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Transport theory up to second-order scattering for reaction-diffusion-phonon systems
with applications to active transport in catalysis, explosions, and biological membranes
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A Boltzmann transport equation approach is developed for reaction-diffusion systems which incorporates
phonon transport in addition to the traditional approach. Scattering processes up to second order are taken into
account. Two forces emerge from this analysis when a spatial gradient exists, one force on reactants and products,
the other force on phonons. The forces are equal and opposite and have the tendency for separation of the phonons
away from the reactants and products. These forces are capable of creating the types of instabilities that can lead
to the formation of Turing patterns. The existence of these forces allows for exergonic conversion where not
all of the released energy from reactions and diffusion becomes heat. When applied to homogeneous catalysis,
one finds that reactants and products are pushed toward regions of greater catalytic activity. In the realm of
high-energy explosions, calculations show that reactants and products can be accelerated laterally to the direction
of a TNT reaction front up to speeds near 1000 m/s. This acceleration is in opposition to diffusion and represents
active transport. Calculations also show that active transport observed in biological systems such as bacteria,
mitochondria, and chloroplasts may be explained by this second-order transport theory. Using reasonable values
for key parameters, calculations show that up to one-third of the available chemical energy can be converted
toward pumping protons uphill to a potential of 50 mV.
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I. INTRODUCTION

Recent theoretical studies of electronic conduction at high
currents has shown the existence of equal and opposite forces
on electrons and phonons, if the system is inhomogeneous
[1]. These forces are interesting because they are produced
in a system that is otherwise merely dissipating energy. The
approach uses a second-order transport equation built up by
combining two Boltzmann transport equations, one for elec-
trons and one for phonons. The predicted force pair can
destabilize the dynamics for heat transfer. One such outcome
is spontaneous symmetry breaking of the temperature field.

This approach has been adapted for use on reaction-
diffusion systems and these results are presented here. The
reaction part in particular adds complexity as more particles
may partake, as compared to the electron-phonon case. An
abundant amount of experimental and observational evidence
is available for reaction-diffusion systems, including studies
of reaction-diffusion Turing patterns [2,3]. Turing patterns are
known to result from spontaneous symmetry breaking. It is
of interest to the general scientific community to investigate
if first principles transport theory can explain this pattern
formation in detail.

It is also of interest to see if these results can be applied
to biological systems that display the phenomenon of active
transport. In active transport, particles are pushed uphill en-
ergetically, against the flow direction dictated by ordinary
diffusion caused by a concentration gradient [4,5]. This type
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of particle transport is essential to the function of commonly
found biological systems such as mitochondria, chloroplasts,
and bacteria. Active transport is key to the chemiosmotic
mechanism thought to play an important role in the ener-
getics of biological systems. On this topic the goal is to
ascertain whether or not any forces that might emerge from
second-order transport in reaction-diffusion systems could be
responsible for active transport.

Toward understanding the theoretical results presented
here a common theme is to consider a purely dissipative
system pushed away from thermodynamic equilibrium by
some external agent which is then removed. Ordinarily then
a certain amount of initial energy is dissipated away into the
heat bath as the system returns to equilibrium. The existence
of any new forces could change this outcome, and some of the
energy may be diverted away from becoming heat.

For the electron-phonon case the system consisted of an
electrical conductor and would normally be an open system
connected to a source of both electromotive force and current.
Here the thermodynamical reaction-diffusion system may be
open or closed and consists of a set of reactant and product
particles, undergoing both diffusion as well as reactions, either
chemical or nuclear. The phonons, as well as the heat bath, are
essentially built in.

In this discussion of reaction-diffusion, the particles
making up the system will be treated using classical Maxwell-
Boltzmann statistics, and are given the generic term of
reaction-diffusion particles. These are not to be confused with
the phonons which are massless, quantum, quasiparticles. The
list of candidates for being reaction-diffusion particles is long,
including atoms, ions, nuclei, molecules both small and large,
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clusters, and includes the categories of reactants, products,
and catalysts. The gradients in concentrations that produce
diffusion will be treated as static or quasistatic and in this
discussion should not be confused with the dynamical den-
sity undulations of the phonons (sound waves). Phonons in
solids are well studied and phonon scattering plays an impor-
tant role in nonequilibrium transport calculations of electrical
conductivity in the solid state [6,7]. The specific phonon
quasiparticles are not traditionally incorporated into studies
of reaction-diffusion systems though [8–12]. Here they will
play an important role, at the level of second-order scattering.

The theoretical approach presented here attempts to de-
termine the dynamical equations for the concentrations
nrdp,i(r, t ), with i = A, B,C, ..., of each type of reaction-
diffusion particle (A, B,C, ...) and well as the for the phonon
density function nph(r, t ). This includes searching for any
new and significant force terms which would directly affect
the acceleration fields. One proven method for describing
temporal changes to these fields caused by particle scatter-
ing is the Boltzmann transport equation. In this approach
one focuses, for each reaction-diffusion particle, on the dis-
tribution function gk,i(r, t ), where k is the wave vector, as
well as the distribution function for the phonons, hq(r, t ),
where q is the phonon wave vector. From the distribution
functions, densities are easily obtained by summing over all
wave vectors as nrdp,i = ∫

gk,idk and nph = ∫
hqdq. Use of the

Boltzmann transport formalism allows for careful accounting
of the important temporal evolution terms for gk,i(r, t ) and
hq(r, t ), through the calculation of collision integrals, ∂gk,i

∂t |coll

and ∂hq

∂t |coll. The microscopic transport approach taken here is
a truncated approximation scheme under the BBGKY hierar-
chy [13] that couples the reaction-diffusion particle fields and
phonon fields through a combination of the electron Boltz-
mann transport equation with the phonon Boltzmann transport
equation [6,7,14–17]. This coupling demands a treatment
up to second-order scattering. This first principles approach
implemented here is capable of dealing with second-order
scattering processes and leads to equations for the particle
distribution dynamics, one for each type of particle. These
equations will involve collision terms such as ∂gk

∂t |D2 for the
case of reaction-diffusion particle diffusion at second-order
scattering and ∂gki

∂t |R2 (with i = A, B,C, ...) for the case of
chemical reactions of reaction-diffusion particles, also at sec-
ond order. The final step in the theoretical development is to
account for spatial gradients which play a key role since the
scattering events do not all occur at the same point in space.

The first-principles scattering calculations are presented
for the case of pure diffusion in Sec. II, and the two
reaction-diffusion-phonon Boltzmann transport equations are
presented. Force terms are calculated at second order, includ-
ing the force on the phonon field. Spatial gradients are then
incorporated to produce a simple expression for the forces
and potentials. A discussion for the energetics is included. A
similar treatment is discussed in Sec. III for the case of reac-
tions. After a discussion of simple combination reactions, the
bimolecular reaction is considered, followed by a treatment
of more general reactions. In Sec. IV, the general results are
formulated into a theorem, with subsequent discussion. After-
wards, some example systems are considered and numerical

results are presented. In Sec. V, catalytic systems with spatial
gradients are analyzed, followed by a study, in Sec. VI, of
how the dynamics during explosions might be affected. Before
concluding, a discussion of active transport in mitochondria
and chloroplasts is made in Sec. VII.

II. CASE OF CONCENTRATION GRADIENTS
AND DIFFUSION

Electron-phonon scattering has been well studied and the
goal here is to take this system and adapt it to the case of
reaction-diffusion. An electronic system that has been pushed
away from equilibrium will, if allowed to, approach equilib-
rium via electron-phonon scattering and will create heat as it
does so, i.e., Joule heating. A chemical system will also pro-
duce heat if pushed away from equilibrium on the exothermic
side. In doing so, phonons must be created, and this can also
be described by scattering processes.

To begin with, only one type of reaction-diffusion particle
is treated, and reactions are not considered, only diffusion.
One should think of a multicomponent system capable of
multiple chemical reactions, but with all reaction channels
somehow shut off, in this section only. All components may
have concentration gradients, but to begin with, only one such
component, or reaction-diffusion particle, is considered. The
goal is to determine both the spatial variation as well as the
time dependence of the local number density, nrdp(r, t ) for this
particle type. When this density is expressed in terms of the
distribution function gk ≡ gk(r, t ) as nrdp(r, t ) = ∫

gkdk, then
the problem is reduced to solving the Boltzmann transport
equation:

∂gk

∂t
+ v · ∂gk

∂r
+ 1

h̄
Fext · ∂gk

∂k
= ∂gk

∂t

∣∣∣∣
coll

, (1)

where the velocity is v = h̄k/m. The collision term is cal-
culated here by accounting for first and second order in
scattering, as will be discussed below:

∂gk

∂t

∣∣∣∣
coll

= ∂gk

∂t

∣∣∣∣
D1

+ ∂gk

∂t

∣∣∣∣
D2

. (2)

Focusing first on reaction-diffusion particle-phonon scat-
tering at first order:

∂gk

∂t

∣∣∣∣
D1

=
∫∫

{−gk(1 + hq′′ ) + gk′ hq′′}Wk′,q′′
k

× δ(k − k′ − q′′)dk′dq′′, (3)

where hq is the phonon distribution function for phonon

wave vector q, and W
k′,q′′
k is the intrinsic transition proba-

bility and includes an energy conserving Dirac δ function
[6]. For reaction-diffusion particle sums dk ≡ 1

8π3 d3k while
for phonons dq ≡ 3

8π3 d3q. These integrals are taken over
the full momentum space. For example, qx, qy, and qz all
range from −∞ to +∞. The spin quantum numbers are
suppressed in the notation here as no spin-dependence will
be discussed. The distributions gk and hq are nonequilibrium
in general. The equilibrium distributions are denoted as g0

k
and h0

q. Since classical Maxwell-Boltzmann statistics are used
for the reaction-diffusion particles, 1 ± gk ≈ 1 for outgoing
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states. The first-order collision integral gives the traditional
diffusion coefficient for the reaction-diffusion particles.

