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“You just have to be able to drill in very hard wood . . . and keep on thinking
beyond the point where thinking begins to hurt.”

—Werner Heisenberg

“Calculemus. . . ”’

—G. W. Leibniz

1 Aim and Level of this Handbook

The purpose of this handbook is to summarize the basic elements of non-relativistic QM
in convenient form, and to introduce just enough of the mathematics of QM that one
can work through an elementary version of Bell’s Theorem, which has been called by
H. P. Stapp (with some justice I think) “the most profound result of modern science.”
Many important parts of QM are omitted here; the object of this handbook is simply to
serve as a useful entry point to the theory, keeping in mind that quantum mechanics is
something that one understands only by practice. An earlier version of this handbook,
together with some exercises on basic linear algebra from Chapter 2 of Hughes (1989),
served as the basis for a rather successful introductory graduate course on foundations
of quantum mechanics at the University of Western Ontario. We needed only about
five three-hour classes to work through all the exercises, taking turns doing them at the
board. Then we were able to read and conduct seminars on a number of the central
papers on foundations of quantum mechanics without being reduced to simply gaping
with admiration at the pretty equations. I later tried the same approach with a senior
undergraduate class at the University of Lethbridge, in 2002. I am very grateful to my
students in these courses for their patience and enthusiasm, and for their detection of
several errors in earlier drafts of this handbook.

1Copyright c© by Kent A. Peacock 1993, 2008
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I learned this way of presenting the material in a very stimulating graduate seminar
on philosophy of physics run by Jim Brown and Bill Seager at the University of Toronto,
in (I think) 1988. Working together through a set of progressive problems quickly brings
everyone in the group to the same level of ignorance, confusion, and humility.

This is a preliminary version, and it contains several omissions which I now (2008)
regard as glaring. However, it can still be used for its original and fairly limited pur-
pose, which was to bring graduate students in philosophy (and interested faculty) with
some minimal mathematical fluency to the point at which they can grasp a rigorous
presentation of Bell’s Theorem.

I would be very grateful for any comments, criticism, or corrections, which could be
directed to kent.peacock@uleth.ca.

I assume that the reader is familiar with certain basic mathematical concepts, espe-
cially the most elementary aspects of linear algebra. Chapter 2 of Hughes is an excellent
introduction to the linear algebra needed here, and is tailored to the needs of someone
learning QM. There are innumerable texts on basic linear algebra that one could consult.
At a minimum, the reader should have some idea what a vector space is, what matrices
are and how to manipulate them (how to multiply them especially), a bit of very elemen-
tary set theory for one optional section at the end, and something about trigonometry
and complex numbers. A smattering of the calculus will be useful, although not indis-
pensible. It is enough, for this handbook, to know that the integral sign is analogous to
summation. Expertise in any of these subjects is certainly not necessary; we will learn as
we go along. Beyond these things, all that is needed is what the German mathematicians
used to call Sitzfleisch—loosely, “sitting muscles”, a willingness to apply the seat of the
pants to the seat of the chair and calculate.

Apart from occasional asides meant to tantalize the reader, I make no attempt what-
soever here to engage in interpretation or controversy. These are simply the absolute
basics necessary to begin thinking productively about the subject. Riches lie beyond.

2 (Some) Basic Elements of QM

I begin by defining a number of terms, and then summarize the postulates of the theory.
I reiterate that this is not a complete presentation of QM. It is meant mainly to give
the reader enough mathematical machinery to follow the elementary statement of Bell’s
Theorem given here.

2.1 State Vector

Most versions of QM take the state vector to be the fundamental object of study. It is
an abstract object (often called a ket) which is an element of a linear vector space called
a Hilbert space. For our purposes, the most important aspect of a Hilbert space is that
it is complete; i.e., that a vector is an element of a given Hilbert space if and only if it
is a linear combination of the basis vectors of the space. For more precise definitions of
Hilbert space and related concepts, see Ballantine (1990) or Redhead (1987). The actual
physical system being studied is presumed to be be associated with a so-called state
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space, which is a Hilbert space which has, as a basis, a set of eigenvectors of a complete
set of commuting observables of the system. The nature of the “association” between
state vectors and the physical realities they are taken to represent is one of the central
interpretational problems.

Kets are written conveniently in Dirac notation as |ψ 〉, and can be represented in
matrix form as a column vector:

|ψ 〉 =


a1

a2
...
an

 , (1)

where the a’s are complex numbers. In this equation, n is the dimension of the state
space. One can take a ket to “represent” (in a way that is controversial) a macroscopically
or classically observable preparation state or perhaps input state of the system. Every
ket can be paired with a “bra” 〈ψ |, which can be represented as a row vector:

〈ψ | =
(
a∗1 a∗2 . . . a∗n

)
, (2)

where a∗ is the complex conjugate of a. The bra can be thought of as representing a
possible macroscopic observation state or output of the system. The correspondence
between kets and bras is antilinear, which means that the bra corresponding to λ1|φ1 〉+
λ2|φ2 〉 is λ∗1〈φ1 |+ λ∗2〈φ2 |.

The inner, or scalar product of a bra with a ket is symbolized by a “bra-ket” 〈φ |ψ 〉;
and is spoken of as the amplitude, or probability amplitude, or transition amplitude (or
in field theory, the propagator) to go from state ψ to state φ. (Read it from right to left.)
The amplitude is a complex number, and can be calculated as the matrix product of the
representative matrices:

〈B |A 〉 =
(
b∗1 b∗2 . . . b∗n

)


a1

a2
...
an

 (3)

= b∗1a1 + b∗2a2 + . . .+ b∗nan. (4)

Here are the rules for the scalar product:

〈φ |ψ 〉 = 〈ψ |φ 〉∗ (5)

〈φ |λ1ψ1 + λ2ψ2 〉 = λ1〈φ |ψ1 〉+ λ2〈φ |ψ2 〉 (6)

〈λ1φ1 + λ2φ2 |ψ 〉 = λ∗1〈φ1 |ψ 〉+ λ∗2〈φ2 |ψ 〉 (7)

〈ψ |ψ 〉 is real, and ≥ 0,= 0 iff |ψ 〉 = 0. (8)

The complex number c = 〈φ |ψ 〉 can be interpreted geometrically as the projection of
|ψ 〉 along |φ 〉.

