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Abstract

I will explain some new approaches to long-standing puzzles in
classical logic.



The Paradox that Keeps on Giving

I When we teach “baby” propositional logic we pretend that every
proposition has a definite truth value, T or F.
I I will begin by showing you that this is false!

I It is easy to construct sentences which either cannot be
consistently valuated, or can be consistently valuated in more than
one way.



The Liar

I Consider this:
(1) is false. (1)

I Says of itself that it is false.
I Thus, if it is true, it is false!
I However, if it is false, then what it says must be true!

I Impossible to consistently valuate this sentence, which has been
debated since ancient times.

I Should we simply declare such self-referential claims illegitimate,
ill-formed?



The Truth-Teller

I Now try this:
(2) is true. (2)

I Says of itself that it is true.
I Unlike the Liar, it is consistent, since if it is true, it is true.
I However, if it is false, it is false!

I Either picture is consistent, but we have to arbitrarily decide
whether it should be considered true or false; there is nothing to
go on.



Groundedness

I Consider:
I There was a gunman on the grassy knoll.
I 282,589,933 − 1 is prime.

I The truth value of the first statement is unknown; the second is
true.

I Both are grounded in something outside language; the first in
facts of history, the second in math.

I Self-referential statements such as the Liar and the Truth-Teller
are said to be ungrounded.



Curry’s Paradox

I This is a bit more complicated:

If (3), then p. (3)

I We can look at this a couple of ways.
I If we insist that (3) has a consistent truth value, then there is no

way for (3) to be F, because (by the truth table for “if–then–”), (3)
would have to be T; contradiction!

I Hence, if (3) is definitely T or F, and it can’t be F, it must be T;
and then by the truth table p must be T as well—even though p
could be any proposition whatsoever!

I (Basis of familiar ”Knights and Knaves” paradoxes by Raymond
Smullyan.)



Curry’s Paradox

I Or. . .
I If we know p is T, then (3) must be T, and this is consistent.
I If we know p is F, then if (3) is F it is T; contradiction!
I Thus, if we know p is F, then if (3) is T it is F; contradiction!

I So value of p is like a control parameter that determines whether
or not (3) has a consistent valuation, or oscillates like the Liar.
I So—how should we think about these paradoxes?



Infinite Regress?

I Medieval logicians might have rejected the Liar as well-formed
since from one viewpoint it leads to an infinite regress (if it’s true,
it’s false; if it’s false, it’s true. . . ).

I Thinkers such as Aquinas thought that infinite regresses were
absurd; they did not know about infinite series.
I This was the basis for one of Aquinas’s “proofs” for ∃God: there

must be a first cause, since an infinite regress of causes would be
absurd. Simply a circular argument from the modern point of view.

I There seems to be no good reason why we should rule out an
infinite regress.
I Example: solve the following equation for x :

xx
xx

··
·

= 2.

I Obviously, this is the same thing as

x2 = 2



Herzberger’s Näıve Semantics

I Powerful suggestion was made by Hans Herzberger [1], building on
concepts from Tarski and Kripke.
I It is impossible to make general rules to prevent the formulation of

paradoxical statements such as the Liar or Curry’s Paradox.
I Let us simply accept their behaviour as a natural feature of

language and mathematical logic.
I Only grounded sentences can be guaranteed to have stable truth

values.
I We go beyond the truth value: self-referential forms such as the

Liar have truth-patterns or wave-forms, which could be perfectly
sensible objects of mathematical study.



Russell’s Recondite Property

I Russell [2] pointed out that paradoxical statements have the
“recondite” property of self-reference or implicitness.

I We can write the Liar as
p = −p (4)

I This is said to be implicit.
I Compare with explicit form such as

p = q ∨ r .

Easy to solve; just substitute in the truth values for q and r , and
use the truth table for ∨.

I But what do we do with (4)?



Beyond the Equation

I Maybe we need to move beyond equations, and work with
recursion relations.

I Write the Liar as follows:

p0 = T (5)

pn+1 = −pn. (6)

I Then we can easily compute Herzberger’s truth pattern, step by
step.

I The choice of initial value for p0 is arbitrary; I could have set it to
F.

I That would merely change the phase of the output square wave.



Complex Truth Values?

I George Spencer Brown [3] pointed
out analogy between Liar and
algebraic equations that have no
solution in real numbers.

x2 = −1

I We can define an “imaginary” root

i =
√
−1

and then “solve” the equation with
x = ±i .



Is there a Fundamental Theorem of Logic?

I More generally, we can define complex numbers of the form a + ib,
where a and b are reals.

I These have huge utility in pure and applied mathematics, even
though their intuitive meaning is not immediately obvious.
I Sometimes we have to let formalism guide our intuitions!

I Many algebraic equations have no real-valued solutions.

I However, Gauss and others proved the following very powerful
theorem, called The Fundamental Theorem of Algebra [4]:

Every algebraic equation of degree n has precisely n roots, real
or complex.

I Could something similar hold for logic? Could there be complex
truth values, based on

√
NOT?



Quantum Computation

I In fact, there is!

I In quantum computation [5], it is possible to define a unitary
operator that behaves very much like what we would need in order
to carry out Herzberger’s “näıve” semantics:

√
NOT =

1− i

2

(
i 1
1 i

)
=

1 + i

2

(
1 −i
−i 1

)
(7)

I When multiplied with itself, it gives another operator that inverts
a “proposition” (state vector).

I Could we apply tools of quantum computation (together with
Herzberger’s viewpoint) to “solve” the Liar?

I Work in progress!
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