The second-order transport integrals for the electron-
phonon system have been worked out previously [1]. This
result is carried over with appropriate adaptation which is

explained in detail below. Since electron flow is created by a
gradient in electrochemical potential, the parallel with particle
diffusion is clear. For the particular type of reaction-diffusion
particle under consideration here, the important second-order
collision integral is

∂gk

∂t

∣∣∣∣
D2

= 1

2

∫ ∞

0

∫∫∫∫ [−gk(1 + hq′′ )Wk′,q′′
k δ(k − k′ − q′′)e−t ′/τ1,>hq′′ hq(1 + hq′ )Qq′

q′′,qδ(q′′ + q − q′)

+ gk′ hq′′W
k′,q′′
k δ(k − k′ − q′′)e−t ′/τ1,< (1 + hq′′ )(1 + hq)hq′Q

q′′,q
q′ δ(q′′ + q − q′)

− gk(1 + hq′′ )Wk′,q′′
k δ(k − k′ − q′′)e−t ′/τ2,>hq′′ (1 + hq)(1 + hq′ )Qq,q′

q′′ δ(q′′ − q − q′)

+ gk′ hq′′W
k′,q′′
k δ(k − k′ − q′′)e−t ′/τ2,< (1 + hq′′ )hqhq′Q

q′′
q,q′δ(q′′ − q − q′)

]
dk′dqdq′dq′′dt ′, (4)

In Eq. (4) one recognizes two scattering vertices, Wk′,q′′
k , as well as one for three-phonon scattering, Qq′′

q,q′ . For each vertex the
explicit Dirac δ functions stipulate momentum conservation. The scattering diagrams illustrated in Fig. 1 help to understand the
structure of the collision integral. The first line in Eq. (4) corresponds to Fig. 1(a), in which a reaction-diffusion particle with
wave vector k scatters to produce k′ at lower energy, and a virtual phonon q′′, which subsequently scatters with another phonon q
to produce a final state phonon q′. The right moving, >, virtual phonon has a lifetime τ1,>, hence the probabilistic factor e−t ′/τ1,>

along with integration over t ′ from 0 to ∞ [7]. Explicit dependence of this collision integral on the time t is contained in the
distribution functions gk(r, t ), gk′ (r, t ), hq(r, t ), hq′ (r, t ), and hq′′ (r, t ). The second line in Eq. (4) [see Fig. 1(b)] corresponds
to the time reversal of Fig. 1(a). The virtual phonon is left moving, <. Figures 1(c) and 1(d) form another time reversed pair.
Apart from the possibility of 4-phonon processes this exhausts all possibilities. The manner of dealing with phonons is similar to
Boltzmann transport calculations of thermal conductivity [6,17]. The second-order scattering approach taken here and depicted
in Fig. 1 is not to be confused with what is more traditionally referred to as second-order transport theory which determines
second-order corrections to particle distributions, while considering only one scattering vertex [18].

Pointing out symmetries such as Qq′
q′′,q = Q

q′′,q
q′ and Q

q,q′
q′′ = Q

q′′
q,q′ helps to simplify Eq. (4) as well as the following expressions

for the complementary transport integrals:

∂gk′

∂t

∣∣∣∣
D2

= 1

2

∫ ∞

0

∫∫∫∫ [{e−t ′/τ1,>gkhq(1 + hq′ ) − e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)

]
×W

k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdqdq′dq′′dt ′, (5)

∂hq

∂t

∣∣∣∣
D2

=
∫ ∞

0

∫∫∫∫ [{−e−t ′/τ1,>gkhq(1 + hq′ ) + e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)

]
×W

k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdk′dq′dq′′dt ′, (6)

∂hq′

∂t

∣∣∣∣
D2

=
∫ ∞

0

∫∫∫∫ [{e−t ′/τ1,>gkhq(1 + hq′ ) − e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)

]
×W

k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdk′dqdq′′dt ′. (7)

Still, these expressions remain rather complicated when com-
pared to the first-order collision integrals. The collision terms
in Eqs. (6) and (7) affect the spatial and temporal dependen-
cies of the phonon density field and therefore the temperature
field. These collision terms are incorporated into the standard
phonon Boltzmann transport equation:

∂hq

∂t
+ cq · ∇T

∂hq

∂T
= ∂hq

∂t

∣∣∣∣
D1

+ ∂hq

∂t

∣∣∣∣
D2

, (8)

which involves the temperature field T (r, t ), and the phonon
velocity cq [17]. Equation (8), along with Eq. (1) for the
reaction-diffusion particle distribution, constitute the reaction-
diffusion-phonon Boltzmann transport equations.

A. Summary of first-order scattering results (single vertex)

Given the extra complications of second-order scattering
theory, as compared to first order, it is helpful to introduce
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FIG. 1. Second-order reaction-diffusion particle-phonon scatter-
ing diagrams, for diffusion, covering all cases with three-phonon
scattering. Two vertices are present, labeled W for reaction-diffusion
particle-phonon and Q for phonon-phonon interaction.

some first-order quantities and use these to help understand
and factorize the second-order theory. From Eq. (3), the
phonon scattering rate for reaction-diffusion particles may be
expressed as

1

τrdp
= − 1

nrdp

∫
∂gk

∂t

∣∣∣∣
D1

dk

= 1

nrdp

∫∫∫ {
gk(1 + hq′′ ) − gk′ hq′′

}
W

k′,q′′
k

× δ(k − k′ − q′′)dkdk′dq′′. (9)

Also, the rate at which energy is transferred from reaction-
diffusion particles to phonons by diffusion is

u̇D =
∫∫∫

εq′′ {gk(1 + hq′′ ) − gk′ hq′′}Wk′,q′′
k

× δ(k − k′ − q′′)dkdk′dq′′. (10)

In terms of the dissipation rate, u̇D, a type of mean phonon
energy is defined as

ε̄ ≡ u̇D τrdp/nrdp. (11)

In Eq. (10), one identifies a positive production rate (forward
flow) counteracted by the back flow term with the minus sign.
Under conditions of very steep density gradients, the forward

flow term will greatly exceed the back flow term. The energy
stored in the phonon field, U = ∫

udV plays an important
role in this analysis. It represents the energy of the heat bath
which increases as the nonequilibrium systems considered
here approach equilibrium.

In Appendix A it is shown that for a near equilibrium
system of reaction-diffusion particles with mass m, number
density, nrdp, and current density J:

u̇D = 2

3
β2K

∫∫∫
g0

k

(
1 + h0

q′′
)
W

k′,q′′
k

× δ(k − k′ − q′′)ε2
q′′dkdk′dq′′, (12)

where

K = mJ2

2n2
rdp

, (13)

is the per particle kinetic energy of the drift.
Focusing on a single three-phonon vertex, first-order the-

ory gives:
1

τ ′
1,>

≡ 1

2

∫∫
hq(1 + hq′ )hq′′Q

q′
q′′,qδ(q′′ + q − q′)dqdq′,

(14)
1

τ ′
1,<

≡ 1

2

∫∫
(1+ hq)hq′ (1+ hq′′ )Qq′

q′′,qδ(q′′+ q − q′)dqdq′,

(15)
1

τ ′
2,>

≡ 1

2

∫∫
(1+ hq)(1+ hq′ )hq′′Q

q,q′
q′′ δ(q′′− q− q′)dqdq′,

(16)
1

τ ′
2,<

≡ 1

2

∫∫
hqhq′ (1 + hq′′ )Qq,q′

q′′ δ(q′′ − q − q′)dqdq′.

(17)

Note in these expressions the times are primed. The reason
for this will become clear below as the primed and unprimed
times are not to be calculated at the same point in space.

With these definitions one can return to the second-order
collision integrals and rewrite Eq. (4) as

∂gk

∂t

∣∣∣∣
D2

= −
∫ ∞

0

∫∫ [
e−t ′/τ1,>gk(1 + hq′′ )

1

τ ′
1,>

− e−t ′/τ1,<gk′ hq′′
1

τ ′
1,<

+ e−t ′/τ2,>gk(1 + hq′′ )
1

τ ′
2,>

− e−t ′/τ2,<gk′ hq′′
1

τ ′
2,<

]
W

k′,q′′
k

× δ(k − k′ − q′′)dk′dq′′dt ′. (18)

B. Force terms for phonons and reaction-diffusion particles

Returning to second-order scattering theory and Eqs. (4) and (5), for the reaction-diffusion particles, the force per unit volume
from such collisions is given by

f rdp,D = h̄
∫

∂gk

∂t

∣∣∣∣
D2

k dk + h̄
∫

∂gk′

∂t

∣∣∣∣
D2

k′ dk′. (19)
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This force is added in with any other contributions to the rate of change of reaction-diffusion particle momentum density,
∂ prdp/∂t . Noting that q′′ = k − k′,

f rdp,D = −h̄
∫ ∞

0

∫∫∫
q′′

[
e−t ′/τ1,>gk(1 + hq′′ )

1

τ ′
1,>

− e−t ′/τ1,<gk′ hq′′
1

τ ′
1,<

+ e−t ′/τ2,>gk(1 + hq′′ )
1

τ ′
2,>

− e−t ′/τ2,<gkhq′′
1

τ ′
2,<

]
W

k′,q′′
k δ(k − k′ − q′′)dkdk′dq′′dt ′. (20)