Two kets |ψ 〉 and |φ 〉 are said to be orthogonal if and only if 〈φ |ψ 〉 = 0.
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The squared modulus |〈ψ |ψ 〉|2 is always a real number. Usually we consider only
kets which have been normalized; i.e., multiplied by a factor of proportionality such that

〈ψ |ψ 〉 = 1. (9)

The normalized basis vectors of a state space obey the orthonormalization conditions

〈 i | j 〉 = δij, (10)

where the Kronecker Delta Function is such that

δij = 1 when i = j, and 0 otherwise. (11)

EXERCISE 1: Let |ψ 〉 = C(| 1 〉+ | 2 〉+ | 3 〉), with 〈 i | j 〉 = δij . Calculate the
normalization coefficient C.

EXERCISE 2: Consider two amplitudes a1, a2, such that

a1 = |a1| exp (iθ1)
a2 = |a2| exp (iθ2)

Show that
|a1 + a2|2 = |a1|2 + |a2|2 + 2|a1a2| cos(θ1 − θ2).

The third term is called the interference term. It depends upon (θ1 − θ2), which is
the phase difference, or relative phase, of the two amplitudes.

Not all systems can be represented by a ket; sometimes a so-called density operator
is needed. (See below.) A state that can be represented by a ket is called a pure state.
In the Copenhagen interpretation of QM, the state vector of a pure state is assumed
to contain all the information available about the system. It is in this sense that Bohr
claimed that QM is complete.

2.2 Operators and Observables

A linear operator is a machine that transforms kets to kets:

A|ψ 〉 = |ψ′ 〉 (12)

Since they are linear,

A(λ1|ψ1 〉+ λ2|ψ2 〉) = λ1|ψ′1 〉+ λ2|ψ′2 〉, (13)

where the λ’s are complex constants (scalars). The product of operators is defined by

(AB)|ψ 〉 = A(B|ψ 〉). (14)

Calculate from the right. Order is crucial. We define a special operator known as the
commutator:

[A,B] ≡ AB −BA. (15)

It is not always equal to zero.
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EXERCISE 3: Show:

1. [A,BC] = [A,B]C +B[A,C]

2. [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Operators can be represented by matrices. The matrix element between vectors |ψ 〉
and |φ 〉 is 〈φ |A |ψ 〉. In particular, in a space of basis {|ui 〉}, the elements of the matrix
representation of A will be

Aij = 〈ui |A |uj 〉. (16)

All operators A have an adjoint A†. If A|ψ 〉 = |ψ′ 〉, then A† is such that 〈ψ |A† =
〈ψ′ |.

EXERCISE 4: Show:

1. 〈ψ |A† |φ 〉 = 〈φ |A |ψ 〉∗

2. (A†)† = A.

3. (AB)† = B†A†.

An operator A is Hermitian if
A = A† (17)

EXERCISE 5: Show that if A is Hermitian,

〈ψ |A |φ 〉 = 〈φ |A |ψ 〉∗.

Almost all the operators we will consider are Hermitian.

2.3 Projectors

Consider the expression |ψ 〉〈ψ |. If applied to a ket |φ 〉 it gives:

|ψ 〉〈ψ |φ 〉 = c|ψ 〉, (18)

where c is the component of |φ 〉 along |ψ 〉. The object |ψ 〉〈ψ | is therefore an operator
which projects another ket along |ψ 〉. It is called the projector, or orthogonal projector.
Suppose we know a column vector representation of |ψ 〉:

|ψ 〉 =

(
a
b

)
.

Then the matrix representation of |ψ 〉〈ψ | is given by the so-called outer product or
tensor product of 〈ψ | and |ψ 〉 as follows:

|ψ 〉〈ψ | =
(
a
b

)(
a b

)
=

(
a2 ab
ab b2

)
. (19)

(We multiply the whole first matrix into each element of the second matrix.)
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EXERCISE 6: Let Pψ = |ψ 〉〈ψ |, where ψ is normalized. Show that P 2
ψ = Pψ.

The condition
P 2 = P (20)

is known as idempotency, and is often taken as the defining condition of a projector
(which is then said to be idempotent).

EXERCISE 7: Show that (|u 〉〈 v |)† = | v 〉〈u |.; hence, show that any projector
is Hermitian.

2.4 Eigenvalues, Eigenvectors, and Eigenstates

If an operator A acting on a vector |ψ 〉 simply produces a vector collinear with |ψ 〉, as

A|ψ 〉 = λ|ψ 〉, (21)

where λ is a complex constant, then we say that |ψ 〉 is an eigenvector (“proper vector”) of
A with eigenvalue λ. It is often convenient to symbolize eigenvectors by their eigenvalues,
as, for example, |λ 〉. Eigenvectors are also called eigenstates.

EXERCISE 8: Show that the eigenvalues of Hermitian operators are real.

EXERCISE 9: Show that if two eigenvectors of a Hermitian operator correspond
to two different eigenvalues, then they are orthogonal.

Operators will generally have several eigenvalues. If some of an operator’s eigenvalues
are equal, they are said to be degenerate. This introduces niceties which we will ignore
here.

EXERCISE 10: From Dirac (1958), p. 34: consider an operator σ such that
σ2 = 1. Show that σ has two eigenvalues, ±1. Show that any ket |ψ 〉 can be
expressed as

|ψ 〉 =
1
2

(1 + σ)|ψ 〉+
1
2

(1− σ)|ψ 〉.

Show that unless |ψ 〉 = 0, the two terms on the right are eigenkets of σ with
eigenvalues 1 and −1 respectively.

2.5 Spectral Representation

Suppose that any vector in a certain Hilbert space Hn can be expanded as a linear
combination of eigenvectors of some operator belonging to that space:

|ψ 〉 =
n∑
i=1

ci| i 〉. (22)

This is called the spectral decomposition of |ψ 〉. The set of complex numbers {ci} are
called the components or expansion coefficients of |ψ 〉 in that state space. The set {|ui 〉}
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is said to span the space if and only if every vector in the space can be expanded as above.
Such a set is then said to be complete, and is spoken of as an eigenbasis for that space.
If, in addition, the basis set obeys the relation

〈ui |uj 〉 = δij,

it is said to be a complete orthonormal basis set.
The elements of an orthonormal basis set obey the so-called closure relation:

n∑
i=1

|ui 〉〈ui | = I, (23)

where n is the dimension of the space and I represents the identity operator. This
expression is sometimes called the spectral decomposition of unity. It expresses the
completeness of the basis set, since it states that an operator formed from the sum of
all possible projectors formed from basis vectors simply acts like identity; it projects a
vector onto itself.

