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Electronic Transport Calculations Showing
Electron-Phonon Separation in Directions
Transverse to High Current

S. N. Patitsas
University of Lethbridge, 4401 University Drive, Lethbridge AB, Canada, T1K
3M4

E-mail: steve.patitsas@uleth.ca

Abstract.
An electron-phonon Boltzmann transport equation is formulated which

accounts for second order collisions with an electron-phonon vertex and a three-
phonon vertex. This approach for electronic transport at second order reveals the
existence of two forces perpendicular to the primary direction of electrical current,
acting on the electrons and phonons. The force on electrons is equal and opposite
to that on the phonons. Solutions for stationary states confirm that charge and
thermal energy become separated.

The force terms include both conservative and dissipative components, which
for the phonons, lead to a modified Guyer-Krumhansl equation. The conservative
components exist only when there exist explicit transverse gradients in the
dissipated energy, and these terms may be incorporated into a Poisson kinematics.
The dissipative force terms can cause threshold induced spontaneous symmetry
breaking.

Submitted to: J. Phys. Comm.
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Electron-Phonon Separation 2

1. Introduction

While investigating electronic transport beyond first
order calculations, a surprising pair of forces have
been discovered that are perpendicular to the primary
direction of electrical current. These forces act
equally and oppositely on the electrons and phonons.
This leads to a separation of charge and heat.
This separation phenomenon builds on a previously
discovered charge-spin separation that was predicted
and eventually observed in one-dimensional systems [1,
2, 3].

The calculations presented here were performed
up to second order scattering by incorporating
both an electron-phonon vertex and a three-phonon
vertex. The calculations also show that strong
enough electrical current produces a bifurcation and
spontaneous symmetry breaking. These results may
be viewed within the context of nonlinear dynamics
and pattern formation in nonequilibrium systems [4, 5,
6, 7].

The first-principles scattering calculations are
presented in sections 2 and 3. Discussion of these
results in terms of phonon and electron dynamics is
presented in sections 4 and 5. New terms are added
to standard dynamical equations for electron and heat
flow. Amongst these terms are both dissipative and
conservative forces.

2. Electron-Phonon Boltzmann Transport
Equation

The microscopic approach presented here couples elec-
trons and phonons through the quantum Boltzmann
transport equation developed for electrons and for
phonons [8, 9, 10, 11, 12, 13], and is capable of dealing
with second order scattering processes such as those
depicted in figure 1. This is understood as a trun-
cated approximation scheme under the BBGKY hier-
archy [14]. This first principles approach leads to two
equations for the electron and phonon distribution dy-
namics that can be called the electron-phonon Boltz-
mann transport equations (EPBTE). In particular a
force equation for the phonon field is developed which
displays the interesting heat induction effect.

The phonon Boltzmann equation has been used
to derive the Guyer-Krumhansl equation for heat
transfer. One application of the the Guyer-Krumhansl
equation is towards successful understanding of the

phenomenon of second sound in liquid helium. One
of the results reported here is an additional term to
the Guyer-Krumhansl equation.

b)a)

W Q

q

q’’

q’

k

k’

W Q

q

q’’

q’

k

k’

c)

W Q

q

q’’

q’

k

k’

d)

W Q

q

q’’

q’

k

k’

f )

W Q

q

q’’

q’

k

k’

W Q

q

q’’

q’

k

k’

e)

Figure 1. Second order electron-phonon scattering diagrams,
covering all cases with 3-phonon scattering. Two vertices are
present, labeled W for electron-phonon and Q for phonon-
phonon interaction. Diagrams (a) and (b) differ only in the
direction of the virtual phonon q′′ (similarly for c and d).
Diagram (e) plays the dominant role in these calculations, when
the current density is high.

The transport equation for the phonon distribu-
tion, nq, for a given wave vector, q, closely resembles
the phonon BTE with the addition of an extra collision
term. Accounting for the effect of both phonon-phonon
collisions and electron-phonon collisions on nq gives an
extension of the phonon BTE as

∂nq
∂t

+ cq · ∇T
∂nq
∂T

=
∂nq
∂t

∣∣∣∣
pp

+
∂nq
∂t

∣∣∣∣
epp

. (2.1)

This constitutes the phonon part of the EPBTE.
The collision terms are on the right hand side of
(2.1). The phonon-phonon (pp) collision term is
normally evaluated for a single vertex with 3 or
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Electron-Phonon Separation 3

4 phonons involved. This term is responsible for
providing thermal conduction as a response to a
thermal gradient, but will not contribute to the
transverse force discussed below in Sec. 3. The
spin quantum numbers are suppressed in the notation
here as no spin-dependence will be discussed. The
important collision integral is

∂nq
∂t

∣∣∣∣
epp

=

∫ ∫ ∫ [
− gk(1− gk′)nq(1 + nq′)Ak′,q′

k,q

+ gk(1− gk′)(1 + nq)nq′Ak,q
k′,q′

+ gk(1− gk′)(1 + nq)(1 + nq′)Ak′,q,q′

k

− gk′(1− gk)nqnq′Ak
k′,q,q′

]
dkdk′dq′, (2.2)

where gk is the electronic distribution function for
electron wave vector k. The scattering diagrams of
figure 1 represents the terms in (2.3). In particular
diagrams a) and b) correspond to the first term, c)
and d) to the second term, e) to the third term, and f)
to the fourth and last term. Microscopic reversibility

means that Ak,q
k′,q′ = Ak′,q′

k,q and Ak
k′,q,q′ = Ak′,q,q′

k .
Swapping dummy indices k and k′ in the 2nd and 4th
terms gives

∂nq
∂t

∣∣∣∣
epp

=

∫ ∫ ∫ [
{−gk(1− gk′)nq(1 + nq′)

+ gk′(1− gk)(1 + nq)nq′}Ak′,q′

k,q

+ {gk(1− gk′)(1 + nq)(1 + nq′) (2.3)

− gk′(1− gk)nqnq′}Ak′,q,q′

k

]
dkdk′dq′.