For completeness, the force on the phonon field can be calculated independently as

f p,D = 1

2
h̄

∫
∂hq

∂t

∣∣∣∣
D2

q dq + 1

2
h̄

∫
∂hq′

∂t

∣∣∣∣
D2

q′ dq′. (21)

By Eqs. (6) and (7),

f p,D = h̄

2

∫ ∞

0

∫∫∫∫∫ [{−e−t ′/τ1,>gkhq(1 + hq′ ) + e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)q

]
×W

k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdk′dqdq′dq′′dt ′

+ h̄

2

∫ ∞

0

∫∫∫∫∫ [{e−t ′/τ1,>gkhq(1 + hq′ ) − e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q′

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)q′]

×W
k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdk′dqq′dq′′dt ′. (22)

Using q′ − q = q′′ in the first and fourth rows, and q′ + q = q′′ in the second and fifth rows results in

f p,D = h̄

2

∫ ∞

0

∫∫∫∫∫ [{e−t ′/τ1,>gkhq(1 + hq′ ) − e−t ′/τ1,<gk′ (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q′′

+{e−t ′/τ2,>gk(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gk′ hqhq′}Qq,q′
q′′ δ(q′′ − q − q′)q′′]

×W
k′,q′′
k hq′′ (1 + hq′′ )δ(k − k′ − q′′)dkdk′dqdq′dq′′dt ′. (23)

With this form, Eqs. (14), (15), (16), and (17) can be invoked
and the result compared to Eq. (20) to show the important
result

f p,D = − f rdp,D. (24)

This simple result, resembling Newton’s third law of action-
reaction, guarantees momentum conservation. For second-
order reaction-diffusion particle-phonon scattering, a force
pair exists much like for the case of second-order electron-
phonon scattering [1].

C. Spatial variation in the transition rate

The factor of q′′ in Eq. (20) will make the integral zero by
symmetry unless there is some spatial variation, for example
in the matrix element Wk′,q′′

k . The same is true if the occupa-
tion factors gk, gk′ , hq′′ as well as the rates 1/τq′′ vary spatially.
Here τq′′ refers to any one of τ1,>, τ1,<, τ2,>, or τ2,<. Note
the two scattering vertices do not occur at the same time and
place. A simple approach is taken here to deal with the spatial
variations which is qualitatively similar to textbook treatments
of first-order transport physics [7,19]. The temporal separation
between the two scattering vertices is τq′′ and the spatial sepa-
ration is cτq′′ where c is the phonon speed. If r is the location of
the midpoint of the line segment joining the reaction-diffusion
particle-phonon collision to the three-phonon collision, then

W
k′,q′′
k must be evaluated at r − �r where �r = 1

2 cτq′′ q̂′′ and
q̂′′ = q′′/q′′. So also must gk, gk′ , and hq′′ be evaluated at
r − �r. In contrast, since the lifetime τq′′ involves phonon-

phonon scattering with vertex Qq,q′
q′′ , it must be evaluated at

position r + �r. Note the τq′′ in the exponents in Eq. (20) are
calculated at r.

Taylor expansions are taken up to first order. Focusing on
the first of the four terms in Eq. (20):

gk(1 + hq′′ )Wk′,q′′
k

∣∣
r−�r = gk(1 + hq′′ )Wk′,q′′

k

∣∣
r

− �r · ∇[
gk(1 + hq′′ )Wk′,q′′

k

]
.

(25)

Also

1

τ ′
1,>

= 1

τ1,>

∣∣∣
r+�r

= 1

τ1,>

− 1

τ 2
1,>

�r · ∇τ1,>. (26)

Multiplying Eqs. (25) and (26) gives a leading term, gk(1 +
hq′′ )Wk′,q′′

k /τ1,>, that will integrate to zero, and two terms first
order in �r. These two terms are combined using the product
rule to give the factor

− 1

τ 2
1,>

�r · ∇[
gk(1 + hq′′ )Wk′,q′′

k τ1,>

]
, (27)
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which is reinserted into Eq. (20) to give for the first of four
force terms:

f rdp,1 = h̄
∫ ∞

0

∫∫∫
e−t ′/τ1,>

τ 2
1,>

�r · ∇[
gk(1 + hq′′ )Wk′,q′′

k τ1,>

]
× δ(k − k′ − q′′)q′′dkdk′dq′′dt ′. (28)

Completing the time integral,

f rdp,1 = 1

2

∫∫∫
εq′′

{
q̂′′ · ∇[

gk(1 + hq′′ )Wk′,q̂′′
k τ1,>

]}
× δ(k − k′ − q′′)q̂′′dkdk′dq′′, (29)

where εq′′ = h̄cq′′ is the dispersion relation for the virtual
phonon. For large phonon frequencies, the dispersion relation
may not be linear; The group velocity then becomes small
and Eq. (29) will overestimate the force. Indeed, even if
optical phonon modes exist, their contribution to f rdp,1 will
be small. Thus, it is understood that the low to mid-range
frequency acoustic phonons will make the major contributions
to these forces. Note that since these lower frequency acoustic
phonons have relatively longer lifetimes, the mean lifetime,
τ ∗, as calculated below, may be longer than if calculated other
ways. For systems with high symmetry (gas, liquid phases,
cubic) any term containing a factor of qiq j , i �= j, give zero,
and thus

f rdp,1 = 1

6
∇

∫∫∫
εq′′gk(1 + hq′′ )Wk′,q′′

k τ1,>

× δ(k − k′ − q′′)dkdk′dq′′. (30)

In Eq. (30) any spatial variation in εq′′ has been neglected.
The analysis for the second, term is similar, though the

direction of �r must be reversed since the virtual phonon q′′

travels from the Q
q′
q′′,q vertex to the W

k′,q′′
k vertex in this case.

Accounting for this extra minus sign gives

f rdp,2 = 1

6
∇

∫∫∫
εq′′gk′ hq′′W

k′,q′′
k τ1,<

× δ(k − k′ − q′′)dkdk′dq′′. (31)

Defining τ> ≡ 1
2 (τ1,> + τ2,>) and τ< ≡ 1

2 (τ1,< + τ2,<) one
deals with all four terms, thus giving

f rdp,D = 1

3
∇

∫∫∫
εq′′ [gk(1 + hq′′ )τ> + gk′ hq′′τ<]Wk′,q′′

k

× δ(k − k′ − q′′)dkdk′dq′′. (32)

D. Discussion of system near equilibrium

In local equilibrium, the principle of detailed balance dic-
tates that

g0
k

(
1 + h0

q′
) = g0

k′ h0
q′ , (33)

as well as

h0
q

(
1 + h0

q′
)
h0

q′′ = (
1 + h0

q

)
h0

q′
(
1 + h0

q′′
)
, (34)

and

h0
qh0

q′
(
1 + h0

q′′
) = (

1 + h0
q

)(
1 + h0

q′
)
h0

q′′ . (35)

By Eqs. (14), (15), (16), and (17), τ 0
1,> = τ 0

1,< and τ 0
2,> = τ 0

2,<.
Thus,

g0
k

(
1 + h0

q′
)
τ 0
> − g0

k′ h0
q′τ 0

< = 0. (36)

This means, for example, that in local equilibrium the net rate
of energy transfer to phonons is zero, i.e., u̇p,D = 0 according
to Eq. (10); the forward flow and back flow exactly cancel.

Equation (36) differs by a minus sign from what is found
in the integrand of Eq. (32) for the force when evaluated
in local equilibrium. This peculiar result is caused by the
extra minus sign in the back flow term as mentioned above
for the derivation of Eq. (31). Given that the force on the
phonons is equal and opposite, the physical significance may
be that the reaction-diffusion particles become separated from
the phonons, a type of matter-energy separation. If so, then
this type of relaxation is indicative of an instability, similar
to Peierls distortion as well as to the charge-spin separation
that occurs in one-dimensional systems [20–22]. The system
would relax until the forces f rdp and f p are balanced.

It may be that inclusion of scattering terms at third order
and higher would rectify this issue. Taking into account more
scattering vertices beyond any of the Q vertices in Fig. 1
should give more accurate calculation of the scattering rates
τ−1

1,>, τ−1
1,<, τ−1

2,>, and τ−1
2,<. To lowest order these were de-

fined in Eqs. (14), (15), (16), and (17). Adding more vertices
then would only result in more accurate versions of τ> and
τ< in Eq. (32), but the force will still be nonzero in local
equilibrium.

Further study on this point is warranted. Future studies
of such second- (and higher-) order scattering calculations
must be carried out with great care in regards to how spa-
tial gradients are treated. If, after further study, it turns out
that these forces are simply not possible in local equilib-
rium, then an explanation may come from taking a more
sophisticated approach, perhaps similar to the Fokker-Planck
equation approach taken by van Kampen when he analyzed
the current flowing through a nonlinear semiconducting p-n
junction rectifier [23]. It may be that the distributions used
here are too simplistic and that a more careful analysis will
produce f rdp = 0 in thermodynamic (local) equilibrium. If so,
then simply reversing the sign of gk′ hq′′τ< in Eq. (32) would
indeed force f rdp = 0 at local equilibrium, and may produce
a good approximation near local equilibrium, but that is as
far as one can go with the approach taken here. A variational,
perturbative approach may also be used to force f rdp = 0 at
equilibrium [18,19]. An approach based more on fundamental
quantum mechanics may also yield insights into this issue. For
example, if a second-order extension of the recently developed
Wigner transport equation is developed, then it may be well
suited for dealing with the phonon wave functions and would
not suffer from the abruptness of creation and annihilation
present in the above analysis [24].