EXERCISE 11: Suppose that two vectors |ψ 〉 and |φ 〉 in a given space have
components {ci} and {di} respectively, relatively to a given basis {|ui 〉}. Show
that

〈ψ |φ 〉 =
∑
i

c∗i di

and
〈ψ |ψ 〉 =

∑
i

|ci|2.

It is, of course, possible for a state space to have many different bases; we will entirely
omit the large question of transformation between different bases.

2.6 Observables

An operator which is Hermitian and whose eigenvectors span the state space is said to be
an observable. If the set {|ui 〉} consists of such eigenvectors, it is called an eigenbasis.

EXERCISE 12: Show that the matrix representation of an observable is diag-
onal in the eigenbasis of that observable. Show that the diagonal elements are the
eigenvalues.

EXERCISE 13: Show that if two operators A and B commute, and if |ψ 〉 is an
eigenvector of A, then B|ψ 〉 is also an eigenvector of A with the same eigenvalue.

EXERCISE 14: Show that if two observables A and B commute, and if |ψ1 〉
and |ψ2 〉 are two eigenvectors of A with unequal eigenvalues, then 〈ψ1 |B |ψ2 〉 = 0.

It is possible to show that if a number of observables commute, then one can construct
an orthonormal basis of the state space with eigenvectors common to those observables.
(We’ll skip the proof, which involves concepts we don’t really need here. See Cohen-
Tannoudji et al., p. 140.) We note the notion of a complete set of commuting observables
(CSCO): roughly, a set of mutually commuting observables whose common eigenvectors
are sufficient to span the state space.
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2.7 Unitary Operators

The inverse of an operator A, if it has one, is an operator A−1 such that

AA−1 = A−1A = I. (24)

An operator is said to be unitary if its inverse equals its adjoint:

A† = A−1. (25)

That is,

AA† = A†A = I. (26)

Unitary operators conserve the scalar product: let

|ψ′1 〉 = U |ψ1 〉, |ψ′2 〉 = U |ψ2 〉,

where U is unitary. Then

〈ψ′1 |ψ′2 〉 = 〈ψ1 |U †U |ψ2 〉 = 〈ψ1 |ψ2 〉. (27)

Unitary operators are the generalizations to complex spaces of the orthogonal operators
of real-valued vector spaces. Important examples: rotation operators, the time evolution
operator.

2.8 Postulates of the Theory

We can summarize the basic claims of QM in a number of postulates. The way we do
it here is certainly not the only way to define QM; in fact, some of what we say here
(especially regarding the projection postulate) could be controversial.

1. Quantum of Action. There exists a universal constant of action, Planck’s con-
stant, the value of which is determined experimentally to be

h = 6.626× 10−27erg.seconds.

The action associated with any actual physical system always comes in quanta of
magnitude h. It is very important to realize that we have absolutely no idea why
action should be quantized, or why the quantum of action takes the particular value
that it does. The quantization of action implies that any theory that treats action
as a continuous, differentiable variable has to be an approximation.

2. Superposition Principle. Any linear combination of kets of the state space of
a system is also a ket of the state space, and hence represents a possible physical
outcome. There are some limitations upon superposition, called superselection
rules, but we shall not concern ourselves immediately with those here.
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3. Measurables are Observables. A quantity is physically measurable if and only
if it can be represented by an observable: a Hermitian operator. Its eigenvalues are
the only possible results that could be obtained upon measurement of the observ-
able. The set of possible eigenvalues of an observable are called its spectrum. Some
spectra are discrete (e.g., spin states, energy of a closed system), while others are
continuous (positions, energy of an open system). In the following we shall care-
lessly identify measurable physical quantities with the observables that represent
them.

4. Conjugate Quantities. There exist pairs of conjugate quantities which cannot
be simultaneously measured with absolute certainty. The conditions which allow a
measurement of one to some extent make impossible the measurement of the other.
We say that the measurement of one interferes with the measurement of the other,
but one must understand this carefully; it is not exactly that the measurement
of one somehow jiggles the apparatus so severely that our registration of the pre-
existing sharp value of the other is blurred; rather, the measurement of one somehow
precludes the sharp definability of the other. Exactly what this means is one of the
central problems.

The observables representing conjugate quantities are non-commuting. Examples
are position and momentum (in the same direction; position and momentum in
different directions will commute), and the components of angular momentum in
different directions. Conjugate observables obey so-called canonical commutation
relations such as the following for position and momentum:

[X,Px] = i~I, (28)

where I is, again, the identity operator. Angular momentum obeys the relations

[Jx, Jy] = i~Jz, (29)

and two similar relations formed by cyclically permuting {x, y, z}. In quantum
mechanics many important quantities are defined in terms of their commutation
relations.

It can be shown that any two non-commuting quantities A and B obey an uncer-
tainty relation

∆A∆B ≥ ~. (30)

(See Cohen-Tannoudji, or Redhead, for instance, where this is developed from the
commutation relations.)

Energy and time also obey an uncertainty relation:

∆E∆t ≥ ~; (31)

but the meaning of this has been the subject of much discussion, since we do not
know how to represent time as an observable in quantum mechanics. This seems
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odd, since one can, after all, read a clock; but there is no clear consensus on whether
this represents a defect in the theory, or is just the way things are.2

5. Time Evolution of the State. The state evolves with time according to the
time-dependent Schrödinger Equation:

i~
∂|ψ 〉
∂t

= H(t)|ψ 〉, (32)

where H(t) is the Hamiltonian. This time evolution is unitary—meaning reversible,
in effect—and can be described as the action of an operator called the evolution op-
erator upon the state. If the potential is independent of the time, the system exists
in so-called stationary states which are analogous to the normal modes or stand-
ing waves that occur in classical vibrating systems. The various atomic orbitals,
for instance, are stationary states. A large part of the physicist’s work consists in
finding ways to calculate stationary states for various systems.