Both momentum and energy conservation are built into

the intrinsic transition factors Ak′,q′

k,q and Ak′,q,q′

k . The
four terms in (2.3) cover the possibilities of phonons q
and q′ being created or annihilated. For electron sums

dk ≡ d3k
4π3 while for phonons dq ≡ 3d3k

8π3 .
For the transition rate a cutoff time scale τ1 is re-

quired so that, for example, the second-order transition

rate Ak′,q,q′

k can be factored into the following 2-vertex

form that goes like: τ1W
k′,q′′

k Qq,q′

q′′ δ(k − q − k′ − q′)
with an electron phonon vertex and a 3-phonon vertex

connected by a virtual phonon q′′. The Wk′,q′′

k factor
is an intrinsic transition probability and is associated
with the electron-phonon scattering vertex while the

other intrinsic transition probability Qq,q′

q′′ factor is as-
sociated with 3-phonon scattering. The time τ1, which
will be calculated below, must be long enough for both
(relatively fast) electron-phonon scattering and (rela-
tively slow) phonon-phonon scattering to take place,
i.e., long enough for the Dirac delta function for en-
ergy to form [9].

2.1. Detailed Factorization of Matrix Element A

With a focus for a moment just on the three phonon
processes then the textbook equation for the rate of

change of nq is

∂nq
∂t

∣∣∣∣
3p

=

∫ ∫ [
{−nqnq′(1 + nq′′)Qq′′

q,q′

+ (1 + nq)(1 + nq′)nq′′Qq,q′

q′′ }δ(q′′ − q − q′)

+
1

2
{−nq(1 + nq′)(1 + nq′′)Qq′,q′′

q (2.4)

+ (1 + nq)nq′nq′′Qq
q′,q′′}δ(q − q′ − q′′)

]
dq′dq′′,

where the 1
2 is to avoid double-counting. By the

principle of detailed balance, this rate is zero if
all occupation factors nq take the equilibrium forms
n0q. Because of electron-phonon scattering and the
production of phonons q′′, nq′′ will not take the
equilibrium form. For this specific factor a form nq′′ =
n0q′′ + n∗q′′ is used. The physical reasoning is that
one focuses only on 3-phonon scattering that occurs
subsequently to the production of a phonon q′′ by (first

order) electron phonon scattering via Wk′,q′′

k .
For the remainder of this subsection it suffices to

consider just one of the four terms in (2.4). It will
be shown below in this section that the second term
dominates the others so this is the term discussed
immediately, which leaves:

∂nq
∂t

∣∣∣∣
3p,2

=

∫ ∫
(1+n0q)(1+n0q′)n∗q′′Q

q,q′

q′′ δ(q
′′−q−q′)dq′dq′′.(2.5)

As mentioned above, n∗q′′ is produced by electron-
phonon scattering. The phonons produced from these
events will decay with a lifetime τq′′ that is the lifetime
of hot phonons produced from the electron-phonon
scattering. The distribution n∗q′′ is described by

∂n∗q′′

∂t
= −

n∗q′′

τq′′
+
∂n∗q′′

∂t

∣∣∣∣∣
ep

, (2.6)

where the first order electron-phonon scattering rate is
given by

∂n∗q
∂t

∣∣∣∣
ep

=

∫ ∫
gk(1−gk′)(1+n0q′′)W

k′,q′′

k δ(k−k′−q′′)dkdk′.(2.7)

The steady-state solution to (2.6) is given by

n∗q′′ =

∫ ∞
0

∂n∗q
∂t

∣∣
ep

exp (−t/τq′′)dt, (2.8)

which can be substituted into (2.5) to give:

∂nq
∂t

∣∣∣∣
3p,2

=

∫ ∫ ∫ ∫
e−t/τq′′ gk(1− gk′)(1 + n0q)(1 + n0q′) (2.9)

× (1 + n0q′′)W
k′,q′′

k Qq,q′

q′′ δ(k − k′ − q − q′)dkdk′dq′dt.
Comparison to the (dominant) third term in (2.3) leads
to the conclusion that τ1 = (1 + n0q′′)τq′′ and

Ak′,q,q′

k =

∫ ∞
0

e−t/τq′′ (1+n0q′′)W
k′,q′′

k Qq,q′

q′′ δ(k−k′−q−q′)dt .(2.10)
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Electron-Phonon Separation 4

2.2. Useful Result for Phonon q′′ Lifetime

Focusing on a single Qq,q′

q′′ vertex, such as depicted in
the right part of figure 1e), one derives an equation
similar to (2.6) for τq′′ as:

1

τq′′
≡
∫ ∫

(1+n0q)(1+n0q′)Q
q,q′

q′′ δ(q
′′−q−q′)dqdq′.(2.11)

This expression for the decay rate will be useful in the
analysis which follows.

3. Transverse Force Terms for Phonons and
Electrons

Returning to (2.3), for the phonons, the force per unit
volume from collisions, is given by

fph,coll = h̄

∫
∂nq
∂t

∣∣∣∣
epp

qdq. (3.1)

With electron flow directed along the longitudinal,
or primary, z-axis the x-axis defines the transverse
direction. The transverse force fph,x is the x-
component of fph,coll. This force is added in with all
other contributions to the rate of change of phonon
momentum density, ∂pph,x/∂t.

