in the Great
Lakes – St. Lawrence and Boreal forests of Ontario.
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