6. Reduction Postulate.

If an observable A is measured and found to have eigenvalue aj, then the system is
immediately thereafter in eigenstate | aj 〉. (If A is degenerate, a more complicated
statement is required, which we will entirely ignore here.) Reduction is therefore a
process like this: ∑

i

ci| ai 〉 → | aj 〉. (33)

Suppose, for instance, that a particle was described by a spherically symmetric wave
spreading out in space. If it is detected at a certain point with a small uncertainty,
we immediately know that it is an eigenstate of position somewhere within that
small range; the spherical wave just disappears; it is said to have “collapsed” or
“reduced”. There are several difficulties with this idea. Note, first, that it is
irreversible and therefore nonunitary. QM therefore countenances two sorts of time
evolution of the system, a unitary evolution when the system is not being observed,
and a nonunitary evolution when it is disturbed by measurement. The problem, in
effect, is to understand what the arrow in the above equation represents. One thing
that makes this difficult is that meaning of “immediately” is very unclear in the
relativistic context. The collapse is apparently a superluminal process. Much effort
has been expended to show that it cannot transport energy or information and

2Here is an observation for those who have some familiarity with special relativity. The fact that
position and time are unified in the position-time 4-vector suggests that if position is an operator, time
should be, too—and also strongly suggests that the lack of a time operator is indeed a defect in the
usual theory. The difficulty with finding an acceptable time operator is connected with the fact that
position, momentum, time and energy are presumed to be capable of taking on a continuous spectrum
of values. Many authors in the field of quantum gravity now suspect that in order to construct a fully
quantal theory of space and time we may have to give up that assumption. Also note the interesting fact
that the corresponding components of the position-time and momentum-energy 4-vectors are conjugate.
It seems obvious that the invariant magnitude of these 4-vectors must be conjugate as well; likely every
possible 4-vector would have its conjugate.
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therefore does not threaten relativity directly. Whether or not these controversial
arguments are correct as far as they go, the whole notion seems unsettling in any
case. Furthermore, one gets into severe paradoxes unless one supposes that the
collapse occurs in an invariant manner; on the other hand, there is no obviously
nonarbitrary way to set up a relativistically invariant reduction postulate.3

The reduction postulate is one of the most controversial areas of QM. Many authors
argue, for various reasons, that it is incorrect or incoherent, and should be dropped
from the theory.

7. Calculation of Probabilities. When the quantity A is measured on a system in
a normalized state |ψ 〉, the probability P (an) of obtaining the eigenvalue an as a
result is

P (an) = |〈 an |ψ 〉|2 (34)

where | an 〉 is the normalized eigenvector associated with the eigenvalue an. In
other words, to calculate the probability of a process having a certain outcome, we
take the modulus of the amplitude of that process.

EXERCISE 15: Show that P (an) = 〈ψ | an 〉〈 an |ψ 〉.

EXERCISE 16: Show that
∑

i |〈 ai |ψ 〉|2 = 1; i.e., that probabilities sum
to unity, as required. Hint: use the Closure Relation.

Suppose that the system can go through more than one intermediate state to get
to its final state. (Think of the double-slit experiment, for instance, in which the
particles can go through either slit.) Suppose we observe only the initial and final
states. If we could tell, without further measurement or further disturbing the
system, which intermediate states the particle was in, then we get the probability
of the final state by directly summing the probabilities of each alternate route, just
as we would with classical probabilities. However, if we could not do this—and this
would be the case if observing the intermediate states involved the measurement
of observables conjugate to the ones required to measure the final state (which
would change the final state we would get)—then we get the probability of the
final state by first summing the amplitudes for each possible route and then taking
the modulus.

Again: let α1, α2 by amplitudes for two possible routes to a final outcome a. If the
routes are distinguishable, then

P (a) = |α1|2 + |α2|2. (35)

However, if the routes are indistinguishable without the measurement of noncom-
muting quantities, then

P (a) = |α1 + α2|2 (36)

3At least, this is the usual view. A case can be made that wave packets collapse in such a way as
to satisfy phase invariance; this is a manifestly covariant prescription. See Peacock (2006) for further
explorations of this possibility.
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Recalling Exercise 2, this means that interference terms between the two possible
routes will enter into the final probability. We therefore note that interference—and
in effect, all the bizarre properties of QM that flow from it—is fundamentally due
to the superposition principle. See Feynman (1963), especially chapter 2, for more
on this.

2.9 Expectation Values

The expectation value 〈A 〉 is the average over a set of identical measurements of A on
identically prepared systems. It is not the same thing as a time average of an observable
for one system. The expectation values of observables on systems where h can be taken
as negligibly small converge to the classically observable values.

Suppose pi is the probability of obtaining the i-th eigenvalue ai. Then

〈A 〉 =
∑
i

piai. (37)

EXERCISE 17: Show that 〈A 〉 =
∑

i |〈 ai |ψ 〉|2ai, where as usual | ai 〉 is the
eigenstate corresponding to the eigenvalue ai.

EXERCISE 18: Show that 〈A 〉 = 〈ψ |A |ψ 〉. Hint: use the Closure Relation.

2.10 Mixed versus Pure States

If we know (or are willing to grant) with certainty that a system was prepared in a state
|ψ 〉, then we say that it is in a pure state. However, suppose we have only probabilistic
knowledge of the preparation states of the system, so that there are probabilities pk that
it is in the corresponding states |ψk 〉, with

∑
pk = 1. Then we say that the system is in

a mixed state. Particles emerging from an aperture in a furnace, for instance, would be
in a mixed state, since we could have only statistical information about their energies,
polarizations, etc. Any realistic “large” object, such as Schrödinger’s cat, for instance,
could in practise only be described by a mixed state. Hence the whimsical description
that one sometimes sees of the poor cat as being in a pure state,

| puss 〉 =
1√
2

(| alive 〉 ± | dead 〉), (38)

is somewhat misleading. A statistical mixture must not be confused with a linear su-
perposition. There is no interference between elements of a mixed state—we treat them
using classical probabilities.

2.11 Density Operator Formalism

The density operator provides an alternate way of doing QM which is especially useful
for mixed states, since one can state equations for the calculation of probabilities and
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expectation values in terms of it which are true for both kinds of states. From this point
of view, the pure state is a special case of the mixed state.

