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a b s t r a c t

For a magnetically levitated superconducting sphere, the stability analysis in both axial and radial direc-
tions is analyzed theoretically using a direct boundary-value problem approach. The external magnetic
field is produced by a system of current-carrying coils with axial symmetry. We also assume complete
exclusion of magnetic fields from the interior of the superconductor. Use of the P1

l associated Legendre
functions as a basis set allows for a simple series solution for the magnetic stiffness coefficients as tridi-
agonal quadratic forms in terms of the expansion coefficients. Analysis shows that stability for this prob-
lem is not guaranteed in general. Stability is guaranteed though, if coil windings are designed in such
away that all but one of the expansion coefficients are zero. Further cases with two and three non-zero
coefficients are also solved. In particular the important 1, 3 and 2, 4 cases are treated in detail, and sta-
bility maps have been produced. Finally, the case where levitation is attempted by one pair of discrete
current coils has been solved and stability mapping has been thoroughly explored.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Earnshaw proved that stable levitation of a charge by a static
external electric field is impossible, a direct result of the inverse
square dependence of the electrostatic force [1,2]. Solutions to La-
place’s equation allow saddle points but not local extrema in all
directions. Subsequently, a similar result was established for mag-
netostatics though it was pointed out that stable levitation is pos-
sible if diamagnetic materials are present in the system [3]. As
perfect diamagnets, superconductors are included within this class
of materials. It is important to understand from these very general
considerations that stable levitation may be possible, but by no
means guaranteed for a given system.

Work towards stable magnetic levitation of objects has many
possible applications including high speed, low friction bearings
for gyroscopes, energy storage flywheels, centrifuges, etc. Also
low noise suspension for sensitive scientific measurements, and
energy efficient high speed train systems [3]. Stability analysis is
essential for efficient design of magnetically levitated systems.
Not only is avoiding instability crucially important, but even for
stable systems, optimization of the stiffness in all directions is
highly desired.

Stable magnetic levitation of a superconductor was first
achieved in 1947 by Arkadiev [4]. Magnetic levitation of supercon-
ducting spheres has been demonstrated for the case of a solid lead

sphere at 4.2 K levitated by a two-coil configuration [5] as well as
solid niobium sphere, levitated in vacuum at 4.2 K, using a two-
coil, and eight-coil unsymmetrical configuration [6].

Though analytical approaches have been reported using the
method of images [7–9], small sphere limiting case [10] and the
method of secondary sources [11,12], more recent studies have
indicated that these approaches are unnecessarily complicated
and have focused on taking a numerical calculation approach
[13,14]. These treatments assume exclusion of all magnetic flux
from the interior of the superconductor (Meissner effect) [15].

In this report the stability analysis in both axial and radial direc-
tions, of a levitated superconducting sphere is analyzed theoreti-
cally using a direct boundary-value problem approach based on
the vector potential. The external magnetic field is produced by a
system of current-carrying coils with axial symmetry. We also as-
sume complete exclusion of magnetic fields from the interior of the
superconductor. The problem is simplified significantly by a choice
of the P1

l associated Legendre functions as a basis set with which to
expand the current distribution. This leads to very simple expres-
sions for the magnetic stiffness coefficients [3] in terms of the
expansion coefficients.

It should be noted that the assumption of complete magnetic
field exclusion can fail in some important scenarios. For example,
it has been pointed out that when treating the forces on a super-
conducting magnet that is small enough to be used in a magnetic
force microscope, then the London penetration depth must be ac-
counted for [16]. Also, the assumption of complete expulsion of
the magnetic field is correct for type-II superconductors only when
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the magnetic field is below the lower critical field Bc1 [17]. Above
Bc1 the force calculations must be modified by including the energy
of flux vortices [18]. As well, it is known that flux-pinning in type-II
superconductors introduces hysteretic effects that can strongly ef-
fect the stability of levitated systems [18,19].

External forces such as gravity are not treated here. These re-
sults presented here are applicable either in a zero-gravity envi-
ronment or in the case where the magnetic system is very stiff
so that external forces that are present would have very small ef-
fects. Given a trend towards producing stronger and stronger fields
[20,2] this is a reasonable approach for such systems.