The phonon force is calculated from (2.3) and
using an explicit nonequilibrium form of gk. The
expression for fph,x is split into a sum fph,x = f1> +
f1< + f2> + f2< + f3 + f4 such that

f1> = −h̄
∫ ∫ ∫ ∫

>

gk (1− gk′)n0q(1 + n0q′)

×Ak′,q′

k,q qxdkdk
′dqdq′, (3.2a)

f1< = −h̄
∫ ∫ ∫ ∫

<

gk (1− gk′)n0q(1 + n0q′)

×Ak′,q′

k,q qxdkdk
′dqdq′, (3.2b)

f2> = h̄

∫ ∫ ∫ ∫
>

gk′(1− gk)n0q′(1 + n0q)

× Ak′,q′

k,q qxdkdk
′dqdq′, (3.2c)

f2< = h̄

∫ ∫ ∫ ∫
<

gk′(1− gk)n0q′(1 + n0q)

× Ak′,q′

k,q qxdkdk
′dqdq′, (3.2d)

f3 =
h̄

2

∫ ∫ ∫ ∫
>

gk (1− gk′)(1 + n0q)(1 + n0q′)

×Ak′,q,q′

k qxdkdk
′dqdq′, (3.2e)

f4 = − h̄
2

∫ ∫ ∫ ∫
<

gk′(1− gk)n0qn
0
q′

× Ak′,q,q′

k qxdkdk
′dqdq′, (3.2f)

where it is explicit that equilibrium phonon distribu-
tions are used. The subscript > implies that only
those processes with the virtual phonon q′′ leaving the
electron-phonon vertex W and entering the 3-phonon
vertex Q are considered. The < denotes the opposite
case. The 1

2 factors for f3 and f4 are included to avoid
double-counting after considering the integration over
both q and q′. The six terms are in the same order as
in the corresponding diagrams of figure 1.

Utilizing a standard technique [8, 9] for offsetting
with a drift velocity v0ẑ, using the group velocity for
electrons, h̄k/m, one implements a drift or offset wave
vector k0 = mv0/h̄. Defining Ẽk = h̄2(k − k0ẑ)2/2m,
this offset is used to convert the equilibrium electron
distribution

g0k =
1

eβ(Ek−µ) + 1
, (3.3)

to a nonequilibrium form:

gk =
1

eβ(Ẽk−µ) + 1
, (3.4)

where β = 1/kBT . Expanding in terms of small k0
gives: Ẽk ≈ Ek − h̄2kzk0/m + h̄2k20/2m. Defining,
for convenience, b = β(Ek − µ), γ1 = βh̄2kzk0/m and
γ2 = βh̄2k20/2m, such that gk = [ebe(γ2−γ1) + 1]−1,
allows for expansion up to second order in k0:

gk ≈ g0k+g0k(1−g0k)γ1+g0k(1−g0k)

[
−γ2 +

1

2
γ21 tanh

b

2

]
(3.5)

and

1−gk ≈ 1−g0k−g0k(1−g0k)γ1−g0k(1−g0k)

[
−γ2 +

1

2
γ21 tanh

b

2

]
.(3.6)

Note that γ21 = 2γ2(βh̄2k2z/m). With these results one
shows that:

gk(1− gk′) ≈ g0k(1− g0k′)

{
1− g0k′

[
−γ′2 +

γ′21
2

tanh
b′

2

]
+ (1− g0k)

[
−γ2 +

1

2
γ21 tanh

b

2

]}
, (3.7)

and

gk′(1− gk) ≈ g0k′(1− g0k)

{
1− g0k

[
−γ2 +

1

2
γ21 tanh

b

2

]
+ (1− g0k′)

[
−γ′2 +

1

2
γ′21 tanh

b′

2

]}
, (3.8)

where terms linear and bilinear in kz and k′z are
dropped as these give zero when integrated.

Details of this derivation are left for Appendix A
section 7. The result for the lateral force per unit
volume fph,x is

fph,x = 2h̄γ2β
2

∫ ∫ ∫ ∫
g0k(1− g0k′)n0q(1 + n0q′)

×
{
Ek(Ek − µ)(cos2 θ′ − cos2 θ)
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Electron-Phonon Separation 5

+ ε2q′′ cos2 θ′ + g0kβ(Ek − µ)ε2q′′ cos2 θ′
}

× Ak′,q′

k,q qxdkdk
′dqdq′

+
1

2
h̄γ2β

2

∫ ∫ ∫ ∫
g0k(1− g0k′)(1 + n0q)(1 + n0q′)

×
{
Ek(Ek − µ)

[
cos2 θ − cos2 θ′

]
+ εq′′ [2Ek − µ] cos2 θ′ − ε2q′′ cos2 θ′

}
× Ak′,q,q′

k qxdkdk
′dqdq′, (3.9)

where εq′′ is the energy of the virtual phonon, θ is the
spherical polar angle for k, and θ′ is the spherical polar
angle for k′.

3.1. Dominant Term for Force

Since the main contribution to the k sums comes from
electronic states near the Fermi level where 2Ek −
µ ≈ EF , and the Fermi energy EF always greatly
exceeds εq′′ , the leading term in (3.9) comes from the
εq′′ [2Ek − µ] cos2 θ′ term. In the results below only
this term is considered:

fph,x ≈
h̄γ2β

2EF
2

∫ ∫ ∫ ∫
g0k(1− g0k′)(1 + n0q)(1 + n0q′)

× εq′′(cos θ′)2Ak′,q,q′

k qxdkdk
′dqdq′. (3.10)

The third and fourth terms of (2.3) produce the
major contributions to the phonon transverse force
fph,x. These main contributions occur because in the
third and fourth terms Ek > Ek′ always holds. This
is not the case in the first and second terms of (2.3)
since in these processes the virtual phonons q′′ can go
both into and out of the W vertex. The plus sign in
the front of (3.10) means that the third term in (2.3)
represented by the scattering diagram in figure 1(e) is
the dominant one. The physical interpretation of this
is that the process emitting two phonons into the heat
bath creates the most entropy and receives an extra
statistical weight for this.

Bringing back the explicit integral over q′′:

fph,x ≈
h̄γ2β

2EF
2

∫ ∫ ∫ ∫ ∫
g0k(1− g0k′)A

k′,q,q′

k

× εq′′(cos θ′)2(q′′x − q′x)(1 + n0q)(1 + n0q′)

× δ(k − k′ − q′′)dkdk′dqdq′dq′′. (3.11)

In the next subsection 3.2, spatial variation in the
transverse direction is treated. Leading terms have an
extra factor of q′′x , producing a (q′′x)2 in the integrand
and thus giving a non-zero result. A factor of q′xq

′′
x is

also produced that gives zero upon integration. This
allows the q′′x−q′x factor in (3.11) to be replaced by q′′x .