The density or statistical operator of a pure state |ψ 〉 is

ρψ = |ψ 〉〈ψ |. (39)

This of course says no more than the specification of the ket |ψ 〉, but writing it this way
turns out to be very useful. In a mixed state the density operator is

ρ =
∑
k

pk|ψk 〉〈ψk |. (40)

Note, again, that the pk are to be understood as classical probabilities. In particular,
this means that there is no interference between them.

I will pass over the detailed properties of the density operator, since we don’t need it
here immediately. See Cohen-Tannoudji et al., (1977) p. 295–307, for a concise summary.

Some authors (notably Ballentine 1990) take the density operator as the basic de-
scription of the quantum state, rather than the ket. This is useful for some purposes,
but I feel that in a foundational study it tends to obscure the basic difference between
quantum and classical probability—namely the existence of amplitudes in the calculation
of probabilities—and makes quantum mechanics more like classical statistical mechanics
than it really is. Nevertheless, the density operator formalism is especially useful—in fact,
indispensible—in quantum statistical mechanics, in which one deals with systems with
enormously many degrees of freedom, so that one could never have more than (classically)
probabilistic knowledge of the precise preparations of all components of the system.

2.12 Tensor Products and Composite Systems

It is especially important that we grasp some of the basic properties of the QM representa-
tion of composite systems, since this is where some of the most surprising manifestations
of nonlocality and nonseparability make their appearance.

Consider two systems 1 and 2—particles, say—which have interacted dynamically.
Let their state spaces be E1 and E2 respectively. Then the possible states of the composite
system of 1 and 2 belong to the tensor product space E1⊗E2, which we define as follows.
If |u1 〉 and |u2 〉 are base states of E1 and E2 respectively, then we formally define their
tensor product |u1 〉 ⊗ |u2 〉 ≡ |u1u2 〉 as the object with the properties

|u1u2 〉 = |u2u1 〉 (41)

|u1(λu2) 〉 = λ|u1u2 〉 = | (λu1)u2 〉 (42)

|u1(v1 + v2) 〉 = |u1v1 〉+ |u1v2 〉. (43)

A simple notation is highly desirable here. In the following, we will assume that in a
state such as | ab 〉, | a 〉 denotes a state of particle 1 and | b 〉 denotes a state of particle
2. It is sometime also useful to write this as | ab 〉 = | a 〉| b 〉. These conventions avoid a
proliferation of subscripts. The product space E1 ⊗ E2 then consists of all possible linear
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combinations of the base states {|u1i
u2j
〉}. The superposition principle states that any

of these are, in general, possible states of the system.
Operators defined on E1 or E2 can be extended to E1 ⊗ E2 as well. We need to

understand how to calculate the expectation value of such an operator.
First, the scalar product in E1⊗E2: the scalar product of | ab 〉 with | cd 〉 is given by

〈 cd | ab 〉 = 〈 c | a 〉〈 d | b 〉. (44)

Now, let A1 and B2 be operators acting in E1 and E2 respectively. Then their extension
to the product space is an operator A1 ⊗ B2 which acts on the elements of the product
space as follows:

(A1 ⊗B2)| ab 〉 = A1| a 〉 ⊗B2| b 〉. (45)

The expectation value of A1 ⊗B2 is given by

〈 ab |A1 ⊗B2 | ab 〉 = 〈 a |A1 | a 〉〈 b |B2 | b 〉. (46)

EXERCISE 19: Show this.

If, instead of a simple product | ab 〉, we had a vector of the form

|ψ 〉 = | ab 〉+ | cd 〉,

what would we get? First, for simplicity in notation, write A1 ⊗B2 = C. Then we get

〈ψ |A1 ⊗B2 |ψ 〉 = 〈ψ |C |ψ 〉 (47)

= (〈 ab |+ 〈 cd |)C(| ab 〉+ | cd 〉) (48)

= 〈 ab |C | ab 〉+ 〈 cd |C | ab 〉+ 〈 ab |C | cd 〉+ 〈 cd |C | cd 〉. (49)

Then expand the four matrix elements as above (Eq. 46). This will be useful in the
derivation of Bell’s Theorem below.

2.13 Factorizability

Consider a physical consisting of two subsystems α and β, which may be presumed to
have interacted, or still be interacting. A ket belonging to the state space of the combined
system is said to be non-factorizable if it cannot be written as a simple product

|Ψ 〉 = c| i 〉 ⊗ | j 〉, (50)

where | i 〉 and | j 〉 would be states of α and β respectively, and c is some complex constant.
A state which can be factored this way is also called a product state. A non-factorizable
ket can only be written as

|Ψ 〉 =
∑
i,j

cij| i 〉 ⊗ | j 〉 (51)

where the cij are complex coefficients. The crucial point is that the most general ele-
ment of the product space E1 ⊗ E2 has this form. Such states are said to be “entangled”
(Schrödinger’s terminology); since the state of one component inevitably becomes en-
meshed in the calculation of probabilities for quantities to be measured on the other
component. The measurable properties of spatially separate particles in an entangled
state can be correlated even if the particles are no longer dynamically interacting.



First Steps in Quantum Mechanics 15

EXERCISE 20: Show that the singlet state,

|ΨS 〉 = 1/
√

2(| +−〉 − | −+ 〉), (52)

is non-factorizable. That is, prove we cannot write it in the form |ΨS 〉 = | 1 〉| 2 〉,
where | 1 〉 and | 2 〉 are pure states of the two particles. Hint: write | 1 〉 and | 2 〉 as
superpositions of two spin states,

| 1 〉 = a| 1(+) 〉+ b| 1(−) 〉 (53)
| 2 〉 = c| 2(+) 〉+ d| 2(−) 〉 (54)

and show that there are no possible values of a, b, c, or d which can satisfy the
definition of the singlet state.

The violation of Bell’s Inequality in the singlet state is not due to interference between
putative localized states of the two spatially separate particles—in fact, it can be shown
that they do not exist in separate pure states (see Page’s paper)—but is due to the
interference between the nonlocal states | +−〉 and | −+ 〉.

2.14 Some Spin Basics

We will describe just enough of the mathematics of spin to enable us to make the essential
calculations for Bell’s Theorem. There is more, much more, than I indicate here.

What is spin? Good question; Pauli called it a “non-classical two-valuedness” associ-
ated with particles. Like many things in QM, it can be given a very clear mathematical
specification, but is almost impossible to interpret. Spin is a quantity that has units of
angular momentum (or equivalently, action) but which cannot be transformed away by a
change of coordinates, the way orbital angular momentum could be (at least in principle).
Spin is generally measured in units of ~ = h/2π.