For systems under local equilibrium only, there may be no
good reason to expect these forces to be zero. For example,
if a temperature gradient exists, then there will be a gradi-
ent in hq′′ and therefore a nonzero f rdp is expected. In this
case the system is not in global equilibrium and there may
not be anything peculiar about a nonzero f rdp. If, however,

it is W
k′,q′′
k that varies spatially, then it is conceivable to
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have thermodynamic equilibrium holding globally. A good
example for the electron-phonon case is an interface between
two materials of different conductivity, where W

k′,q′′
k changes

abruptly near the interface. Differences in chemical potential
are balanced by electric fields after charge redistribution to
achieve equilibrium. Adding f rdp will shift this equilibrium by
an extra electric field via Fext in Eq. (1). Technically speaking,
an interface may not be true equilibrium since over very long
timescales the two materials will intermix and remove the gra-
dient in W

k′,q′′
k . The same argument holds for the example of

biological membranes to be discussed below. However, for the
much shorter timescales of interest to the research community,
this technicality may be ignored, the heterostructures may be
assumed to exist indefinitely, and thermodynamic equilibrium
may be understood to hold globally in such heterogeneous
systems. Thus, it does indeed appear that a nonzero f rdp can
exist under equilibrium conditions.

In any case, more detailed analysis near equilibrium will
be left for future study and for the remainder of this paper, the
pragmatic choice is taken to focus on conditions well away
from local equilibrium. Under these conditions the back flow
terms are relatively small and may be safely ignored. The
same approach is taken below for chemical reactions with
the forward, exothermic, direction taking precedence over the
back-reaction. This is analogous to how the reverse current
term is often dropped in Shockley’s equation for the electrical
current in a semiconductor p-n junction under typical forward
bias operating conditions [7].

E. Well away from local equilibrium

When the system under study is well away from local
equilibrium, the rate of energy dissipation is high, but not so
high as to cause permanent change to the system, even after
many cycles. Neglecting the back flow terms leaves, to a good
approximation:

f rdp,D = −∇wD, (37)

where

wD = −1

3

∫∫∫
τ>gk(1 + hq′′ )Wk′,q′′

k

× δ(k − k′ − q′′)εq′′dkdk′dq′′, (38)

which has the dimensions of energy density and acts as a po-
tential for the reaction-diffusion particles. The integral on the
right-hand side of Eq. (38) is not spatially uniform in general.
That the forces f rdp,D and f p,D add up to zero is not surprising.
This is just a statement of conservation of momentum. What
is surprising is that each of the forces is not zero in general.

Noting the similarity between Eqs. (10) and (38), one de-
fines

τ ∗ ≡
∫∫∫

τ>gk(1 + hq′′ )Wk′,q′′
k δ(k − k′ − q′′)εq′′dkdk′dq′′∫∫∫

gk(1 + hq′′ )Wk′,q′′
k δ(k − k′ − q′′)εq′′dkdk′dq′′ ,

(39)

as a type of nonequilibrium mean value of the phonon lifetime
τ>. The definition, Eq. (39) for τ ∗ allows one to write the

potential energy wD in terms of the dissipation rate as

wD = − 1
3τ ∗u̇D. (40)

The value of τ ∗ will depend on the conditions that send the
system out of equilibrium. Nevertheless, a good approxima-
tion would be expected by evaluating gk and hq′′ in local
equilibrium. Indeed, using the near equilibrium approxima-
tion implemented in Appendix A gives a prefactor 2

3β2K as
found in Eq. (12). This prefactor appears in both numerator
and denominator of Eq. (39) and cancels, leaving, to a good
approximation,

τ ∗ =
∫∫∫

τ>g0
k

(
1 + h0

q′′
)
W

k′,q′′
k δ(k − k′ − q′′)εq′′dkdk′dq′′∫∫∫

g0
k

(
1 + h0

q′′
)
W

k′,q′′
k δ(k − k′ − q′′)εq′′dkdk′dq′′ .

(41)

If βK is not small compared to unity, then correction terms
will be needed, but again, these exist on both top and bottom
and will cancel. If τ> varies with phonon energy εq′′ , then an
extra term appears for the numerator only. This term competes
with βK though, and should only provide small corrections.
As an example of this variation, phonon lifetimes are ex-
pected to be shorter for optical phonons than for acoustic
phonons. For systems pushed well away from equilibrium via
gk, these variations in phonon lifetime will have only small
effects on τ ∗.

Also noteworthy is the presence of W
k′,q′′
k in both nu-

merator and denominator. The integration over all available
wave vectors will have a tendency to wash out any functional
structure, and therefore to have the effects of W

k′,q′′
k on the

numerator getting canceled by the same effects in the de-
nominator. If one imagines another type of reaction-diffusion
particle with a different Wk′,q′′

k (perhaps significantly larger),
then it is still expected to have a similar value of τ ∗. This
reasoning leads to the following useful rule:

Rule for τ∗:
The virtual phonon mean lifetime τ ∗, as defined by

Eq. (39), is approximately independent of the specific
reaction-diffusion particle and the conditions involved in cre-
ating the virtual phonon.

In the more complicated systems discussed below, there
will be more than one τ ∗ and this rule may be invoked to aid
in practical calculations, by assuming the τ ∗s are all the same.

F. Effect on phonon field

The force on the phonon field is

f p,D = − f rdp,D = ∇wD. (42)

Clearly, forcing the reaction-diffusion particles and phonons
apart has the potential to create instability. This creates the
possibility for pattern formation and self organization. The
direction of ∇wD is not necessarily the same as the direction
of the concentration gradient producing the diffusion. Indeed
the two gradients could point in perpendicular directions. In
this diffusion case the results are similar to the electron-
phonon case discussed previously [1]. The phonon force leads
to a heat transfer equation that is a modified version of the
Guyer-Krumhansl equation [15,16,25,26]. The modifications
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are shown to lead to instability and possibly spontaneous sym-
metry breaking if the concentration gradient is strong enough.
A simplified version of the partial derivative equation for the
temperature field is

cV

κ

∂T

∂t
= (1 − αp)∇2T + 1

cV
∇2Ud , (43)

where κ is the thermal conductivity, and

αp ≡ 1

cV

∂wD

∂T
, (44)

is a dimensionless parameter describing the temperature de-
pendence of wD.

Equation (43) resembles the Swift-Hohenberg equation,
which is an important tool for researchers of nonequilibrium
systems and has, for example, been successfully utilized to
model patterns formed in certain types of Poiseuille flow,
laminar flame fronts, trapped ion modes in plasmas, and
systems with Eckhaus instabilities such as Rayleigh-Bénard
convection [3,27–32]. The most important feature of the
Swift-Hohenberg equation is a tunable parameter r which can
produce a negative relaxation rate, and instability, at r = 1 in

∂φ

∂t
= (r − 1)φ − 2∇2φ

− ∇4φ − φ3 (Swift-Hohenberg equation). (45)

In Eq. (43) the first term on the right-hand side is the vital
component that gives instability when αp reaches unity. The
distinction is that Eq. (43) is derived from first principles
whereas the Swift-Hohenberg equation is a model.

G. Kinematics and energetics

In a system with f rdp = 0, the energetics are quite simple.
If a steady state is established by an external agent providing
a concentration gradient, with a number current density J
and velocity η0 = J/nrdp, which are assumed to point in the
ẑ direction, then the kinetic energy density is κ0 = ρη2

0/2,
where ρ = ρrdp is the mass density. If the external agent
is disengaged, then η will decrease while the system ap-
proaches equilibrium, and all of this initial kinetic energy will
be converted into heat by reaction-diffusion particle-phonon
scattering. When, however, a spatial gradient exists in τ ∗u̇D,
then f rdp is not zero and some of the initial kinetic energy will
not go to the phonon bath, but instead could become mechan-
ical kinetic energy via f rdp. The reaction-diffusion particles
can even be pushed by f rdp in a direction perpendicular to J.

Toward integrating Eq. (37) and obtaining kinematics, the
gradient in Eq. (37) is characterized by an inverse length
parameter α such that |∇(τ ∗u̇)| = ατ ∗u̇. The gradient is as-
sumed to be uniform, pointing in the x̂ direction. This leaves
Eq. (37) as ṗ = ρv̇ = 1

3ατ ∗u̇, meaning that if τ ∗ is constant
in time, then ρv − 1

3ατ ∗u is a conserved quantity. This result
holds even if τ ∗ changes slowly, as long as τ ∗ is replaced by
1
2 [τ ∗(t ) + τ ∗(0)]. In general, one replaces τ ∗ with 〈τ ∗u̇〉/〈u̇〉
where 〈 〉 represents time averaging over [0, t], to maintain
ρv − 1

3ατ ∗u is a conserved quantity.
The positive definite energy density u = ∫ t

0 u̇dt represents
the energy dissipated into the phonon heat bath over the time

period [0, t]. The energy ρη2/2 becomes zero when the sys-
tem returns to equilibrium. If in the final state η � 0, and utot

is the total amount of energy dissipated into heat by reaction-
diffusion particle-phonon scattering, then

�v ≡ v f − v0 = ατ ∗utot

3ρ
(46)

is the reaction-diffusion particle velocity boost delivered over
the entire approach to equilibrium. If the gradient is indeed
uniform then the entire reaction-diffusion particle system will
be boosted by a velocity �v in the direction of the gradient of
τ ∗u̇. If v0 = 0, then the developed kinetic energy 1

2ρv2
f rep-

resents a remarkable transformation of energy, as otherwise it
was to be simply dissipated into heat.

