The Square Root of Falsehood

 for World Logic Day, 2020.Kent A. Peacock
Department of Philosophy.
University of Lethbridge.

January 14, 2020

Abstract

I will explain some new approaches to long-standing puzzles in classical logic.

The Paradox that Keeps on Giving

- When we teach "baby" propositional logic we pretend that every proposition has a definite truth value, T or F .
- I will begin by showing you that this is false!
- It is easy to construct sentences which either cannot be consistently valuated, or can be consistently valuated in more than one way.

The Liar

- Consider this:
(1) is false.
- Says of itself that it is false.
- Thus, if it is true, it is false!
- However, if it is false, then what it says must be true!
- Impossible to consistently valuate this sentence, which has been debated since ancient times.
- Should we simply declare such self-referential claims illegitimate, ill-formed?

The Truth-Teller

- Now try this:
(2) is true.
- Says of itself that it is true.
- Unlike the Liar, it is consistent, since if it is true, it is true.
- However, if it is false, it is false!
- Either picture is consistent, but we have to arbitrarily decide whether it should be considered true or false; there is nothing to go on.

Groundedness

- Consider:
- There was a gunman on the grassy knoll.
- $2^{82,589,933}-1$ is prime.
- The truth value of the first statement is unknown; the second is true.
- Both are grounded in something outside language; the first in facts of history, the second in math.
- Self-referential statements such as the Liar and the Truth-Teller are said to be ungrounded.

Curry's Paradox

- This is a bit more complicated:

$$
\begin{equation*}
\text { If }(3) \text {, then } p \text {. } \tag{3}
\end{equation*}
$$

- We can look at this a couple of ways.
- If we insist that (3) has a consistent truth value, then there is no way for (3) to be F, because (by the truth table for "if-then-"), (3) would have to be T; contradiction!
- Hence, if (3) is definitely T or F, and it can't be F, it must be T; and then by the truth table p must be T as well-even though p could be any proposition whatsoever!
- (Basis of familiar "Knights and Knaves" paradoxes by Raymond Smullyan.)

Curry's Paradox

- Or...
- If we know p is T, then (3) must be T, and this is consistent.
- If we know p is F , then if (3) is F it is T ; contradiction!
- Thus, if we know p is F, then if (3) is T it is F; contradiction!
- So value of p is like a control parameter that determines whether or not (3) has a consistent valuation, or oscillates like the Liar.
- So—how should we think about these paradoxes?

Infinite Regress?

- Medieval logicians might have rejected the Liar as well-formed since from one viewpoint it leads to an infinite regress (if it's true, it's false; if it's false, it's true. . .).
- Thinkers such as Aquinas thought that infinite regresses were absurd; they did not know about infinite series.
- This was the basis for one of Aquinas's "proofs" for \exists God: there must be a first cause, since an infinite regress of causes would be absurd. Simply a circular argument from the modern point of view.
- There seems to be no good reason why we should rule out an infinite regress.
- Example: solve the following equation for x :

$$
x^{x^{x^{x^{x}}}}=2
$$

- Obviously, this is the same thing as

$$
x^{2}=2
$$

Herzberger's Naïve Semantics

- Powerful suggestion was made by Hans Herzberger [1], building on concepts from Tarski and Kripke.
- It is impossible to make general rules to prevent the formulation of paradoxical statements such as the Liar or Curry's Paradox.
- Let us simply accept their behaviour as a natural feature of language and mathematical logic.
- Only grounded sentences can be guaranteed to have stable truth values.
- We go beyond the truth value: self-referential forms such as the Liar have truth-patterns or wave-forms, which could be perfectly sensible objects of mathematical study.

Russell's Recondite Property

- Russell [2] pointed out that paradoxical statements have the "recondite" property of self-reference or implicitness.
- We can write the Liar as

$$
\begin{equation*}
p=-p \tag{4}
\end{equation*}
$$

- This is said to be implicit.
- Compare with explicit form such as

$$
p=q \vee r
$$

Easy to solve; just substitute in the truth values for q and r, and use the truth table for V.

- But what do we do with (4)?

Beyond the Equation

- Maybe we need to move beyond equations, and work with recursion relations.
- Write the Liar as follows:

$$
\begin{align*}
p_{0} & =\mathrm{T} \tag{5}\\
p_{n+1} & =-p_{n} . \tag{6}
\end{align*}
$$

- Then we can easily compute Herzberger's truth pattern, step by step.
- The choice of initial value for p_{0} is arbitrary; I could have set it to F.
- That would merely change the phase of the output square wave.

Complex Truth Values?

- George Spencer Brown [3] pointed out analogy between Liar and algebraic equations that have no solution in real numbers.

$$
x^{2}=-1
$$

- We can define an "imaginary" root

$$
i=\sqrt{-1}
$$

and then "solve" the equation with $x= \pm i$.

Is there a Fundamental Theorem of Logic?

- More generally, we can define complex numbers of the form $a+i b$, where a and b are reals.
- These have huge utility in pure and applied mathematics, even though their intuitive meaning is not immediately obvious.
- Sometimes we have to let formalism guide our intuitions!
- Many algebraic equations have no real-valued solutions.
- However, Gauss and others proved the following very powerful theorem, called The Fundamental Theorem of Algebra [4]:

Every algebraic equation of degree n has precisely n roots, real or complex.

- Could something similar hold for logic? Could there be complex truth values, based on $\sqrt{\text { NOT }}$?

Quantum Computation

- In fact, there is!
- In quantum computation [5], it is possible to define a unitary operator that behaves very much like what we would need in order to carry out Herzberger's "naïve" semantics:

$$
\sqrt{\mathrm{NOT}}=\frac{1-i}{2}\left(\begin{array}{ll}
i & 1 \tag{7}\\
1 & i
\end{array}\right)=\frac{1+i}{2}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right)
$$

- When multiplied with itself, it gives another operator that inverts a "proposition" (state vector).
- Could we apply tools of quantum computation (together with Herzberger's viewpoint) to "solve" the Liar?
- Work in progress!

References I

[1] Herzberger, Hans. "Notes on Naïve Semantics," Journal of Philosophical Logic 11(1982), 61-102.
[2] Russell, Bertrand Essays in Analysis, Douglas Lackey (ed.), New York: George Braziller.
[3] Brown, George Spencer. The Laws of Form. London: Allen \& Unwin, 1969. (Bantam edition, 1973.)
[4] "The Fundamental Theorem of Algebra," Wikipedia https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
[5] Lomonaco, Samuel L. Jr. "A Rosetta Stone for Quantum Mechanics With an Introduction to Quantum Computation 1.5". arXiv:quant-ph/0007045v1