EXERCISE 21: Show that angular momentum and action are dimensionally
equivalent.

One can loosely imagine spin as an internal rotation state of a particle; it is rather
as if each elementary particle were like a tiny spinning magnet. However, remember that
the truly elementary particles (leptons, quarks, photons) have no presently measurable
diameter; furthermore, we have no idea how to transform to the “internal rest frame” of
an elementary particle; so that a picture of a particle with spin as a rotating object is
dubious at best.

Spin gives a particle a magnetic moment and hence is manifested through the inter-
action of particles with an external magnetic fields. A particle with spin will be deflected
in certain specific directions in a magnetic field; spin-1/2 particles such as electrons will
be deflected either up or down in the direction of an external applied field. Spin exhibits
a curious property known as “space quantization”. This means that the particle will
always be found to have spin only in these specific directions, completely regardless of its
initial state of motion. To grasp how odd this is, realize that the external magnetic field
can be applied in any direction; nevertheless, the particle will always deflect either up or
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down with respect to that field. This strongly suggests that the particle did not have an
intrinsic angular momentum before the measurement, in the sense that a classical object
(say a spinning baseball) would; one could more accurately say that the particle had only
a potential or possibility to be in various spin states; the possibility becomes actualized
upon the interaction. At least, this is the way many people find themselves speaking of
quantum phenomena; it is not clear how meaningful it really is to talk of the quantum
state as representing “potentia” or “possibilia”.

Particles with integral spin (spin = ±n~, n = 0, 1, . . .) are called bosons because
they obey so-called Bose-Einstein statistics; particles with half-integral spin (spin =
±(2n+ 1)/2 ~, n = 0, 1, . . .) are called fermions because they obey so-called Fermi-Dirac
statistics. Light quanta (photons) are bosons (with spin 1), electrons are fermions (spin
1/2). Fermi-Dirac particles obey the Exclusion Principle, which means that no two
fermions can be in exactly the same quantum state. Bose-Einstein particles, on the other
hand, tend to congregate in the same energy state, which can lead to so-called Bose-
Einstein condensation and amazing macroscopic quantum behavior such as superfluidity
and superconductivity. Roughly speaking, one can think of “solid” matter as constructed
of fermions, and mediating fields as constituted of quanta of bosons.

Spin is represented by a vector operator

Ŝ =
~
2
σ̂ =

~
2

(σx, σy, σz) (55)

with

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(56)

These are the Pauli matrices.

EXERCISE 22: Calculate the matrix representing Ŝ2 = Ŝ · Ŝ.

The Pauli matrices obey the commutation relations

[σx, σy] = 2iσz, (57)

and two similar relations obtained by cyclic permutation of {x, y, z}.

EXERCISE 23: Show this by explicit matrix multiplication.

EXERCISE 24: Show that σ2
x = σ2

y = σ2
z = I

EXERCISE 25: Show that σxσy = −σyσx = iσz.

EXERCISE 26: Show that [σ̂2, σz] = 0.

Because they commute, σ̂2 and σz share a common eigenbasis {|+ 〉, | − 〉}, which can
be represented as column vectors

|+ 〉 =

(
1
0

)
(58)

| − 〉 =

(
0
1

)
(59)



First Steps in Quantum Mechanics 17

Matrix multiplication shows that

σz|+ 〉 = |+ 〉, (60)

σz| − 〉 = −|− 〉. (61)

That is, | ± 〉 are eigenstates of σz with eigenvalues ±1 units of ~/2.

EXERCISE 27: Carry out the multiplication to show this.

It can also be shown that

σx|+ 〉 = | − 〉 (62)

σx| − 〉 = |+ 〉 (63)

and

σy|+ 〉 = i| − 〉 (64)

σy|+ 〉 = −i| − 〉 (65)

EXERCISE 28: Do these too.

These kets obey the orthnormalization relations

〈+ |+ 〉 = 〈− |− 〉 = 1, (66)

〈+ | − 〉 = 〈− |+ 〉 = 0. (67)

EXERCISE 29: And these.

Note that | ± 〉 are spin states of a single particle. A particle’s total state is just a
direct tensor product of its spin state with a state giving its position and momentum.
Note that it is always assumed that there is no entanglement between spin and spacetime
states. This is an example of a superselection rule. That is why we can talk about spin
states of particles, without mentioning the other aspects of their state. It is not absolutely
clear that this is physically justified; however, entanglement between spin and position
would be nonlocality with a vengeance.

If |+ 〉 and | − 〉 are the spin states of individual spin-1/2 particles such as electrons,
the tensor product spin space is spanned by

| +−〉 = |+ 〉 ⊗ |− 〉 (68)

| −+ 〉 = | − 〉 ⊗ |+ 〉. (69)

Physically, | + −〉 represents a state in which one particle (say on the left) would be
found to have spin in the z-direction to be up, and the right particle would be found to
be spin down. States such as | + + 〉 would be impossible for fermions, by the Exclusion
Principle. The general elements of the spin space will be superpositions of these two base
states.
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2.15 Some Other Terminology

I briefly discuss a few other terms, before proceeding to the main topic.

2.15.1 Wave Functions

The wave function is the form of the state vector |Ψ 〉 when expressed in a continuous
representation, generally either position or momentum. When projected into the | r 〉 or
position representative, the wave function is

〈 r |Ψ 〉 = Ψ(r) where | r 〉 = δ(r − r0). (70)

The simplest wave function is the 1-dimensional pure plane wave,

〈x | p 〉 =
1√
2π~

exp (ipx/~). (71)

I mention this mainly to make it clear that the state vector and the wave function are
not the same thing; think of a wave function as the projection of the state vector either
into ordinary spacetime, or the conjugate relativistic position-momentum space.

2.15.2 Hidden Variable Theories

A hidden variable theory is any theory which claims that the probabilistic results of QM
are determined by an underlying mechanism or reality which would be described in terms
of real-valued quantities which are presently hidden from our view.

A local hidden variable theory says that the underlying reality exhibits no action
at a distance; or equivalently, that the underlying reality is a structure living within
relativistic spacetime. Classical electromagnetic theory is a local theory par excellence.