What began as a purely dissipative process is no longer so
because of the introduction of a spatial gradient. The termi-
nology becomes challenging; a dissipative process can lead
to conversion of mechanical energy into something besides
heat. In this case it is kinetic energy though this could sub-
sequently be converted into forms of potential energy such as
electrostatic, chemical, etc. The process in general involves
dissipation (into heat) as well as conversion. The term dissi-
pation with conversion may be apt but the term exergonic also
works well, a term used frequently in the biochemistry liter-
ature [5] and infrequently in the physical sciences literature.
Exergonic is similar to exothermic but includes the possibility
of the same type of energy conversion discussed here.

When v0 = 0, the exergonic conversion factor is defined in
general as

eex ≡
1
2ρv2

f

nrdpE0
. (47)

where E0 is the per particle initial energy that is to be dis-
sipated. In this discussion κ0 = nrdpE0. The dimensionless
eex represents the fraction of the available energy κ0 that is
converted to reaction-diffusion particle kinetic energy. Clearly
eex cannot exceed unity.

In physical scattering processes one expects to see
nonequilibrium systems approach equilibrium by dissipating
energy exothermically over a period of time into the heat bath.
What is described here is different and resembles a type of
exergonic process called secondary active transport [5]. This
type of transport occurs at biological semipermeable mem-
branes and often involves energetically downhill transport of
one type of ion across the membrane coupling to, and resulting
in, the energetically uphill transport of another ion across
the same membrane. One type of ionic membrane potential
is exergonically converted into another. The second law of
thermodynamics is not broken because there is no conversion
of heat into mechanical or electrical energy. Indeed the whole
issue is bypassed. This comparison only goes so far; Here
there is no membrane and only one type of reaction-diffusion
particle. Below in Sec. III B, the case of two types of diffusing
particles is treated and this discussion is resumed.

An expression for energy conservation may be obtained,
though not before considering the phonon force, f p. An equal
and opposite momentum, −ρv f is gained by the phonons.
Multiplying by c gives an energy epκ0, where ep represents
the fraction of the available energy κ0 that is delivered to the
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phonon field specifically by the force f p. In total the force pair
syphons out a fraction eex + ep of the available energy κ0. The
expression for energy conservation is

κ0 = 1
2ρv2

f + ρcv f + utot. (48)

Making use of Eq. (46) results in a quadratic equation for v f

with solution

v f = c

s
[−1 +

√
1 + s2ζ 2], (49)

where

s ≡ cατ ∗

3 + cατ ∗ (50)

is a dimensionless parameter describing the magnitude of the
gradient of τ ∗u̇, and

ζ ≡
√

2nrdpE0

ρrdpc2
(51)

is another dimensionless parameter describing how far from
equilibrium the system is. Furthermore,

eex = s−2ζ−2[−1 +
√

1 + s2ζ 2]2, (52)

which can be inverted to

ζ = 2
√

eex

s(1 − eex)
. (53)

For the phonons,

ep = 2s−1ζ−2[−1 +
√

1 + s2ζ 2]. (54)

Equations (52) and (54) were used to make plots of eex and
eex + ep versus ζ for two different values of s, as indicated in
Fig. 2. The thin solid (blue) curve shows eex with 1

3 cατ ∗ =
0.05, i.e., under shallow gradient conditions. For ζ < 1, this
exergonic conversion coefficient is small but becomes quite
significant for ζ > 10, and equals 0.33 at ζ = 36.4. For larger
ζ values, Eq. (52) predicts even larger coefficients, eventu-
ally approaching unity. The thin short-dash (red) curve shows
eex + ep which sits very close to the eex curve at high ζ .
For ζ � 10, ep exceeds eex and while eex → 0 as ζ → 0, ep

instead approaches s. Even near equilibrium, close to 5% of
the energy is converted to phonons directed in the opposite
direction to the reaction-diffusion particles. This phonon flux
could simply result in heat flow. Even so, this differs from
typical dissipation which creates heat that flows away from
the source equally in all possible directions. It is also possible
that the directed phonons represent coherent sound waves. If
so, then this energy is not dissipated and could be recovered
as useful work. Yet another possibility is that the phonon flux
represents second sound waves, also not directly dissipated
[7,15]. In cases where the phonon fraction ep is not dissipated,
then eex + ep represents the fraction of the available energy
that is exergonically converted.

For larger gradients α, the factor ep becomes more sig-
nificant. With 1

3 cατ ∗ = 0.9 (steep gradient) the thick solid
(black) curve shows that eex rises monotonically much sooner
than the shallow gradient curve, reaching 0.33 at ζ = 3.66.
The effect on ep is even greater; With ζ < 1, ep is substantially
larger than eex, and as ζ → 0, ep approaches s = 0.47. In this

FIG. 2. Energy conversion factors as a function of parameter
ζ , characterizing nonequilibrium. With a small gradient value of
ατ ∗c = 0.15, the thin solid (blue) curve shows the exergonic con-
version coefficient, eex and the thin short-dash (red) curve shows
eex + ep. With a strong gradient value of ατ ∗c = 2.7, the thick solid
(black) curve shows the exergonic conversion coefficient, eex and the
thick long-dash (green) curve shows eex + ep.

case almost half of the available energy would be converted
either to mechanical reaction-diffusion particle energy or to
directional phononic energy.

1. Second law considerations

The second law of thermodynamics can be violated if
1
3 cατ ∗ exceeds unity. From the force 1

3ατ ∗u̇ on the phonon
field, the power is 1

3 c|α|τ ∗u̇ which is directly compared to
u̇, the rate at which heat is produced. Accounting also for
the power delivered to the reaction-diffusion particles, if the
phonon power 1

3 c|α|τ ∗u̇ is also recoverable as useful work,
then the rate of entropy production σI is given by

T σI = u̇ − 1
3 v f ατ ∗u̇ − 1

3 c|α|τ ∗u̇. (55)

The − 1
3 v f ατ ∗u̇ and − 1

3 c|α|τ ∗u̇ terms in Eq. (55) are both
antidissipative and will reduce entropy. As discussed above in
Sec. II F, the same phonon force f p produces the − 1

3 c|α|τ ∗u̇
term as well as the pattern-forming αp∇2T term in Eq. (43).

By the second law, the net entropy production cannot be
negative. This means s � 0.5, and if so, the condition σI = 0
holds if

(eex + ep)|σI=0 = 1 − 2s

s2ζ 2
. (56)

For the case of 1
3 cατ ∗ = 0.9, this condition is displayed in

Fig. 2 (thin gray solid curve that is the furthest left of the three
arrow-labelled curves). The arrows attached to this second law
barrier point to the area that is allowed by the second law,
where σI � 0. The second law limits the eex + ep curve to a
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maximal value of 0.487 attained at ζ = 0.693. At this max-
imal point 46.1% of the available energy is converted to the
phonon flow, with only 2.6% going to the reaction-diffusion
particles.

Alternatively, if the phonon power 1
3 c|α|τ ∗u̇ is not recov-

erable as useful work, and simply becomes more heat, then
the rate of entropy production σI in Eq. (55) is altered by one
minus sign to become:

T σII = u̇ − 1
3 v f ατ ∗u̇ + 1

3 c|α|τ ∗u̇. (57)

In this case there is no direct restriction on s and the condition
σII = 0 holds if

eex|σII =0 = 1

s2ζ 2
. (58)

Combining this with Eq. (52), one can show that eex takes the
maximal value of 1/3 at ζmax = √

3/s. This is verified for the
case of 1

3 cατ ∗ = 0.9, where condition Eq. (58) is displayed
in Fig. 2 (thin gray solid curve that is in the middle of the
three arrow-labeled curves). The maximal 1/3 value for eex is
also verified for the case 1

3 cατ ∗ = 0.05 at ζmax = 36.4. In this
case of small gradients, the two curves defined by Eq. (56)
and Eq. (58) lie on top of each other, thus setting the second
law barrier as shown (thin gray solid curve that is the furthest
right of the three arrow-labelled curves).

2. Cutoff for τ∗ timescale

From Eqs. (11) and (40),

wD = −1

3
ε̄ nrdp

τ ∗

τrdp
. (59)

In this form the magnitude of wD/nrdp is simply related to
the phonon energy scale through the dimensionless ratio of
two relevant timescales. The quantity wD/nrdp is the per parti-
cle potential energy. In the cases where τ ∗ is much smaller
than τrdp, wD/nrdp is much smaller than ε̄. However, when
τ ∗ greatly exceeds τrdp the result that wD/nrdp exceeds ε̄ is
unphysical, given that ε̄ is all the energy that is available. If
the reaction-diffusion particle collides again before the virtual
phonon decays, then τ ∗ should be cut off by replacing it with
τrdp. The result then is to replace τ ∗/τrdp with τ ∗/(τrdp + τ ∗).
Introducing τ̃ ≡ τrdpτ

∗/(τrdp + τ ∗), Eq. (59) is revised to

wD

nrdp
= − τ̃ ε̄

3τrdp
. (with cutoff). (60)

This procedure amounts to adding in another exponential
factor exp (−t ′/τrdp) into the second-order collision integrals,
such as on the right-hand side of Eq. (4). This factor describes
the probability of the reaction-diffusion particle surviving be-
fore another phonon collision.

