Application of GIS in urban planning

Iran Experiences of land use planning and air pollution

Index

- Introducing the case study
 - Geographical characteristics
 - Demographical characteristics
 - Urban Development
 - Challenges and Issues
- Reviewing Literature
 - Air pollution
 - Land use planning
- Using GIS
 - To understand the issues challenges
 - Providing solutions
 - Choosing the solution
- Conclusion

Geographical characteristic

Iran-Tehran Location in the World

Geographical characteristic

- Iran is located in west part of Asia.
- Tehran is the capital city of Iran.
 - The formation of the city goes back to the 9th century
 - Tehran is located in the mountainous area
 - Elevation range : 1,200 m– 1,980 m (Lethbridge Elevation 910m)

• 29th largest metropolitan area in the world (population)

Area=1,274 km²

Population (2012) = 14 M

Urban

Area=730 km² Population(2012)=8 M Density =10,000/km²

Urban

Area= 630 km^2

Population(2012)=2.5M

Density =4,000/km²

Metro Toronto

Population (2012) = 5 M

Area=7,125 km²

Tehran as a metropolitan area is facing some serious challenges: Fast growth, heavy traffic, air pollution, and so on ...

Tehran

Tehran in Polluted day

Air Pollution

- Tehran's air pollution is above the world Standards.
- Based on data from air monitoring stations from 2005-2010

Every year on average Tehran had **250 days** which the air quality was **Unhealthy or worse** based on "Air Quality Index"

About 2,500 people in Tehran die annually because of health problems caused by air pollution, (2010, citing the capital's environmental organization)

	POLLUTANT STANDARD INDEX					Air Quality Index			
	Concent	ration							
PSI	CO(ppm)	O3(ppb)	NO2(ppb)	SO2(ppb)	PM10 (micro gr/m3)	PSI	Air Quality		
	8 Hour	1 Hour	1 Hour	24 Hour	24 Hour				
0	0.00	0.00	0.00	0.00	0.00	0-50	Good		
50	4.50	60.00	150.00	30.00	75.00	50-100	Healthy		
100	9.00	120.00	300.00	140.00	150.00		Unhealthy		
200	15.00	200.00	600.00	300.00	375.00	100-200			
300	30.00	400.00	1200.00	600.00	625.00	200-300	Very Unhealthy		
400	40.00	500.00	1600.00	800.00	875.00	>300	Hazardous		
500	50.00	600.00	2000.00	1000.00	1000.00				

Air Quality					
Good	No health implications.				
Healthy	Few hypersensitive individuals should reduce outdoor exercise.				
Unhealthy	Slight irritations may occur, individuals with breathing or heart problems should reduce outdoor exercise.				
Very Unhealthy	Healthy people will be noticeably affected. People with breathing or heart problems will experience reduced endurance in activities. These individuals and elders should remain indoors and restrict activities				
Hazardous	Healthy people will experience reduced endurance in activities. There may be strong irritations and symptoms and may trigger other illnesses. Elders and the sick should remain indoors and avoid exercise. Healthy individuals should avoid out door activities.				

There are two hypothesis:

It seems there is a correlation between land use and air pollution.

It seems land use planning can mitigate the air pollution.

The tool have been used for this research are GIS and SPSS

Land Use Planning and Mitigating Air Pollution

• **Zoning** is the effective Method in land use planning for mitigating the air pollution(EPA).

Other Land use planning strategies that have been used to mitigated Air pollution are

Transport Oriented Development
Infill development
Jobs/Housing balance
Mixed-use development
Neotraditional neighborhood development

Preparing the Data

From 22 municipal regions in Tehran

Frist municipal was selected for this research:

- It has specific urban structure
- It is diverse in term of services
- Residential- land Use is the dominant land use in the area

Air pollution has been monitored with three monitoring station:

Aghdasiyeh, Gholhak, and Tajrish

Data that has been used:

- 1- Daily PSI (2005-2010)
- 2- Land-Use
- 3- Slope and Elevation
- 4-Wind
- 5-Traffic Volume

There were some issues with preparing the data

1- Each data had different source (for numbers of Floors and Land use)
 2- Lack of access to the various Extensions in GIS (for Example, Spatial analyst, Network Analyst..)

3- Raw Excel files and unorganized data

Spatial Analysis

- Rule of geography:
 - First rule is "everything is related to everything else, but near things are more related then the distant things"(Toblers, 1970)

Road Functionality

Dominate Pollution

Correlation of land use and air pollution for the case study

- Preparing data for SPSS analysis
 - 1- Land use data
 - 2-Air pollution
 - 3-Wind, slope, sunny hours and temperature.

Mixing Infrastructure, Parking lot and Transportation

Mixing Green spaces, Parks and Recreation

Putting industrial land use aside

Using Floors data (Urban form variable)

Preparing land use data for SPSS

Correlation land use and CO

Correlation between air pollution and land use planning

Correlation and suitable land use Plan

Emissions in 2010	Commercial	Green Space	Parking Lot	Open Space	Residential	Mix residential	Garden residential	Services	Military	Diplomatic
Co	0.248	-0.176	-0.178	* -0.215	0.085	-0.230	-0.037	0.219	-0.339	0.185
	0.237	-0.157	-0.191	-0.173	-0.049	-0.276	0.004	0.200	-0.201	0.168
O ₃	-0.317	0.056	0.244	0.318	-0.006	0.207	-0.132	-0.18	0.802	-0.146
No ₂	.There is no meaningful correlation between land use and NO2									
So ₂	-0.317	0.041	0.244	0.0303	0.018	0.209	-0.133	-0.20	0.405	-0.125
PM ₋₁₀	0.205	-0.238	-0.148	-0.710	0.180	-0.159	-0.068	0.16	-0.326	0.260

Conclusion

• Land use planning can reduce air pollution

For providing suitable land use plan: Mix use strategy :

Enhance access to public transportation

 \bullet Balance between land use that increase or reduce the air pollution

- Improve the accessibility
- Enhance walkability

✤Improve access to commercial zones with neighbourhood scale