A nonlocal hidden variable theory says that the underlying reality is not primarily
spatio-temporal; the apparent locality of many physical phenomena is (as Leibniz might
have said) a “well-founded phenomenon”. Nonlocal h.v. theories allow instantaneous (i.e.,
superluminal) causation; an example is the Bohm theory in which quantum correlations
are mediated by the nonlocal quantum potential. A contextual h.v. theory says that
the results of observations are completely determined by variables which pertain both to
the measuring apparatus and the system being studied. Bell, Shimony, and others have
shown that a nonlocal contextual h.v. theory may is consistent with QM (although there
are problems with relativity!)

A stochastic h.v. theory says that the hidden variables λ may be subject to random
variations or may not be knowable with certainty; hence all functions of them should be
weighted by a classical probability density ρ(λ).

2.15.3 Dispersion

This term is used variously in the literature. Properly speaking it refers to the tendency
for a wave packet to spread with time. It is also used to refer to the measure of uncertainty
∆A of an observable A, defined as

∆A =
√

var(A) = 〈 (A− 〈A 〉)2 〉
1
2 . (72)
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QM states that no system can be observed without uncertainty in some of its attributes.
Hidden variables theories postulate that there are “dispersion free” states over which the
predictions of QM are some sort of average.

3 A Standard Derivation of Bell’s Theorem

In this section we run through a more or less stock derivation of Bell’s Theorem, much
in the vein of a presentation given by Selleri (1990). There are three parts to this
argument, as there are in any version of a Bell’s Theorem: derivation of the classical
result; derivation of the quantum result; and comparison of the two. Probably the
most elementary derivation of Bell’s Theorem that is still mathematically rigorous is the
ingenious presentation by Tim Maudlin (1994).

We will consider physical systems α and β which have interacted dynamically in the
past, and which will accordingly be described by a non-factorizable ket of the tensor
product space Hαβ, where

Hαβ = Hα ⊗Hβ, (73)

Hα andHβ being the state spaces of α, β respectively. An example of such an “entangled”
system would be a particle ε which decays to α and β:

ε→ α + β.

Let there beN decays, N measurements of an observable A(α) on α, andN corresponding
measurements of an observable B(β) on β. (In other words, we assume ideal detector
efficiency. Some, such as Arthur Fine, have suggested that this may be illegitimate.) We
assume that α and β are far enough apart that the time required for each measurement
is small in comparison with the time required for light to travel between them. The
quantities a and b are parameters such as detector angle (“knob settings”) that can be
varied locally at α and β respectively.

We design the experiment so that A and B are dichotomic quantities. That is, we
assume that the results of measuring them are yes/no answers, which can be represented
as having possible values ±1. Almost any conceivable measurement can be cast in these
terms. (For instance, we could measure position by asking whether something was to the
left or right of a reference point.)

The observer at α will obtain a set of results {A1, A2, . . . , AN}, and the observer at β
will obtain results {B1, B2, . . . , BN}, with Ai, Bi pertaining to the i-th decay. We want
to study the correlation between α and β results, so we define a correlation coefficient

P (a, b) ≡ 1

N

N∑
i=1

Ai(a)Bi(b). (74)

Clearly, |P (a, b)| ≤ 1.

EXERCISE 30: Show this.
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EXERCISE 31: Let Y be the fraction of results that agree (i.e., the fraction of
cases in which Ai = Bi) and N the fraction of cases that disagree. Show that

P (a, b) = Y −N.

Now, we need some way of comparing the QM and local realism predictions about
correlations. One way we can do this is to define a quantity ∆:

∆ ≡ |P (a, b)− P (a, b′)|+ |P (a′, b) + P (a′, b′)| (75)

where a, a′ and b, b′ are knob settings at α and β respectively. We will calculate ∆ by
local realism, and by QM, and show that for some detector parameters they disagree.

3.1 Correlations According to Local Realism

Local realism postulates that the values of observable quantities are determined by some
“hidden” parameters λ such that there is a strict functional dependence of the observables
upon λ. Accordingly, we write the A’s and B’s as A(a, λ), B(b, λ), to indicate this
dependence. Note, however, that A is presumed not to be a function of b, nor is B
a function of a. This expresses the view that α and β are, indeed, separate physical
systems.

For generality, we also assume that we have only probabilistic knowledge of λ; in
other words, it is a so-called “stochastic” hidden variable. Then our results should be
weighted by a probability density ρ(λ), obeying the normalization condition∫

dλρ(λ) = 1. (76)

In these terms, the correlation coefficient will be

P (a, b) =

∫
dλρ(λ)A(a, λ)B(b, λ). (77)

EXERCISE 32: Be sure that you see why this is so.

Then we can show that

|P (a, b)− P (a, b′)| ≤
∫

dλρ(λ)|B(b, λ)−B(b′, λ)|. (78)

EXERCISE 33: Show this. Hint: use |
∫
dx f(x)| ≤

∫
dx|f(x)| and the fact

that |A(a, λ)| = 1.

Similarly we get

|P (a′, b) + P (a′, b′)| ≤
∫

dλρ(λ)|B(b, λ) +B(b′, λ)|. (79)
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Adding these inequalities, we get

∆LR ≤
∫

dλρ(λ)|B(b, λ)−B(b′, λ)|+ |B(b, λ) +B(b′, λ)|, (80)

where ∆LR means ∆ according to local realism. Now, we can show that

|B(b, λ)−B(b′, λ)|+ |B(b, λ) +B(b′, λ)| = 2. (81)

EXERCISE 34: Do this. Hint: consider cases.

Thus we finally get
∆LR ≤ 2. (82)

EXERCISE 35: Show this. Hint: use the normalization condition.

This is actually the Clauser-Horne-Shimony-Holt version of the Bell Inequality; Bell
himself (1964) considered a case in which there were only three detector settings.

Note the essential irrelevance of λ. What makes the above calculation work is the
separability—i.e., the factorizability—of the A’s and B’s.