Substituting in for Ak′,q,q′

k from (2.10) into (3.11),
while also implementing (2.11), gives

fph,x ≈
h̄γ2β

2EF
2

∫ ∫ ∫ ∫
g0k(1− g0k′)(1 + n0q′′)εq′′(cos θ′)2q′′x

× Wk′,q′′

k e−t/τq′′
1

τq′′
δ(k − k′ − q′′)dkdk′dq′′dt . (3.12)

3.2. Spatial Variation in the Transition Rate

The factor of qx in (3.10) will make the integral zero
by symmetry unless another qx is produced. This can

be accomplished if the transition rate Ak′,q,q′

k varies in
the (transverse) x-direction. By (3.12) one way this

can happen if the matrix element Wk′,q′′

k varies in the
x-direction. This can also happen if occupation factors
g0k, g0k′ , n0q′′ vary in the x-direction, and lastly, if τq′′
varies in the x-direction.

The two scattering vertices do not occur at the
same time and place. The temporal separation is τq′′
and the spatial separation is cτq′′ . If r is the location of
the midpoint of the electron-phonon collision and the 3-

phonon collision then Wk′,q′′

k must be evaluated at r−
1
2cτq′′

q′′x
q′′ x̂. So also must g0k, g0k′ , and n0q′′ be evaluated

at r − 1
2cτq′′

q′′x
q′′ x̂. In contrast, since the lifetime τq′′

involves phonon-phonon scattering with vertex Qq,q′

q′′ ,

it must be evaluated at position r+ 1
2cτq′′

q′′x
q′′ x̂. Taking

the first order expansion:

fph,x ≈
h̄γ2β

2EF
4

∫ ∫ ∫ ∫ [
− ∂

∂x

{
g0k(1− g0k′)(1 + n0q′′)W

k′,q′′

k

}
+ g0k(1− g0k′)(1 + n0q′′)W

k′,q′′

k

(
−1

τq′′

)
∂τq′′

∂x

]
(3.13)

× cεq′′

q′′
(q′′x)2e−t/τq′′ (cos θ′)2δ(k − k′ − q′′)dkdk′dq′′dt .

Completing the integral over t gives

fph,x = − γ2β
2EF
4

∂

∂x

∫ ∫ ∫
τq′′g

0
k(1− g0k′)(1 + n0q′′)W

k′,q′′

k

× ε2q′′
(q′′x)2

(q′′)2
(cos θ′)2δ(k − k′ − q′′)dkdk′dq′′ . (3.14)

As mentioned, one way this force can be non-

zero is if the matrix element Wk′,q′′

k varies in the x-

direction. The derivative ∂Wk′,q′′

k /∂x represents an
explicit variation in the material composition in the
x-direction. A simple example of this is an interface
between two conventional metals, for example a gold-
aluminum interface, either created by thin film growth
in the x-direction or as a metallic superlattice [15]. In
many models for electron-phonon interaction, using the
deformation potential (including the Bardeen model),
the square of the matrix element scales inversely with
the lattice mass density [9, 13]. Near any of these
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Electron-Phonon Separation 6

interfaces one will find a sharp change in W in the
direction perpendicular to the interface.

The following definition is made for an important
time scale:

τ∗ ≡
3
∫ ∫ ∫

τq′′G
k′,q′′

k (q′′x)2δ(k − k′ − q′′)dkdk′dq′′∫ ∫ ∫
Gk′,q′′

k (q′′)2δ(k − k′ − q′′)dkdk′dq′′
(3.15)

where Gk′,q′′

k ≡ g0k(1 − g0k′)(1 + n0q′′)W
k′,q′′

k cos2 θ′.
The time τ∗ can be thought of as a nonequilibrium
transport mean value of τq′′ for a virtual phonon.
The denominator in (3.15) closely resembles the Joule
heating rate Jel · E which increases the phonon gas
energy at rate u̇ph. Indeed, making use of (8.9) as
derived in the Appendix section 8 allows (3.14) to be
rewritten in a relatively concise form for the force per
unit volume on the phonons as:

fph,x = −1

6

∂

∂x
{τ∗u̇ph} . (3.16)

The force fph,x only exists while the electronic system
is shifted away from equilibrium. In this case one
may think of the phonons as being embedded in a
nonequilibrium electronic system. This extra force
term while being embedded will add onto any other
force terms to dictate the phonon dynamics.

As expected from momentum conservation the
transverse force on electrons is equal and opposite,

fel,x = +
1

6

∂

∂x
{τ∗u̇ph} . (3.17)

This force is not to be confused with the drag force in
the −ẑ direction. The force fel,x can also be explicitly
derived by setting up equations similar to (3.2a-
3.2f) while anticipating the q′′x factor from the spatial
variation, and following the minus signs carefully.

Together (3.16) and (3.17) constitute the main
result presented here.

4. Heat Transfer Equation

The force in (3.16) can cause acceleration of the phonon
field and change the phonon momentum. The phonon
momentum density pph is related to the heat flux
vector λ by λ = c2pph. One term contributing to
∂λ/∂t is represented by (3.16). This gives dynamics
more complex than the Fourier heat law, λ = −κ∇T .
Instead the Guyer-Krumhansl equation [11, 12, 16, 17]
is invoked and the extra physics from (3.16) is added
in to produce:

∂λ

∂t
+

1

3
c2cV∇T = − c2cV

3κ
λ+

τNc
2

5

[
∇2λ+ 2∇(∇ · λ)

]
− c2

6

(
∂Ud
∂T

)
∇T − c2

6
∇Ud (4.1)

where cV is the volume specific heat, κ is the thermal

conductivity, and the important quantity Ud is defined
by

Ud ≡ τ∗u̇ph . (4.2)

The first term on the right hand side of (4.1) comes

from the thermal conduction,
∂nq

∂t

∣∣
pp

term, in (2.1).