H. Diffusion with several reaction-diffusion particles

The aim is to next develop this theory for the case of
reactions, and then combine the results for both reaction
and diffusion. Before this, results for diffusion in systems
with n distinct reaction-diffusion particles are presented. Each
type of reaction-diffusion particle, i, will have a distribution

gi(ki ) ≡ gi, gi(k
′
i ) ≡ g′

i, and an intrinsic transition probability

W
k′

i ,q
′′

i,ki
. Also

u̇D,i =
∫∫∫

εq′′ {gi(1 + hq′′ ) − g′
ihq′′}Wk′

i ,q
′′

i,ki

× δ(ki − k′
i − q′′)dkidk′

idq′′, (61)

wD,i = −1

6

∫∫∫
τ>εq′′ {gi(1 + hq′′ ) − g′

ihq′′}Wk′
i ,q

′′
i,ki

× δ(ki − k′
i − q′′)dkidk′

idq′′, (62)

τ ∗
i = −3

wD,i

u̇D,i
. (63)

For each type of reaction-diffusion particle,

f rdp,D,i = −∇wD,i, (64)

while the net force on all the reaction-diffusion particles is

f rdp,D = −
n∑

i=1

∇wD,i. (65)

The force pair f rdp,D and f p,D still sum up to zero. In the
following section on the combination reaction with n = 3, the
index i will be A, B, or C.

Collisions between different particles is not included yet.
This matter will be discussed below in Sec. III B.

III. CASE OF REACTIONS

The approach taken above for diffusion of reaction-
diffusion particles via phonon scattering will be applied in
similar ways to chemical (and possibly nuclear) reactions.
A second-order Boltzmann transport equation is developed
combining previously established transport theories for chem-
ical reactions [8–12] and the phonon Boltzmann transport
equation [6,17]. The reaction first considered below is the
exothermic combination reaction A + B � C.

Before discussing the second-order scattering, some first-
order results are presented. The forward reaction rate for this
combination is

R f =
∫∫∫∫

gAgB(1 + hq′′ )RC,q′′
A,B

× δ(kA + kB − kC − q′′)dkAdkBdkCdq′′. (66)

The reverse reaction rate is

Rr =
∫∫∫∫

gChq′′R
C,q′′
A,B

× δ(kA + kB − kC − q′′)dkAdkBdkCdq′′. (67)
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The reaction velocity is v = R f − Rr . The rate at which energy is transferred to the phonon field by reactions is

u̇R =
∫∫∫∫

εq′′ {gAgB(1 + hq′′ ) − gChq′′}RC,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdq′′. (68)

Also,

τ ∗
R ≡

∫∫∫∫
τ> gAgB(1 + hq′′ )RC,q′′

A,B δ(kA + kB − kC − q′′)εq′′dkAdkBdkCdq′′∫∫∫∫
gAgB(1 + hq′′ )RC,q′′

A,B,qδ(kA + kB − kC − q′′)εq′′dkAdkBdkCdq′′ . (69)

This form for τ ∗
R resembles that of τ ∗ from Eq. (39) for diffusion. The same arguments as made in Sec. II E apply here and τ ∗

R is
expected to follow the τ ∗ rule, just as in the case of diffusion.

A. Second-order scattering processes: Reaction, diffusion, and phonon collisions for the combination reaction

The important collision integral for reactant, A, for the combination reaction

A + B � C + p,

which is exothermic with phonon emission q′′, that subsequently scatters as part of a three-phonon scattering process, is

∂gA

∂t

∣∣∣∣
R2

= 1

2

∫ ∞

0

∫∫∫∫∫ [{−e−t ′/τ1,>gAgBhq(1 + hq′ ) + e−t ′/τ1,<gC (1 + hq)hq′
}
Q

q′
q′′,qδ(q′′ + q − q′)

+ {−e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) + e−t ′/τ2,<gChqhq′
}
Q

q,q′
q′′ δ(q′′ − q − q′)

]
× (1 + hq′′ )hq′′R

C,q′′
A,B δ(kA + kB − kC − q′′)dkBdkCdqdq′dq′′dt ′, (70)

where gA ≡ gA(kA) is the electronic distribution function for reactant type A with wave vector kA. Equation (70), along with
Eq. (4) for the diffusion case, constitute the reaction-diffusion-phonon Boltzmann transport equation. Making use of Eqs. (14)
and (16) and focusing on the forward reaction, well away from equilibrium:

∂gA

∂t

∣∣∣∣
R2

= −
∫ ∞

0

∫∫∫ [
e−t ′/τ1,>gAgBhq(1+ hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B δ(kA + kB − kC − q′′)dkBdkCdq′′dt ′.

(71)

The analysis presented here is similar to the first-order theory which results in Enskog’s equation of change. The force on
reactant, A, is

f A = − h̄
∫ ∞

0

∫∫∫∫
kA

[
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′) dkAdkBdkCdq′′dt ′. (72)

Similarly,

∂gB

∂t

∣∣∣∣
R2

= −
∫ ∞

0

∫∫∫ [
e−t ′/τ1,>gAgBhq(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′)dkAdkCdq′′dt ′, (73)

f B = −h̄
∫ ∞

0

∫∫∫∫
kB

[
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′) dkAdkBdkCdq′′dt ′, (74)

and

∂gC

∂t

∣∣∣∣
R2

=
∫ ∞

0

∫∫∫ [
e−t ′/τ1,>gAgBhq(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′)dkAdkBdq′′dt ′, (75)

f C = h̄
∫ ∞

0

∫∫∫∫
kC

[
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′) dkAdkBdkCdq′′dt ′. (76)
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By conservation of momentum, kA + kB − kC = q′′. Thus, adding Eqs. (72), (74), and (76):

f A + f B + f C = −h̄
∫ ∞

0

∫∫∫∫
q′′

[
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′) dkAdkBdkCdq′′dt ′, (77)

The net force on the reactant-diffusion particles includes both
reactants and products: f rdp,R ≡ f A + f B + f C . The analysis
for the phonon force is similar to that for diffusion in Sec. II
and is carried out in Appendix B. Comparing to Eq. (B7), one
verifies the expected momentum-conserving result:

f p,R = − f rdp,R. (78)

Thus, in both cases considered so far, the phonon force is
equal and opposite to the net force on all the other particles.
Note that it is not strictly a force pair in this case. It is a quartet
(multiplet in general) of forces that are constrained in the way
described by Eq. (78). Nevertheless, the term force pair will
continue to be employed for f rdp,R and f p,R.

These results are quite general and there are many
important examples of combinations reactions involving
atoms and/or small molecules: Ex. Fe + S → FeS. Larger
molecules and clusters are included as well. Indeed, if B is a
large cluster then the reaction very much resembles adsorption
of A onto a substrate B. Both physisorption and chemisorption
are covered by this analysis and the example of such adsorp-
tion processes onto tiny dust grains is also covered by this
theory. For example, the processes by which the interstellar
medium evolves toward star formation would be covered, and
partly governed, by Eq. (78). Nuclear combination reactions
are also covered by this formalism. Examples include the
absorption of an α particle by a larger nucleus and the fusion
of two nuclei in general.

The spatial variation is treated very similarly to the diffu-
sion case:

gAgB(1 + hq′′ )RC,q′′
A,B

∣∣
r−�r = gAgB(1 + hq′′ )RC,q′′

A,B

∣∣
r

−�r · ∇{
gAgB(1 + hq′′ )RC,q′′

A,B

}
.

(79)

The same issues exist as with diffusion, with a nonzero force
when in equilibrium. From here on it is assumed the reaction
is proceeding strongly in the forward (exothermic) direction
such that

u̇R =
∫∫∫∫

gAgB(1 + hq′′ )RC,q′′
A,B

× δ(kA + kB − kC − q′′)εq′′dkAdkBdkCdq′′. (80)

The net force on all reactant-diffusion particles is

f rdp,R = −∇wR, (81)

where

wR = − 1
3τ ∗

R u̇R. (82)

In this section it has so far been assumed that the reactants
A and B are distinguishable. If they are not, such as in the
oxygen combination reaction O + O → O2, then there is an
over counting problem with integrating dkAdkB, and in all of

the integrals in Eqs. (66), (67), (69), (72), (74), (76), (77), (80),
and (83), a factor of 1

2 should be inserted as a correction. The
important results in Eqs. (81) and (82) remain the same.

Another issue concerns internal modes of molecules. The
summations over variables such as kA can easily be adapted to
include a sum over quantum numbers describing the internal
modes of particle A. This would include rotational quantum
numbers. In any integral, dkA will be understood to include
these sums. The transition probability R

C,q′′
A,B will depend on

these quantum numbers and make the force calculations more
complicated. The same added complications are present in
Eq. (80) for u̇R, leaving Eq. (82) unaltered.

1. Near equilibrium expansion

In Appendix C, near equilibrium expansions are calculated
for the case of concentration gradients in A, B, and C, as well
as the case of nonzero chemical affinity. Any combination of
these effects will result in a nonzero u̇R and wR. A concen-
tration gradient in any of A, B, C, will contribute to u̇R by
reaction as well as direct diffusion, as discussed in Sec. II.
Combining all the relevant near equilibrium processes, gives
explicitly

u̇R =
∫∫∫∫ [

2

3
β2

(∑
i

Ki

)
εq′′ + βA

]
g0

Ag0
B

(
1 + h0

q′′
)
R

C,q′′
A,B

× δ(kA + kB − kC − q′′)εq′′dkAdkBdkCdq′′, (83)

where
∑

i Ki = KA + KB + KC . In the
∑

i Ki contributions,
either concentration gradients drive reaction or reaction atten-
uates concentration gradients.