2. Theory for stiffness coefficients

The net force on the superconducting sphere is calculated using
the magnetic stress method [3]. Forces at the surface of the super-
conductor are always repulsive and surface normal [3]. In this dis-
cussion the term external force refers only to that caused by the
coil current. Inclusion of any other very small external force would
change the equilibrium position and stiffness constants by very
small amounts. This is the case when the magnetic forces are very
strong and stiff compared to everything else. When the magnetic
field inside the superconducting sphere is zero, the net force on
the sphere may be expressed in terms of an integral over the sur-
face of the surface current density ~Ks:

~Fs ¼ �
l0

2

Z
K2

s r̂s das ð1Þ

where r̂s is the radial unit vector [3]. Here we assume that the sur-
face current density can be expressed in spherical polar compo-
nents as ~Ks ¼ Khĥþ K//̂ and is set up as a response to the applied
fields produced by the coil. We consider the field source as a surface
current density ~Kc on a larger sphere of radius b, as is illustrated in
Fig. 1.

Here we report results for the restricted case where the current
flows azimuthally around the z-axis. Otherwise this current is ex-
pressed as generally as possible with magnitude a function of the
polar angle hc. In general the two spheres will be centered at two
distinct points, differing by a vector ~g. First we will calculate
expressions for the fields when the spheres are concentric. From
these expressions the net force can be calculated and conditions

for equilibrium established. Then we will use a first order Taylor
expansion of the magnetic field from the coil in order to find the
net force to first order in ~g. This directly gives the stiffness con-
stants in the axial and lateral directions.

To zeroth order in ~g; ~Ks is purely azimuthal, i.e. Kh = 0. The net
force is:

~F0 � ĝ ¼ �
l0

2

Z
K/j0
� �2ðr̂s � ĝÞdas ð2Þ

and the stiffness coefficients in the z- and x-directions are:

kz ¼ l0

Z
K/j0

@K/

@z

����
0
ðr̂s � ẑÞdas ð3Þ

kx ¼ l0

Z
K/j0

@K/

@x

����
0
ðr̂s � x̂Þdas ð4Þ

2.1. The external field

The function Kc can be expanded as a linear superposition of
associated Legendre functions P1

l as:

KcðhcÞ ¼
X1
l¼1

clP
1
l ðcos hcÞ ð5Þ

The reason for this particular set of complete functions will be
made clear in this section. The magnetic vector potential function
at the field point~r can be expressed as a spherical surface integral
over source points~rc at radius b:

~Ac ¼
l0

4p

Z ~Kc

~r �~rcj jdac ð6Þ

with ~Kc ¼ KcðhcÞ/̂c ¼ KcðhcÞ½� sin /cx̂þ cos /cŷ�. For rc = b > r one can
use the multipole expansion formula:

1
j~r �~rcj

¼
X1
l¼0

rl

blþ1 Plðcos cÞ ð7Þ

as well as the addition formula [21,22]:

Plðcos cÞ ¼ Plðcos hÞPlðcos hcÞ þ 2
Xl

m¼1

� ðl�mÞ!
ðlþmÞ! Pm

l ðcos hÞPm
l ðcos hcÞ cos½mð/� /cÞ� ð8Þ

Making use of the azimuthal unit vector:

/̂c ¼ � sin /cx̂þ cos /cŷ ð9Þ

we see that only the m = 1 term is contributing. Using the orthogo-
nality of the P1

l functions:Z p

0
sin hP1

l ðcos hÞP1
nðcos hÞdh ¼ 2lðlþ 1Þ

2lþ 1
dln ð10Þ

results in the following expression for ~Ac , valid for r < b:

~Ac ¼ l0

X1
l¼1

cl
1

2lþ 1
rl

bl�1 P1
l ðcos hÞ/̂ ð11Þ

The m = 1 associated Legendre functions arise naturally in this
class of magnetostatic problems, as in the classic example of a sin-
gle circular current loop [21,22]. This makes the P1

l functions a
good choice for our basis set. By direct application of the curl vec-
tor derivative and use of standard recurrence relations for the asso-
ciated Legendre polynomials the magnetic field is calculated. One
such useful recurrence relation is [22]:

@

@h
sin hP1

l ðcos hÞ
� �

¼ �lðlþ 1Þ sin hP0
l ðcos hÞ ð12Þ

Fig. 1. Schematic diagram of the superconducting sphere inner with radius a,
translated from the coil origin by vector g. Two grey coils are indicated on the coil
sphere at polar angle h1.
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The result for the magnetic field produced by the coil is:

~Bc ¼ �l0

X1
l¼1

cl
lþ 1

2lþ 1
rl�1

bl�1 lP0
l ðcos hÞr̂ þ P1

l ðcos hÞĥ
h i

ð13Þ

2.2. Shifting the fields

Direct differentiation followed with further use of the following
recurrence relation:

sin h
d

dh
P1

l ðcos hÞ ¼ l cos hP1
l ðcos hÞ � ðlþ 1ÞP1

l�1ðcos hÞ ð14Þ

gives:

@~Bc

@z
¼ �l0

X1
l¼2

cl
lðlþ 1Þ
2lþ 1

� rl�2

bl�1 ðl� 1ÞP0
l�1ðcos hÞr̂ þ P1

l�1ðcos hÞĥ
h i

ð15Þ

@~Bc

@x
¼ �l0

X1
l¼2

cl
ðlþ 1Þ
2lþ 1

rl�2

bl�1

"
ðl� 1ÞP1

l�1ðcos hÞ cos /r̂

þ d
dh

P1
l�1ðcos hÞ

� �
cos /ĥ� P1

l�1ðcos hÞ
sin h

sin //̂

#
ð16Þ

In all terms the index l has been reduced by one. The surface
currents ~Ks create a magnetic field ~B such that the net field
~Bþ~Bc is zero for r < a. With no loss of generality we take the dis-
placement vector ~g to lie in the xz plane. To first order in ~g the re-
sponse field is given by:

~B ¼ l0

X1
l¼1

ðlþ 1Þcl

ð2lþ 1Þbl�1 rl�1 lP0
l ðcos hÞr̂ þ P1

l ðcos hÞĥ
h i

þ l0

X1
l¼2

ðlþ 1Þcl

ð2lþ 1Þbl�1 gz lrl�2 ðl� 1ÞP0
l�1ðcos hÞr̂ þ P1

l�1ðcos hÞĥ
h in

þgxrl�2 ðl� 1ÞP1
l�1ðcos hÞ cos /r̂ þ d

dh
P1

l�1ðcos hÞ
� �

cos /ĥ

	

� 1
sin h

P1
l�1ðcos hÞ sin //̂


�
ð17Þ

for r < a, while ensuring a zero-curl field just outside the inner
sphere gives:

~B ¼ l0

X1
l¼1

ðlþ 1Þcl

ð2lþ 1Þbl�1

a2lþ1

rlþ2 l P0
l ðcos hÞr̂ � 1

lþ 1
P1

l ðcos hÞĥ
	 


þ
X1
l¼1

ðlþ 1Þcla2l�1

ð2lþ 1Þbl�1rlþ1
gzðl� 1Þ lP0

l�1ðcos hÞr̂ � P1
l�1ðcos hÞĥ

h in

þgx
ðl� 1Þ

l
lP1

l�1ðcos hÞ cos /r̂ � d
dh

P1
l�1ðcos hÞ

� �
cos /ĥ

	

þ 1
sin h

P1
l�1ðcos hÞ sin //̂


�
ð18Þ

for r > a. The normal component of~B is continuous at r = a while the
lateral components have discontinuities related to the surface cur-
rents. In particular K/ = (Bout � Bin)h/l0. The discontinuities follow
the standard 2l + 1 rule [22,23]. Thus

K/j0 ¼ �
X1
l¼1

cl
a
b

� �l�1
P1

l ðcos hÞ ð19Þ

dK/

dgz

����
0
¼ �

X1
l¼2

cl
al�2

bl�1

� �
ðlþ 1Þ2l� 1

2lþ 1
P1

l�1ðcos hÞ ð20Þ

dK/

dgx

����
0
¼ �

X1
l¼2

cl
al�2

bl�1

� �
ðlþ 1Þ

l
2l� 1
2lþ 1

d
dh

P1
l�1ðcos hÞ

� �
cos / ð21Þ

To evaluate kz using Eq. (3) with r̂ � ẑ ¼ cos h we make use of the
following recurrence relation:

cos hP1
l�1ðcos hÞ ¼ l� 1

2l� 1
P1

l ðcos hÞ þ l
2l� 1

P1
l�2ðcos hÞ ð22Þ

Subsequent use of Eq. (10) gives the desired result:

kz ¼ 4pl0a
X1
l¼2

ðl� 1Þlðlþ 1Þ
ð2lþ 1Þ

a
b

� �2l�4 lþ 1
2lþ 1

a2

b2 c2
l þ
ðl� 2Þ
ð2l� 3Þ clcl�2

	 