The main contributions to the thermal conductivity
are umklapp processes with 3-phonon and 4-phonon
collisions [9], whereas τN is the relaxation time for
normal processes. Given the approach described above,
it is understood that λ has no component in the z-
direction and the x and y components do not depend
on z, i.e., (4.1) is effectively two-dimensional.

The quantity Ud has dimensions of an energy
density but does not have its origins as a conventional
energy does in physics. Indeed it can only be defined as
the product of a time and a power (density). Since it
arises from irreversible dissipation the term dissipation
potential energy density might be apt for Ud. This
potential energy density differs from the Rayleigh
dissipation function which is implemented differently
by taking a derivative with respect to velocity to
produce a force [18].

It is important to point out that Ud may vary
spatially because the temperature does, or explicitly
when for example, the material properties change in
the directions perpendicular to z. For example, for a
uniform applied electric field, it could be the electrical
conductivity that varies in the x and/or y directions
and this would contribute to the last term in (4.1).
This distinction is important since the ∂Ud/∂T term
is dissipative whereas the ∇Ud term contributes to
reversible kinematics. The ∇Ud term can induce
phonons to flow even when there is no temperature
gradient.

Taking the divergence of both sides of (4.1), while
noting that ∇ · λ = −cV ∂T/∂t gives

∂2T

∂t2
=

1

3
c2 (1− αph)∇2T − c2cV

3κ

∂T

∂t

+
3τNc

2

5

∂∇2T

∂t
+

c2

6cV
∇2Ud , (4.3)

where

αph ≡ −
1

2cV

∂Ud
∂T

, (4.4)

is a dimensionless parameter describing the tempera-
ture dependence of Ud. The partial differential equa-
tion (4.3) resembles the telegraph equation with an ex-
ternal driving function from the explicit variation of
Ud. When Ud is expressed as τ∗σelE

2, one can readily
see that αph is positive for materials for which the elec-
trical conductivity σel decreases with increasing tem-
perature, since the phonon lifetime is also expected to
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Electron-Phonon Separation 7

show the same trend. This should include all met-
als, while for the case of semiconductors having σel
increasing with temperature, there is the possibility of
negative αph. Defining the dimensionless number

ν ≡ −∂ lnUd
∂ lnT

, (4.5)

gives the following convenient form for αph:

αph =
νUd

2cV T
. (4.6)

4.1. Case with Symmetry Previously Broken

The stationary state solution for (4.3) is readily found
when Ud explicitly depends on transverse coordinates.
In this case the solution is

Tss − Ta =
Ud

2(1− αph)cV
. (4.7)

The result is a non-flat temperature profile superim-
posed on top of an otherwise uniform ambient temper-
ature. Joule heating will raise the ambient tempera-
ture but in practice, effective external cooling can keep
Ta close to what ambient is when there is no electrical
flow. The profile exists even when αph = 0. In this case
the profile is driven completely by any explicit spatial
variation in Ud. The temperature profile becomes flat
when the electrical current is turned off and Ud = 0.
This profile is entirely a nonequilibrium effect and the
effect will be small with the system near equilibrium.
A trickle of current will not suffice; Rather, the system
will likely have to pushed quite hard before the profile
becomes detectable. For example, if an amount of en-
ergy equal to about 1% of the internal thermal energy
is dissipated in what is typically a short time τ∗, then a
profile amplitude of about 1% of ambient could be ob-
served. Thin samples with good heat-sinking would
avoid excessive temperature rise from Joule heating
and allow the opportunity for such profiles to be ob-
served. Indeed, dissipated power levels need not be so
high if ambient temperature is well below the Debye
temperature where cV is small.

A good example system is an alternating ABAB
electrically conductive superlattice with the A layers
having larger ud than the B layers. Electrical current
running along the conducting layers will produce the
temperature and charge profiles. The A layers will
be warmer than the B layers and as will be shown
below, electrons will tend to be pushed into the B
layers. An applied bias to this superlattice results in
the same electric field E in each layer. Reexpressing
(4.7) explicitly in terms of E gives

Tss − Ta =
τ∗σel

2(1− αph)cV
E2 , (4.8)

Figure 2. Calculated temperature profile amplitude for a Ag-Bi
superlattice as a function of applied electric field. The field is
applied in any direction parallel to the layers. These calculations
were carried out for two temperatures: 295 K (solid black curve)
and 77 K (dashed blue curve).

where it is understood that σel, cV , and αph have
a spatial dependence, changing sharply at each AB
interface.

In order to make specific calculations and
predictions for the induced temperature profile a
good estimate for the phonon lifetime τ∗ is required.
The simplest approach is to use the lattice thermal
conductivity expression κlatt = 1

3cV c
2τ∗, which

changes (4.8) to

Tss − Ta =
aE2

2 (1− νaE2)
, (4.9)

where

a ≡ 3κlattσel
2c2V c

2
. (4.10)

A good electrical conductor like silver would have
a relatively large value for a and be more likely
to give measurable values of Tss − Ta. The lattice
thermal conductivity for conductors such as Ag can
be calculated from first principles [19, 20]. At room
temperature (RT) the value is κlatt = 5.2 W/mK
and at 77 K the value is 12 W/mK. Making use
of well-known values for the electrical conductivity,
specific heat capacity and speed of sound, [8] allows
for easy calculation of the parameter a and subsequent
calculation of the curves shown in figure 2. If the
AB superlattice consists of Ag and a relatively poor
electrical conductor such as Bi, the result is square
wave temperature profile with amplitude TAg − TBi.
The RT plot in figure 2 (solid black curve) shows an
upwards trend with TAg−TBi going as E2. Any effects
from the (1− νaE2) factor in the denominator of (4.9)
are not seen. A reasonable value for the minimum
discernible temperature shift is 1 mK. For such a shift
to be produced a 12.2 kV/m field would be required
at RT. This is not easily achieved in practice as this
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Electron-Phonon Separation 8

temperature profile would be superimposed on top of
significant Joule heating that would be difficult to heat
sink, even for very thin, planar samples.