2. Effect of reactions on the phonon field

As in the case of diffusion, the force f p,R is equal and
opposite to f rdp,R, and will also modify the equations for heat
flow. Instabilities are possible if αp from Eq. (43) is large
enough. An unstable Eq. (43) can lead to pattern formation
in the temperature profile and this would certainly affect
the reaction-diffusion particles and create similar patterns in
the reaction-diffusion particle density. Spontaneous symmetry
breaking is possible. This can happen in a system initially free
of any concentration and temperature gradients, if the affinity
is simply raised to a threshold value. This possibility does not
exist for pure diffusion, but does exist in reactive systems.

When thermal gradients do exist, f p could, in principle,
direct phonons toward regions of higher temperature, i.e.,
against the direction of conventional heat flow as described by
Fourier’s law. In this case one can say that f p actively trans-
ports phonons, and the active transport concept is extended to
quasiparticles.

A similar result was claimed in Ref. [33], i.e., when the
affinity in a reaction-diffusion system reaches a threshold,
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FIG. 3. Second-order reactant-diffusion particle-phonon scatter-
ing diagrams, for the combination reaction, covering all cases
with three-phonon scattering. Two vertices are present, labeled R

for reactant-diffusion particle-phonon reaction and Q for phonon-
phonon interaction.

patterns may form after the breaking of spatial symmetry.
In Ref. [33] a different approach was taken, one based on
general thermodynamics and entropy creation. The approach
is lacking in microscopic detail with τ ∗ being a general fluc-
tuation timescale, whereas here it is more specifically defined.
Also, in this work, momentum conservation between reaction-
diffusion particles and phonons is clearly stipulated. Here, the
influence of entropy creation is not as clear, but the results
are similar. From Fig. 3 it is clear that multiple phonons are
created when reactions release energy. Phonon number is not
conserved and the created phonons become part of the thermal
bath. The forward reaction is favored over the reverse because
it creates more entropy. By going to the second-order transport
integrals, the entropy creation is explicitly clear.

Pattern formation in reaction-diffusion systems was first
proposed by Turing as an example of bifurcation in nonlinear
dynamical systems [2]. Producing such patterns proved to be
difficult, taking almost 40 years. Systems that have shown
pattern formation include the well-studied chlorite-iodide-
malonic acid (CIMA) reaction and the Belousov-Zhabotinsky
(BZ) reaction which involves bromide and bromous acid
[34–39]. For example, the CIMA reaction is known for pro-
ducing two-dimensional patterns possessing clear crystal-like
symmetry, some with hexagonal patterns, others resembling
modulated stripes, as well as mixed states [3,32,34–36].

The results presented here suggest that heat transfer plays
an important role in initiating pattern formation. Of course, the
simple reaction treated so far will not completely describe the
rather complicated CIMA and BZ reactions and more study is
required before concluding that heat transfer via the phonon
force f p,R lies at the heart of pattern formation in the CIMA
and BZ systems.

3. Relaxation of excited reaction-diffusion particles

Since the combination reaction is inelastic, the product
C will likely emerge in an excited state, C∗. This includes
electronic, rotational, and internal vibronic excitations. The
products could also be described as hot. One way these hot
particles C∗ can de-excite is by emission of a phonon, i.e.,
C∗ → C∗+ p. Multiple phonon emission may be required to
bring the reaction-diffusion particle to its ground state C. Each
step would be described by the processes shown in Fig. 1.

One may think of the de-excitation as diffusion or equiv-
alently as a simple type of chemical reaction in which the
per particle excitation energy E∗ plays the role of de Don-
der’s chemical affinity A. Borrowing from the analysis in
Appendix C a good approximation for u̇ is given by

u̇exc = βE∗
∫∫∫

g0
k

(
1 + h0

q′′
)
W

k′,q′′
exc,k

× δ(k − k′ − q′′)εq′′dkdk′dq′′. (84)

For this type of relaxation ε̄ is replaced by E∗, which may
often be substantially larger. Equation (60) becomes

wexc

nC
= − τ̃ E∗

3τrdp
. (85)

This type of relaxation can be important because a significant
part of the energy dissipated by chemical reaction occurs by
excited reaction products. Generally, the excited product C∗
de-excites by emitting phonons and/or infared photons.

Returning briefly to the energetics discussion of Sec. II G,
the initial (and assumed positive) affinity, A0, acts as E0, in
Eq. (51), for example. In this discussion of excited reaction-
diffusion particles, E0 = E∗. Thus, ζ , as well as eex and ep,
can be calculated for reactions in general, in addition to the
case of diffusion.

4. Individual reaction-diffusion particle forces and potentials

The analysis presented here identifies an equal and oppo-
site force pair, f rdp and f p, though it is really a force quartet,
f A, f B, f C , and f p, which add up to zero. The force f rdp is the
net force on all the reaction-diffusion particles in question, and
any resulting solutions for the motion, based on knowledge of
f rdp, would be for the center of mass of the reaction-diffusion
particles.

Example calculations made below are based on making
good estimates for u̇, which in turn allows for good estimates
of f rdp. Unfortunately this does not work on the constituents
such as A, B, and C. For these forces, one must evaluate the
integrals in Eqs. (72), (74), and (76), and a good method for
estimating these integrals has not yet been determined.

If A and B were to be similar in internal structure, have
similar masses, as well as having the same concentration gra-
dients in a combination reaction, then they would experience
approximately the same force vector. This is as far as one
can go at this stage. For example, it is possible for the two
reaction-diffusion particles, B and C, to have forces pointing
in opposite directions.

Even if the various reaction-diffusion particles were to
receive different accelerations and impulses, subsequent first-
order diffusion will tend to make all velocities equal. For
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example, the force f rdp acting on hot product reaction-
diffusion particles may be substantial if E∗ is large and these
products would receive more momentum than both reactants
and the not so highly excited products. Diffusion via bimolec-
ular collisions in general (not necessarily producing phonons)
is important in slowing down the higher velocity products.
One effect of first-order scattering is to create an overall
reaction-diffusion particle flow that has a unique local veloc-
ity, vrdp. Nevertheless, if for example, f B and f C are strong
enough and do not point in the same direction then a unique
local velocity may not be possible. If so, then each type of
reaction-diffusion particle would have its own flow velocity.

5. Primary active transport

Focusing on one particular reactant A, the force f A can
be aligned against the concentration gradient in nA, thus, in
opposition to diffusion. In this case the process is described as
pushing particles of type A uphill energetically, in contrast to
the downhill motion of diffusion. The best term to describe
this uphill force is primary active transport [5]. In primary
active transport, energy is released from a chemical reaction
with some fraction going toward pushing type A particles
uphill. If only type A particles are being pushed uphill, then
this fraction is the exergonic conversion factor eex.

It is known that primary active transport occurs in bio-
logical systems. For example, in mitochondria, protons are
pumped uphill during glycolysis. The protons are pumped
through a thin (7-nm-thick) inner membrane to the inside
matrix region where the potential is higher by 50 meV [5].
The pumping of protons is an important first step of Mitchell’s
general chemiosmotic mechanism [4]. The second step in-
volves having the energy stored in this proton potential being
used to promote ADP molecules to the higher energy form
of ATP.

If a proton, with mass mP, is involved in a combination
reaction which releases energy E0, then an amount of energy
eexE0 is available to be converted into kinetic energy of pro-
tons, which can then become stored as electrostatic energy
right up to the proton potential of 50 meV. Toward calculating
s, using Eq. (50), the speed of sound in water of 1482 m/s is
used for c, an estimate of 1 ps is taken for τ ∗, and the inverse of
the membrane thickness gives α = 1.4 × 108 m−1. This gives
αcτ ∗ = 0.207, and s = 0.065, using Eq. (50). With a value of
E0 = 8.2 eV, ζ = 26.7, after using Eq. (51), and the result for
the exergonic conversion factor is eex = 0.33.

The estimate for τ ∗ comes from thermal conductivity data
on electrical insulators such as LiF and NaCl. These are used
since electrical contributions to the thermal conductivity are
negligible. The following expression is used:

κ = 1
3 cV c2τ ∗, (86)

where κ is the lattice specific heat and cV is the volume spe-
cific heat capacity. For NaCl at room temperature, τ ∗ = 0.86
ps [7]. This value is considered to be a good representative
value for liquids and solids; thus, 1 ps is to be utilized when
detailed knowledge of τ ∗ is lacking. For example, for dilute
gases, τ ∗ will be larger. Though it may well be that low density
systems will display effects of the force pair very well, the
examples presented here are all for liquids and solids.

The results from these simple calculations for eex are very
encouraging. About one-third of the available 8.2 eV will be
converted into proton kinetic energy. This energy may then be
used to drive other processes such as converting ADP to the
higher energy ATP. The energy conversion happens without
violating the second law. The numerical estimates used in this
calculation lie very close to both of the second law barriers
defined by Eqs. (56) and (58). Given that these are just es-
timates, anything close to σ = 0 should be considered as a
positive result, and there is no clear violation of the second
law.

The 8.2 eV energy value is reasonable; One glucose
molecule releases about three times E0. Also, if τ ∗ were to
take a larger, and still plausible, value of 3 ps, then the same
eex is obtained with a lower E0 value of 1.2 eV. This energy
release E0 is in line with many reactions; for example, it is
about twice the energy released by ATP conversion to ADP.
Though it is clear that there is complexity in the multistep
glycolysis process that has not been explained so far, the
discussion presented below makes the case that each reaction
step can produce a force pair, and thus entire processes such
as the citric acid cycle could be covered, step by step, by this
formalism.

Showing that eex can, with reasonable numbers, be in the
range of one-third, is important, but not the whole story. It
must also be shown that a proton potential near 50 meV can
be built up. This discussion will wait until the example system
discussed in Sec. VII.