ð23Þ

To evaluate kx using (4) with r̂ � x̂ ¼ sin h cos / we make use of
the following recurrence relation:

sin h
d

dh
P1

l�1ðcos hÞ ¼ ðl� 1Þ2

2l� 1
P1

l ðcos hÞ � l2

2l� 1
P1

l�2ðcos hÞ ð24Þ

to give:

kx ¼ 2pl0a
X1
l¼2

ðl� 1Þðlþ 1Þ
ð2lþ 1Þ

a
b

� �2l�4 ðlþ 1Þðl� 1Þ
2lþ 1

a2

b2 c2
l

	

� ðl� 2Þl
ð2l� 3Þ clcl�2



ð25Þ

Incidentally, the force to zeroth order is given by

~F
���
0
¼ �2pl0a2

X1
l¼1

lðlþ 1Þ
ð2lþ 1Þ

a
b

� �2l�1
clclþ1ẑ ð26Þ

For convenience we define

dl �
lðlþ 1Þ
2lþ 1

a
b

� �l

cl ð27Þ

which allows for a more concise expression of the stiffness:

kza

4pl0b2 ¼
X1
l¼2

l� 1
l

� �
d2

l þ dldl�2

	 

ð28Þ

kxa

4pl0b2 ¼
1
2

X1
l¼2

l� 1
l

� �2

d2
l � dldl�2

" #
ð29Þ

Inspection of Eq. (26) shows that setting clcl�1 = 0 for all l is a
sufficient condition for equilibrium at ~g ¼ 0. This leads one to
adopt either an all odd-l or all even-l coil current configuration,
as will be the case from here on. For this reason the use here on
of the term consecutive means that the two integers differ by two
ex. 3,5.

3. Results for odd and even series

For the case where only odd-l terms are non-zero, Eqs. (28) and
(29) are quadratic forms in terms of the vector jdi, i.e.

kza

4pl0b2 ¼ hdjZoddjdi ð30Þ

kxa

4pl0b2 ¼
1
2
hdjXoddjdi ð31Þ

where the representations for Zodd and Xodd are real symmetric tri-
diagonal matrices:
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Zodd ¼

0 1
2 0 0 � � �

1
2

2
3

1
2 0 � � �

0 1
2

4
5

1
2 � � �

0 0 1
2

6
7 � � �

..

. ..
. ..

. ..
.

0
BBBBBBB@

1
CCCCCCCA

ð32Þ

Xodd ¼

0 � 1
2 0 0 � � �

� 1
2

22

32 � 1
2 0 � � �

0 � 1
2

42

52 � 1
2 � � �

0 0 � 1
2

62

72 � � �

..

. ..
. ..

. ..
.

0
BBBBBBBBB@

1
CCCCCCCCCA

ð33Þ

Mechanical stability is then determined by the signs of the
eigenvalues of these matrices. The existence of even one negative
eigenvalue in either matrix means that a set of coefficients cl can
be found that will lead to instability. We have used numerical cal-
culations to show that both of these matrices do indeed possess
such negative eigenvalues. Truncating Xodd even at N = 5 gives a
set of eigenvalues with 1 that is negative with a value of
��0.43557. Truncating Xodd at N = 20 gives a set of eigenvalues
with 3 that are negative and an overall set minimum value of
��0.437483. Truncating Xodd at N = 100 gives a set of eigenvalues
with 7 that are negative and a converged minimum value of
� � 0.437483. For the case N = 20 the eigenvector (actually cl) cor-
responding to the lowest eigenvalue is shown in Fig. 2 for three
values of the ratio b/a. In this case a threshold value for this ratio
of about 2.465 is obtained. Smaller (larger) b/a values give a solu-
tion with cl that falls off (rises) approximately exponentially with l.
The usefulness of this stability analysis is demonstrated here: If
any of the three configurations shown in Fig. 2 were to be created
from a given experimental construction of a current coil, it would
be difficult to realize a priori that instability would result.