Moving to lower temperature does make the task
easier as indicated by the 77 K curve (dashed blue).
For most of the range of electric fields shown the trend
is similar to RT but with larger values of TAg − TBi.
At fields above 2×105 V/m, the curve bends upwards
because of the (1 − νaE2) factor. A value of ν = 3
is used since σel goes approximately as T−1 and τ∗

is expected to go as T−2. At 77 K, the minimal
discernible temperature of 1 mK is predicted to occur
at a field of 2.1 kV/m. This is about 6 times less than at
RT. Though these calculations indicate that detection
of this temperature profile would not be easy, there
does not seem to be any fundamental reason ruling
out this detection. To date no electrical transport
measurements have shown the effect predicted here.
These preliminary investigations suggest that such a
predicted temperature profile would be more easily
detected at lower temperatures.

It may also be worthwhile for researchers to
investigate other dissipative systems as well. The
form of (3.16) suggests that any system in which
the dissipated energy has a spatial gradient will
result in forces on some particles, with the forces
on the phonons to ensure momentum conservation.
It may be the case that in such systems these
forces are more readily detected. Examples of such
systems include chemical reactions (reaction-diffusion
dynamics) and front propagation (with dynamics)
during phase transitions.

4.2. Case with Spontaneous Symmetry Breaking

In the case where there is no explicit spatial
dependence for Ud the material properties would be
assumed to be uniform and (4.3) becomes

∂2T

∂t2
=

1

3
c2 (1− αph)∇2T−c

2cV
3κ

∂T

∂t
+

3τNc
2

5

∂∇2T

∂t
.(4.11)

When the system is pushed very hard with high rates
of dissipation such that at αph ≥ 1, (4.11) becomes
unstable; There is a bifurcation, a solution would grow
very quickly and would diverge if the system is strictly
linear. Taking a spatial Fourier transform of ∆T
to T̃ (k), and subsequently adding in an appropriate
nonlinear term gives

∂2T̃

∂t2
= − 1

3
c2 (1− αph) k2T̃ − c2cV

3κ

∂T̃

∂t

− 3τNc
2k2

5

∂T̃

∂t
− γkT̃ 2 . (4.12)

Adding the nonlinear term ensures a finite stationary
solution of T̃ (k) = (αph − 1)c2/3γk, valid when

αph > 1. Nonlinear terms like γkT̃
2 can arise

when the coefficient of thermal conductivity depends
on temperature [21]. The details of these nonlinear
terms, in particular how they depend on wavevector k,
determine which wavelengths are the most prominent.
It is possible that this stationary state solution is
not spatially uniform, and would therefore constitute
spontaneous symmetry breaking.

The partial differential equation (4.12) bears some
similarity to the Kuramoto-Sivashinsky (KS) equation,
an important analysis tool used in the study of
nonequilibrium systems that has been successfully
utilized to model patterns formed in laminar flame
fronts, certain types of Poiseuille flow, trapped
ion modes in plasmas, and systems with Eckhaus
instabilities such as Rayleigh-Bénard convection [4,
5, 6, 22, 23, 24, 25]. Modeling with the KS
equation can produce instabilities and interesting
pattern formation when the diffusion coefficient is
made negative. Though the KS equation has been
used widely as a model, clear explanations are lacking
in the literature for why a diffusion coefficient can be
negative. The analysis presented here shows how a first
principles approach can produce an effectively negative
diffusion coefficient.

Observation of such an instability and/or pattern
formation would likely require very high electrical
current along the principal z-axis direction. Bringing
the system near αph = 1 may dissipate so much energy
such as to push the system near the point of irreparable
damage, perhaps from melting, vaporization, or
oxidation. Indeed, it may be the case that just before
this threshold there is considerable channeling at short
length scales with the higher temperature channels
getting dangerously close to melting or vaporizing.
This temperature channeling may be what happens
just as the proverbial fuse blows. The above-mentioned
positive feedback between channels may make it even
more difficult to avoid blowing the fuse.

5. Electron Dynamics and Comparison

The electron gas motion (transverse to the drift
velocity v0ẑ) may be described by a mean velocity v
and the momentum density pel is related to the flux
vector j by j = pel/m. The force in (3.17) gives
a term contributing to ∂j/∂t which otherwise is a
simple equation taking into account the gradient in
the electron chemical potential µ and ohmic drag. The
modified dynamical equation is

∂j

∂t
+
n0
m

∇µ = −n0e
2ρel
m

j−αel
kBT

6m
∇nel−

1

6m
∇Ud(5.1)

where nel is the electron number density with
equilibrium value n0, ρel is the electrical resistivity,
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Electron-Phonon Separation 9

and

αel =
1

kBT

∂Ud
∂nel

. (5.2)

Again, the spatial variation of Ud is split into a
purely dissipative part with the αel term because the
dissipated energy depends on electron density, as well
as the the direct spatial dependence giving the last
(reversible) term in (5.1).

Taking the divergence of both sides of (5.1), and
noting that ∇ · j = −∂nel/∂t, gives

∂2ñ

∂t2
+
n0e

2ρel
m

∂ñ

∂t
+[

ω2
P +

3kBT

m

(
1 +

αel
18

)
k2
]
ñ = − Ũd

6m
k2 , (5.3)

after the spatial Fourier transform to ñ(k) and Ũd(k).
The result is a modification of a plasma wave equation
suitable for describing Langmuir waves, with the
Bohm-Gross dispersion relation:

ω2(k) = ω2
P +

3kBT

m
k2 . (5.4)

The stationary state solution is

ñss = − Ũdk
2

6mω2
P + 18kBT

(
1 + αel

18

)
k2
. (5.5)

Unless αel is particularly large, the dependence of Ud
on nel plays a minor role here. Also the general positive
characteristic of αel means that any spontaneous
symmetry breaking will not come directly from the
electrons.

5.1. Comparison to Phonon Results

Comparing (4.7) to (5.5) for stationary states shows
that the temperature profile is anticorrelated to the
electron density profile. The occurs as the direct result
of the opposing nature of the phonon and electron
forces. This anticorrelation is stronger for electrons
at shorter length scales, since the charge profile falls
off at large length scales.