3.2 The Quantum Prediction

Now we calculate ∆QM . Be sure you have worked through the section above on spin.
Suppose that α and β are spin-1/2 particles such as the electron. We assume that

they are emitted from a source with spin 0, and that their spins are measured at spatially
remote locations (by a device known as a Stern-Gerlach detector). It can be shown (see
Cohen-Tannoudji) that the total, or global, state of the system is given by the so-called
singlet state

|ΨS 〉 = 1/
√

2(| +−〉 − | −+ 〉). (83)

Measurements of spin in any direction a are given by the projection of the spin operator
on a unit vector in that direction:

spin in direction a = σ̂ · â. (84)

We describe the product of results A(a)B(b) as a tensor product operator σ̂α · â ⊗ σ̂β ·
b̂, where σ̂α, σ̂β, are spin operators in Hα and Hβ respectively. Then the correlation
coefficient we seek is the expectation value of this product:

P (a, b)QM = 〈ΨS | σ̂α · â⊗ σ̂β · b̂ |ΨS 〉. (85)

We set up our apparatus and coordinates so that â is in the z direction, and b̂ is in the
xz plane. Then we get

σ̂α · â = σz (86)

σ̂β · b̂ = σz cos θ + σx sin θ (87)

where θ is the angle between â and b̂.
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Figure 1: The Setup

EXERCISE 36: Confirm this.

For convenience in calculation, define

σz = A (88)

σz cos θ + σx sin θ = B. (89)

Then we can show that

P (a, b)QM = 〈ΨS |A⊗B |ΨS 〉 (90)

= − cos θ. (91)

EXERCISE 37: Do it.

3.3 The Contradiction

To compare ∆LR and ∆QM , we can set up our apparatus so that â and â′, and b̂ and b̂′

are mutually orthogonal, but θâb̂ = π/4.

EXERCISE 38: Show that for this arrangement we get ∆QM = 2
√

2.

Thus, for at least some settings of an EPR-Bohm apparatus, the classical prediction
is violated.

The most convincing verification to date of the QM prediction was the experiment by
Aspect et al. (1981). They did not actually use the singlet state, but a similar entangled
state.
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4 Could There be a Bell Telephone?

A hypothetical “Bell Telephone” would be some sort of quantum mechanical device which
could allow a localized experimenter to superluminally control distant effects by means
of quantum mechanical nonlocality. The orthodox view, which has been argued for by
many authors, is that a general prohibition against controllable superluminal effects is a
consequence of the postulates of quantum mechanics, or at least of local quantum field
theory (which arguably is less general than abstract quantum theory as such). (See e.g.,
Eberhard and Ross 1989.) Abner Shimony in several publications has thus ironically
described the relationship between quantum mechanics and relativity theory to be one of
“peaceful coexistence,” and has described quantum nonlocality not as a form of action at
a distance, but “passion” at a distance. At least three authors—the present writer, J. B.
Kennedy, Jr., and Peter Mittelstaedt—have criticized the orthodox view on the grounds
that it is question-begging: that is, on the grounds that the standard no-signalling ar-
guments rely on specialized locality assumptions of one form or another which undercut
the generality of the proofs. (See Peacock 1992, Kennedy 1995, Mittelstaedt 1998, and
Peacock and Hepburn 2000; and references therein.) Recent work by Aharonov et al.
(2004) suggests that it might be possible to bring about controllable superluminal sig-
nalling using quantum non-demolition experiments, to which the standard no-signalling
arguments are not applicable. This question remains intensely controversial, and a proper
treatment of it is decidedly beyond the scope of these notes.

5 A Bell Inequality from Set Theory

To conclude, we will work through a particularly apposite derivation of a Bell’s Inequality
due to K. C. Hannabuss (1988, p. 107–108). Let A, B, C be three events and A′, B′, and
C ′ be their complements (i.e., A′ is just the event of A not happening, etc.) Let P (A)
be the probability of A, and so on. Now define

PAB = P (A′ ∩B) + P (A ∩B′) (92)

= Prob(A or B but not both).

Then:

PAB + PBC

= P (A′ ∩B) + P (A ∩B′) + P (B′ ∩ C) + P (B ∩ C ′) (93)

≥ P (A′ ∩B ∩ C) + P (A ∩B′ ∩ C ′) + P (B′ ∩ C ∩ A′) + P (B ∩ C ′ ∩ A) (94)

= P (A′ ∩ C) + P (A ∩ C ′) (95)

= PAC . (96)

In summary: PAB + PBC ≥ PAC .

EXERCISE 39: Explain all the above steps.
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We can define complementary probabilities QAB = 1− PAB and write the inequality
as

1 +QAC ≥ QAB +QBC . (97)

EXERCISE 40: Show this.

EXERCISE 41: Show that QAB = Prob(results agree).

Eq. (97) is a version of Bell’s Inequality. Again, it can be shown to be violated
by a variety of entangled quantum systems. One could thus say that Bell’s Theorem
amounts to the statement that quantum mechanics violates set theory. Cantor (quoted
in Kamke (1950), p. 1) defined a set as “a collection into a whole, of definite, well-
distinguished objects . . . of our perception or of our thoughts.” The properties of quantum
mechanical systems cannot in general, therefore, be collected into well-defined wholes of
well-distinguished objects. More precisely, as Bub (1997) puts it, there is no consistent
valuation of all of the possible experimental questions which could be asked of a quantum-
mechanical system. Bub and other recent authors thus insist that the basis of quantum
mechanics, if there could be such a thing, has to be non-Boolean. (The statement that
quantum mechanics is non-Boolean is called the Kochen-Specker Theorem; see Hooker
(ed.) 1975, Bub 1997.) Pitowsky (1994) shows that the Bell Inequalities are simply
special cases of a class of inequalities between frequencies first defined by George Boole
in the 1850s; the Boole inequalities amount to consistency conditions, and were dubbed
by Boole ’conditions of possible experience.’

One way of expressing the difference between set theory and quantum mechanics is
as follows: classically, if A and B are disjoint events, we have

P (A ∪B) = P (A) + P (B) = Prob(A or B but not both),

while in quantum mechanics we have

P (A ∪B) = P (A) + P (B) + interference terms.

This is due to the fact—which we fundamentally do not understand—that in QM there
is an extra step involved in calculating probabilities, namely the summation of complex
amplitudes. (Recall Exercise 2.) Quantum probability reduces to classical probability in
the limit in which the interference terms approach zero. Entanglement itself is, as noted
earlier, from the mathematical point of view simply the effect of interference between
multiparticle states such as | +−〉 and | −+ 〉. Feynman may have been right, therefore,
when he hinted (see e.g. Feynman et al. 1963) that interference is the fundamental
mystery of quantum mechanics.
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