For the case of the even-l only series the matrices are given by:

Zeven ¼

1
2

1
2 0 0 � � �

1
2

3
4

1
2 0 � � �

0 1
2

5
6

1
2 � � �

0 0 1
2

7
8 � � �

..

. ..
. ..

. ..
.

0
BBBBBBB@

1
CCCCCCCA

ð34Þ

and

Xeven ¼

1
4 � 1

2 0 0 � � �
� 1

2
32

42 � 1
2 0 � � �

0 � 1
2

52

62 � 1
2 � � �

0 0 � 1
2

72

82 � � �

..

. ..
. ..

. ..
.

0
BBBBBBBBB@

1
CCCCCCCCCA

ð35Þ

These matrices also have negative eigenvalues, as verified by
numerical computation, thus making the even-l only scenario
inherently unstable as well.

4. Single non-zero coefficient

Here the special case is considered where just one cl value is
non-zero. In this case off-diagonal matrix elements are irrelevant.
For l > 1, clearly both kz and kx are positive definite, thus ensuring
stability. The special case of l = 1 gives the well-known result [23]
of the coil producing a uniform magnetic field inside the coil, hence
neutral equilibrium. For l = 2 kz ¼ 4pl0ð18a3=25b2Þc2

2 and kx = kz/4.
For large l, kz � pl0a l2(a/b)2l�2 while kx = 2l kz/(l � 1) � kz/2.

As yet, reported levitation designs have a small number of coils,
the most that we are aware of is eight [6]. The two-coil system will
be discussed in Section 7. Future designs, however, with more
powerful magnetic fields [20,2] and stiffness coefficients in mind,
will likely have many coils. With options for varying the density
of coils as well as the current carried by each, one can in principle
design a system to produce just one non-zero cl coefficient. This is
an ideal situation; in practice other non-zero coefficients may also
exist. If the coefficients are not consecutive then the effect is sim-
ply additive. Though many possibilities exist, we will next discuss
two simple cases involving consecutive coefficients.

5. Two consecutive non-zero coefficients

When the only non-zero coefficients are the two consecutive
terms, dl�2 and dl, then by simple completion of squares we see
that:

kza

4pl0b2 ¼
l� 1

l
dl þ

ldl�2

2l� 2

	 
2

þ 3
4

d2
l�2

ðl� 1Þðl� 2Þ gzðlÞ ð36Þ

with

gzðlÞ ¼ l� 7
3

� �2

� 13
9

ð37Þ

The function gz is positive for l P 4 so stability in the z-direction
is guaranteed for l P 4. For the off-axial motion:

kxa

2pl0b2 ¼
l� 1

l
dl �

l
2l� 2

dl�2

	 
2

þ 3
4

d2
l�2

ðl� 1Þðl� 2Þ

 !2

gxðlÞ ð38Þ

with

gxðlÞ ¼ l2 � 6lþ 6
� �

l2 � 10
3

lþ 2
� �

ð39Þ

For l P 5, gx is a positive function while gx(3) = �3 and
gx(4) = �28/3. For the case of two consecutive terms, overall stabil-
ity is guaranteed if l P 5, i.e. for the cases 3, 5 and up, stability is
guaranteed.

105

106

107

108

0 5 10 15 20

c l (a
rb

. u
ni

ts
)

l

Fig. 2. Eigenvector set of coefficients cl vs. l for the most negative eigenvector of the
matrix Xodd, truncated to N = 20. Eigenvectors are not normalized. From the one
set dl, three representative sets cl are calculated for b/a = 2 (open blue circles),
b/a = 2.465 (open black triangles), b/a = 3 (filled green squares). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Explicitly for the 1, 3 case:

kz ¼
32pl0

49
a4

b3 c3 12
a
b

c3 þ 7
b
a

c1

	 

ð40Þ

kx ¼
16pl0

49
a4

b3 c3 8
a
b

c3 � 7
b
a

c1

	 

ð41Þ

From Eq. (40) the condition kz = 0 implies that the ratio, r, of a
b c3

to b
a c1 will take on the two possible values: 0 and �7/12. These two

slope values demarcate the region of lateral instability in the plot
shown in Fig. 3. Also shown are the two slope values r = 0 and
r = 7/8 at which kx = 0, as well as the two slope values r = 0 and
r = �21/16 at which kx = kz (dashed line).