The interplay between phonon and electron
displacements can be better understood in the case
where a system that is initially uniform spatially,
has enough electrical current applied such that the
bifurcation point αph = 1 has been reached. The
instability is expected to make some regions hotter
than others. By the definition of αph this means that
the relatively cooler regions will experience an increase
in Ud, thus making Ud no longer uniform. This means
that for the expected positive αel the cooler regions
will receive extra electrons. Not only is a non-flat
charge profile created spontaneously, but the direction
of the electronic relaxation is such as to increase Ud

even more. This positive feedback for electrons works
in concert with that of the phonons to increase and
amplify any spatially non-uniform features in Ud.

5.2. Impact on General Nonequilibrium Approaches

This has interesting implications on research ap-
proaches that have been developed for the general
treatment of nonequilibrium systems. One such ap-
proach is GENERIC (general equation for the nonequi-
librium reversible-irreversible coupling), in which the
dynamical equations for dissipative fluids is described
by two distinct terms, one for reversible Poisson kine-
matics and one for dissipative Ginzburg-Landau kine-
matics [26, 27, 28]. Produced here is are dissipative
terms which might be expected, except that they are
forces perpendicular to the principle axis of conduction
of the main variable. The dissipation potential energy
density Ud may be closely related to the dissipative
potential function Ψ, used in the GENERIC scheme.

The function Ud cannot be the same as Ψ because
also produced here, and perhaps not as expected,
are conservative terms that fit in perfectly well into
the Poisson kinematics, and having dissipation as
their fundamental source. More precisely, it is
pure dissipation in the one principle direction that
produces reversible terms in the Hamiltonian that
are perpendicular to that direction. Thus the same
function Ud winds up contributing to both sides,
reversible and irreversible, of the GENERIC formalism.

What has happened is that the z and x directions
have become coupled when double vertex scattering
has been taken into account. The result of the
perpendicular conservative forces is quite surprising.

6. Conclusions

In summary, the theoretical approach presented here
predicts the existence of forces, equal and opposite, on
electrons and phonons, perpendicular to the primary
flow direction of electrons. The force terms include
both conservative and dissipative components. The
conservative components exist only when there exist
explicit transverse gradients in the dissipated energy.
The dissipative force terms can cause spontaneous
symmetry breaking when the dissipation exceeds a
threshold. It is hoped that these results represent
a step towards establishing a clear link between
fundamental scattering physics and the study of
pattern formation in nonequilibrium systems.
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Electron-Phonon Separation 10

7. Appendix A

Here the six force terms (3.2a)-(3.2f) are explicitly
evaluated when the electronic system is away from
equilibrium.

7.1. Evaluation of f1> + f2> + f1< + f2<

Since states near the Fermi level are expected to make
the most significant contributions to these integrals,
one can assume b and b′ are small and one arrives
at the method for replacing nonequlibrium electron
occupancies gk and gk with equlibrium functions:

−gk(1−gk′)n0q(1+n0q′) ≈ g0k(1−g0k′)n0q(1+n0q′)a1>(7.1)

with

a1> = −1 + γ2g
0
k′

[
−1 + β2Ẽk(Ẽk − µ) cos2 θ′

]
− γ2(1− g0k)

[
−1 + β2Ek(Ek − µ) cos2 θ

]
(7.2)

noting that γ21 = 4γ2Ek cos2 θ. Thus

f1> = h̄

∫ ∫ ∫ ∫
>

g0k (1− g0k′)n0q(1 + n0q′)a1>

×Ak′,q′

k,q qxdkdk
′dqdq′. (7.3)

For a1< one simply replaces εq′′ with −εq′′ . Proceeding
similarly for the evaluation of f2>, while using the
principle of detailed balance [9] in the form:

g0k′(1− g0k)n0q′(1 + n0q) = g0k(1− g0k′)n0q(1 + n0q′) , (7.4)

gives

f2> = h̄

∫ ∫ ∫ ∫
>

g0k (1− g0k′)n0q(1 + n0q′)a2>

×Ak′,q′

k,q qxdkdk
′dqdq′ , (7.5)

with

a2> = 1− g0k
[
−γ2 +

1

2
γ21 tanh

b

2

]
+ (1− g0k′)

[
−γ′2 +

1

2
γ′21 tanh

b′

2

]
(7.6)

Next, accounting for the phonon energy εq′′ :

g0(Ek − εq′′) ≈ g0(Ek) + g0(Ek)[1− g0(Ek)]βεq′′ .(7.7)

This is used with some algebra to give:

f1> + f2> = h̄

∫ ∫ ∫ ∫
g0k(1− g0k′)n0q(1 + n0q′)

× (a1> + a2>)Ak′,q′

k,q qxdkdk
′dqdq′

− h̄

∫ ∫ ∫ ∫
[g0k]2(1− g0k′)βεq′′n

0
q(1 + n0q′)

× (a1> + a2>)Ak′,q′

k,q qxdkdk
′dqdq′ , (7.8)

where the arrows on the integrals are now dropped.
With some more algebra the first four force terms add

to:

f1> + f2> + f1< + f2< =

− 2h̄γ2β
2

∫ ∫ ∫ ∫
g0k(1− g0k′)n0q(1 + n0q′)Ek(Ek − µ)

× (cos2 θ − cos2 θ′)Ak′,q′

k,q qxdkdk
′dqdq′

+ 2h̄γ2β
2

∫ ∫ ∫ ∫
g0k(1− g0k′)n0q(1 + n0q′)

× (ε2q′′ cos2 θ′)Ak′,q′

k,q qxdkdk
′dqdq′

+ 2h̄γ2β
3

∫ ∫ ∫ ∫
[g0k]2(1− g0k′)n0q(1 + n0q′)

× (Ek − µ)ε2q′′ cos2 θ′Ak′,q′

k,q qxdkdk
′dqdq′ . (7.9)