For the 2, 4 case explicitly:

kz ¼
16pl0

3
a5

b4

5a
3b

c4 þ
3b
5a

c2

	 
2

þ 9
2

bc2

5a

� �2
( )

ð42Þ

kx ¼ 2pl0
a5

b4

5a
3b

c4 �
4b
5a

c2

	 
2

� 7
bc2

5a

� �2
( )

ð43Þ

From Eq. (43) the condition kx = 0 implies that the ratio, r, of a
b c4

to b
a c2 will take on the two possible values: 3

25 ð4	
ffiffiffi
7
p
Þ. These two

slope values demarcate the region of instability in the plot shown
in Fig. 4. Also, inspection of Eq. (42) shows that motion in the axial
direction is softest when r ¼ � 9

25 (dashed line).

6. Three consecutive non-zero coefficients

Qualitatively, the results are similar to the case of two consec-
utive terms: when the l-value is large enough stability is guaran-
teed, as determined from numerical computation. The only cases
with instabilities are now listed: For the 1, 3, 5 case and the
2, 4, 6 case both kz and kx can be negative. For the 3, 5, 7 case and
for the 4, 6, 8 case kx can be negative.

7. Single pair of loops

In this section we consider what happens when the coil surface
current Kc is concentrated down to a series of discrete loops,
similar to the experimental conditions discussed in Refs. [5,6]. In

particular consider two such discrete coils, with one coil carrying
current I1 flowing counter-clockwise at polar angle +h1 and another
at p � h1 with polarity (�1)p, (p = 0,1), so that the surface current is
expressed as:

KcðhÞ ¼
I1

b
dðh� h1Þ þ ð�1Þp I1

b
dðhþ h1 � pÞ ð44Þ

Using Eqs. (5) and (10) the coefficients cl are

cl ¼
fplI1 sin h1

b
2lþ 1
lðlþ 1Þ P

1
l ðcos h1Þ ð45Þ

where fpl = [1 � (�1)p+l+1]/2 takes values 0 or 1. For p = 1 (p = 0) only
odd (even) l terms will contribute. Either p value ensures zero net
force.

As an example consider the case p = 1 and a
 b. In this case the
leading term for the spring constants (Eqs. (23) and (25)) is the 1, 3
cross-term, i.e.

kz ¼ 6pl0
a3

b4 I2
1 sin4 h1ð5 cos2 h1 � 1Þ ð46Þ

and kx = �kz/2, which makes stable equilibrium impossible. Note
also that both stiffness constants are zero at the condition
h1 = tan�1(2), or h1 = 63.4�, the same as for the well-known Helm-
holtz coil. For the purposes of achieving stable and stiff levitation,
odd l configurations are unfavourable, at least for small supercon-
ducting spheres.

For p = 0, i.e. even l and a
 b the leading term is l = 2:

kz ¼ 18pl0
a3

b4 I2
1 sin4 h1 cos2 h1 ð47Þ

and kx = +kz/4. Stability is ensured for the full range 0 < h1 < p/2. The
field produced at the origin is zero, so stable levitation of a small
superconducting sphere makes sense; the diamagnetic sphere is re-
pelled from the stronger fields existing away from the origin.

These examples are instructive but levitation configurations
involving heavy loads or maximal stiffness are likely to have the in-
ner radius a slightly smaller than radius b so many terms need to
be included. As a small step in this direction consider the 2, 4 only
case with c2 ¼ 5I1 sin h1P1

2ðcos h1Þ=ð6bÞ and c4 ¼ 9I1 sin h1P1
4ðcos

h1Þ=ð20bÞ. Inspection of (43) and Fig. 4 shows that instability is
possible, depending on the choice of h1.

c1b/a

c3b/a

0

0

kx<0

kx<0
kz<0

kz<0

stable

stable

Fig. 3. Stability diagram for the case where only c1 and c3 are non-zero. Regions of
instability are shaded (light grey for lateral instability, dark green for axial
instability). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

kx<0

kx<0

0

0

c2b/a

c4a/b

stable

stable

Fig. 4. Stability diagram for the case where only c2 and c4 are non-zero. Regions of
lateral instability are shaded and the dashed line shows where kz is soft.
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7.1. Numerical results for one pair of loops

To proceed further, numerical computations of kz and kx are eas-
ily accomplished after combining Eqs. (23), (25) and (45). One
example is shown in Fig. 5 for the even-l case with a = 0.7b. Here
the functions 4pkzb=ðl0I2

1Þ and 4pkxb=ðl0I2
1Þ are plotted. Both kz

and kx take negative values over some range. A region of stability
exists from h1 = 38� to h1 = 69�. The unstable regions make intuitive
sense: For h1 < 38� where kx < 0 the coils are located near the poles
and the superconductor can escape by moving radially. For h1 > 69�
where kz < 0 the coils are located near the equator and the super-
conductor can escape by moving axially.

The data presented in Fig. 5 can be projected down as a vertical
slice of the stability plot presented in Fig. 6. In this plot h1 is plotted
on the ordinate while a/b is varied on the abscissa. Two regions of
instability are clearly delineated, one where kx < 0, the other where
kz < 0. Overall, stability is easier to attain when a/b is small. In fact,
for a/b < 0.28 we see that stability is ensured. However, in a prac-
tical levitation attempt to create high stiffness and/or strong lifting
forces, one would like to choose a/b to not be so small. This plot can
serve as a warning against using any calculation that assumes the
levitating object is small (if indeed it is not) or against the tempta-
tion to view the square of the magnetic field as a potential energy
function.

Finally, the stability plot for odd-l series (current in both loops
in same direction) is shown in Fig. 7. One is at first struck by
how the regions of axial and lateral instability fill most of the plot.
Also verified is complete lack of opportunity for stable levitation
for a small superconducting sphere (a/b [ 0.42) with the kx = kz = 0
boundary located at the Helmholtz angle, h1 = 63.4�. For larger val-
ues of a/b we see that the window of stable levitation opens up ni-
cely. In fact when a approaches b designing a system with odd
terms only is actually a workable option.

8. Conclusions

A vector potential based theoretical approach has been devel-
oped for calculating the magnetic force and stiffness coefficients
for a superconducting sphere surrounded by an axially-symmetric
electric current confined to the surface of a larger sphere. With a
judicious choice of basis functions for expansion, simple analytic
results are derived for the stiffness coefficients, and hence the sta-
bility. The stiffness has been expressed as tridiagonal quadratic
forms in terms of the expansion coefficients. Stability for this prob-
lem is not guaranteed in general. In terms of the coil current
expansion coefficients cl we have found that if all are zero but
one, then stability is guaranteed. For the case where all are zero
save for two successive terms, we have outlined in detail the cases
for stable or unstable levitation. In particular the 1, 3 and 2, 4 cases
deserved special attention and the stability regions were mapped
out. Lastly, the case of one pair of current coils was addressed as
an example and non-trivial stability plots were presented. The

Fig. 5. Plots of stiffness parameters kz (solid, blue) and kx (dashed, red) vs. h1 for the
case of a single coil pair (p = 0) with a = 0.7b. Both parameters are normalized by
l0I2

1=ð4pbÞ. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

kx<0

kz<0

a/b

2θ
1/

π

stable

Fig. 6. Stability plot for the case of a single coil pair. The current distribution is
antisymmetric so only even-l terms are present. The two free parameters left are a/b
and h1.

kz<0

kx<0

a/b

2θ
1/

π

stable

0.8
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0 0.2 0.4 0.6 0.8 1.

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1.

Fig. 7. Stability plot for the case of a single coil pair. The current distribution is
symmetric (current in both loops in the same direction) so only odd-l terms are
present.
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results presented here should be very useful when applied towards
any future design of current winding configurations to be imple-
mented in practical magnetic levitation. We anticipate using this
approach in the future to aid in the design of magnetic levitation
systems designed for filtering out mechanical noise.
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