7.2. Evaluation of f3 + f4

For the force terms f3 and f4, Ek′ = Ek − εq′′ .
From (3.7)

gk(1−gk′)(1+n0q)(1+n0q′) ≈ g0k(1−g0k′)(1+n0q)(1+n0q′)a3 ,(7.10)

with

a3 = 1 + (1− g0k)γ2
[
−1 + β2Ek(Ek − µ) cos2 θ

]
−γ2g0k′

[
−1 + β2Ek(Ek − µ) cos2 θ′

]
+γ2g

0
k′β2

[
εq′′(Ek − µ) + εq′′Ek − ε2q′′

]
cos2 θ′ . (7.11)

From (3.8)

−gk′(1−gk)n0qn
0
q′ ≈ −g0k(1−g0k′)(1+n0q′)(1+n0q)a4 ,(7.12)

with

−a4 = 1− g0kγ2
[
−1 + β2Ek(Ek − µ) cos2 θ

]
+γ2(1− g0k′)

[
−1 + β2Ek(Ek − µ) cos2 θ′

]
+γ2(1− g0k′)β2

[
−εq′′(Ek − µ)− εq′′Ek + ε2q′′

]
cos2 θ′ .(7.13)

Noting

a3 + a4 = γ2 β
2Ek(Ek − µ)

[
cos2 θ − cos2 θ′

]
+γ2β

2εq′′ [2Ek − µ] cos2 θ′ − γ2β2ε2q′′ cos2 θ′ , (7.14)

one concludes

f3 + f4 =
h̄

2

∫ ∫ ∫ ∫
g0k(1− g0k′)(1 + n0q)(1 + n0q′)

× (a3 + a4)Ak′,q,q′

k qxdkdk
′dqdq′ . (7.15)

7.3. f1> + f2> + f1< + f2< + f3 + f4

Bringing (7.9) and (7.15) together, f1> + f2> + f1< +
f2< + f3 + f4 = fph,x with

fph,x = 2h̄γ2β
2

∫ ∫ ∫ ∫
g0k(1− g0k′)n0q(1 + n0q′)

×
{
Ek(Ek − µ)(cos2 θ′ − cos2 θ)

+ ε2q′′ cos2 θ′ + g0kβ(Ek − µ)ε2q′′ cos2 θ′
}
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× Ak′,q′

k,q qxdkdk
′dqdq′

+
1

2
h̄γ2β

2

∫ ∫ ∫ ∫
g0k(1− g0k′)(1 + n0q)(1 + n0q′)

×
{
Ek(Ek − µ)

[
cos2 θ − cos2 θ′

]
+ εq′′ [2Ek − µ] cos2 θ′ − ε2q′′ cos2 θ′

}
× Ak′,q,q′

k qxdkdk
′dqdq′ . (7.16)

8. Appendix B

Here only first order electron-phonon scattering is
considered, with electron wavevectors k and k′ and
phonon wavevector q′′ that is either emitted or
absorbed:
∂nq′′

∂t

∣∣∣∣
ep

=

∫ ∫ [
gk(1− gk′)(1 + nq′′)

− gk′(1− gk)nq′′
]
Wk′,q′′

k δ(k′ + q′′ − k)dkdk′ . (8.1)

The rates ∂nph/∂t for phonon density increasing
with time, and ∂uph/∂t for phonon energy density
increasing with time, are then readily obtained:
∂nph
∂t

=

∫ ∫ ∫ [
gk(1− gk′)(1 + nq′′)

− gk′(1− gk)nq′′
]
Wk′,q′′

k δ(k′ + q′′ − k)dkdk′dq′′,(8.2)

and
∂uph
∂t

=

∫ ∫ ∫
εq′′
[
gk(1− gk′)(1 + nq′′)

− gk′(1− gk)nq′′
]
Wk′,q′′

k δ(k′ + q′′ − k)dkdk′dq′′ .(8.3)

Making use of (3.7) and (3.8), the principle of detailed
balance, while taking the Bloch assumption [9] nq′′ =
n0q′′ gives

∂uph
∂t

=
1

2

∫ ∫ ∫
εq′′g

0
k(1− g0k′)(1 + n0q′′)

[
− γ′21 tanh

b′

2

+ γ21 tanh
b

2

]
Wk′,q′′

k δ(k′ + q′′ − k)dkdk′dq′′ . (8.4)

Next note that

−γ′21 tanh
b′

2
+ γ21 tanh

b

2
≈ γ2βh̄

2

2m

[
−k′2z b′ + k2zb

]
.(8.5)

So
∂uph
∂t

=
γ2βh̄

2

4m

∫ ∫ ∫
εq′′g

0
k(1− g0k′)(1 + n0q′′)

×
[
− k′2b′ cos2 θ′ + k2b cos2 θ

]
Wk′,q′′

k

× δ(k′ + q′′ − k)dkdk′dq′′, (8.6)

or
∂uph
∂t

=
γ2β

2

2

∫ ∫ ∫
εq′′g

0
k(1− g0k′)(1 + n0q′′)

×
[
− Ek′(Ek′ − µ) cos2 θ′ + Ek(Ek − µ) cos2 θ

]
×Wk′,q′′

k δ(k′ + q′′ − k)dkdk′dq′′. (8.7)

Using Ek′ = Ek − εq′′ gives

− Ek′(Ek′ − µ) cos2 θ′ + Ek(Ek − µ) cos2 θ =

Ek(Ek − µ)[cos2 θ − cos2 θ′] + εq′′(Ek − µ) cos2 θ′

+ εq′′Ek cos2 θ′ − ε2q′′ cos2 θ′. (8.8)

This resembles the second term of the phonon x-force.
Expecting the major contribution to the integral to
come from states near Ek ≈ µ ≈ EF gives

∂uph
∂t

=
γ2β

2EF
2

∫ ∫ ∫
ε2q′′g

0
k(1− g0k′)(1 + n0q′′)×

Wk′,q′′

k (cos2 θ′)δ(k′ + q′′ − k)dkdk′dq′′ .(8.9)
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