6. Special case where nB � nA

For the simple combination reaction discussed here, the
reaction rate can be limited when one reactant concentration
greatly exceeds the other. For example, if nB � nA, then nB

represents a bottleneck. If the masses mA and mB are close to
equal, then the two force densities f A and f B are expected to
be near equal. The two per particle forces defined as f A/nA,
and f B/nB, will be very different in magnitude. This can
be understood if one focuses on a single reaction and the
surrounding volume 1/nB. The impulse delivered to A and B
particles will, on average, be about the same, but, with most A
particles not participating, the impulse averaged over all type
A reactants will be much smaller than it is for type B reactants.
If the forces f A and f B are expressed as f A = −∇wA and
f B = −∇wB, then the per particle potential energy wB/nB

will be much stronger than wA/nA.
A good example of such a chemical bottleneck is when

reactant B is a proton. Under typical conditions such as a pH
value of 7, the concentration of protons can easily be 7 orders
of magnitude lower than for other reactants and products.

This second-order transport type of bottleneck differs from
previously reported instances [40–42] and helps to show that
the bottleneck or gating effect can arise in many different
circumstances.

B. Bimolecular reactions and beyond

This formalism is well suited to also describe bi-
molecular reactions A + B � C + D + p. These reactions
have been well-studied using the first-order Boltzmann
transport/reaction equation [8–12].
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FIG. 4. Second-order reaction-diffusion particle-phonon scatter-
ing diagrams, for bimolecular reaction, representative example.

Following the second-order scattering approach of Sec: III
(see Fig. 4) yields the following results:

u̇bi,R =
∫ ∫ ∫ ∫ ∫

εq′′ {gAgB(1 + hq′′ ) − gCgDhq′′}RC,D,q′′
A,B

× δ(kA + kB − kC − kD − q′′)dkAdkBdkCdkDdq′′,

(87)

and

wbi,R = −1

3

∫ ∫∫∫∫
τ̄>εq′′ {gAgB(1 + hq′′ ) − gCgDhq′′}RC,D,q′′

A,B

× δ(kA + kB − kC − kD − q′′)dkAdkBdkCdkDdq′′.

(88)

The prefactors for these integrals would be adjusted according
to whether any participating particles are identical. However,
in all cases regarding indistinguishability, the following two
relations hold:

wbi,R = − 1
3τ ∗

bi,Ru̇bi,R (89)

and

f bi,rdp = − f bi,p = −∇wbi,R. (90)

Potential differences are easily calculated since the forces are
presented here as gradients. For the reaction-diffusion parti-
cles all together the potential energy density is wbi,R.

This case also describes a simple collision between two
different particles that would occur in a multicomponent
diffusing system. For example, if particles A and B dif-
fer but A and C are the same, and B and D are also
the same, then this type of diffusion is covered. This
completes the diffusion possibilities for multicomponent
systems.

1. Secondary active transport

Returning to the topic of secondary active transport, if
there are two reaction-diffusion particles, A and B, scattering,
and if the system is initially set up with a gradient in the
concentration nA of A, with nB uniform, then there is now
a clear force on B particles that will break the symmetry of
the concentration profile nB. The B particles will be pushed

uphill energetically then as the A system moves downhill.
A membrane is not necessary to make this coupling work.
However, a membrane may facilitate the maintaining of large
gradients. This may especially be true if the relevant reaction-
diffusion particles are charged. A membrane could withstand
large internal electric fields and potential differences �VA and
�VB across the membrane could become significant. If an
external agent can maintain the gradient in the concentration,
nA, then a significant potential �VB can be held indefinitely.
The coupling described here is noteworthy and becomes a
good candidate for a physical mechanism for secondary active
transport.

In biological systems the two types of particles could
be Na+ ions and Ca2+ ions. In a well-studied example,
Na+ ions transport downhill while Ca2+ ions are pushed
uphill [5]. For the Ca/Na case the two ions move in op-
posite directions. In other systems one reaction-diffusion
particle moves downhill while the other moves uphill in
the same direction, for example, protons and lactase [5].
This emphasizes how well suited this second-order trans-
port is for describing these systems; The two physical
flow directions, energetically uphill and downhill, are not
restricted.

2. Beyond bimolecular reactions

More complicated reactions are described much the same
way. For a given system there may be μR possible reactions,
with channel index μ running from 1 to μR. For a given
reaction channel μ, there are mμ reactants and nμ products,
meaning there are mμ + nμ + 1 integrals to perform, includ-
ing the q′′ integral.

The intrinsic reaction transition probability, fully labeled,
becomes R

mμ+1,...,mμ+nμ,q′′
μ,1,...,mμ

. For the combination reaction,
mμ = 2, nμ = 1, while for a different μ, mμ = 2, nμ = 2, for
the bimolecular reaction. This formalism can account for both
reactions and diffusion. For simple gradient driven diffusion,
mμ = 1, nμ = 1, while for de-excitation of a single excited
reaction-diffusion particle, mμ = 1, nμ = 1, with a different
set of indices μ. The results are summarized here, again focus-
ing on the forward reaction, where the affinity is positive, and
well away from equilibrium. Most of these reactions would
be exothermic, but when the number of products exceeds the
number of reactants, the reactions may be endothermic with
A > 0. For the dissipation rate,

u̇μ = −1

3

∫
. . .

∫
εq′′g1 . . . gmμ

(1 + hq′′ )Rmμ+1,...,mμ+nμ,q′′
μ,1,...,mμ

× δ
(
�

mμ

i=1ki − �
mμ+nμ

j=mμ+1k j − q′′)dk1 . . . dkmμ+nμ
dq′′,

(91)

while for the forces on reactants,

f μ,i = −h̄
∫

. . .

∫
ki

[
e−t ′/τ1,>g1 . . . gmμ

(1 + hq′′ )
1

τ ′
1,>

+ e−t ′/τ2,>g1 . . . gmμ
(1 + hq′′ )

1

τ ′
2,>

]
R

mμ+1,...,mμ+nμ,q′′
μ,1,...,mμ

× δ
(
�

mμ

i=1ki − �
mμ+nμ

j=mμ+1k j − q′′)dk1 . . . dkmμ+nμ
dq′′dt ′, (92)

024201-15



S. N. PATITSAS PHYSICAL REVIEW E 108, 024201 (2023)

with i = 1, . . . mμ. For products,

f μ,i = h̄
∫

. . .

∫
ki

[
e−t ′/τ1,>g1 . . . gmμ

(1 + hq′′ )
1

τ ′
1,>

+ e−t ′/τ2,>g1 . . . gmμ
(1 + hq′′ )

1

τ ′
2,>

]
R

mμ+1,...,mμ+nμ,q′′
μ,1,...,mμ

× δ
(
�

mμ

i=1ki − �
mμ+nμ

j=mμ+1k j − q′′)dk1 . . . dkmμ+nμ
dq′′dt ′, (93)

with i = mμ + 1, . . . mμ + nμ. The potential energy is

wμ = −1

3

∫
. . .

∫
τ>εq′′ g1 . . . gmμ

(1 + hq′′ )Rmμ+1,...,mμ+nμ,q′′
μ,1,...,mμ

δ
(
�

mμ

i=1ki − �
mμ+nμ

j=mμ+1k j − q′′)dk1 . . . dkmμ+nμ
dq′′, (94)

while

τ ∗
μ = −3wμ/u̇μ. (95)

The total force on the reaction-diffusion particles is

f μ,rdp = − f μ,p = −∇wμ, (96)

where the net reaction-diffusion particle force for reaction μ

is summed up over all reactants and products as

f μ,rdp =
mμ+nμ∑

i=1

f μ,i. (97)

Again, the same arguments as made in Sec. II E apply to
all possible reactions, and τ ∗

μ is expected to follow the τ ∗ rule,
i.e., to a good approximation τ ∗

μ is independent of μ.
Summing up over all possible processes, both reaction and

diffusion types, gives w = �
μR
μ=1wμ and

f rdp =
μR∑

μ=1

f μ,rdp = −
μR∑

μ=1

∇(wμ) = 1

3

μR∑
μ=1

∇(τ ∗
μu̇μ) = − f p.

(98)

If the τ ∗ rule holds, then f rdp = 1
3∇(τ ∗u̇), where u̇ =

�
μR
μ=1u̇μ.
An important subcase leads to the important example when

one reactant and one product are the same. This covers the
case when a catalyst C is present for the reaction. For a
catalyzed reaction μ, the catalyst will feel a force f μ,C which
contributes to the total f μ,rdp.

In summary, the general situation can be described quite
simply; Any reaction-diffusion process that creates heat does
so at the microscopic level by producing phonons via specific
scattering vertices. Application of the Enskog equation of
change technique, along with conservation of momentum,
always produces the force pair. One member of this pair is
the phonon force, and the equal and opposite member is the
total force on all involved reaction-diffusion particles. The
presence of spatial gradients, as discussed, makes these forces
nonzero.

IV. SEPARATION THEOREM

After working out transport integrals for both diffusion and
reaction, one is lead to the conclusion that for all reaction-
diffusion systems, the net force on all reaction-diffusion
particles is equal and opposite to the net force on phonons,
as stated in Eq. (98). This result is quite general and shows
that in reaction-diffusion systems, reaction-diffusion particles

and phonons will always feel forces pushing them away from
each other and leading to separation. This is presented as a
theorem:

A. Separation theorem

For reaction-diffusion systems, there exists a net force on
the reaction-diffusion particles, f rdp, and a force, f p, on the
phonons such that

f rdp = − f p, (99)

with f rdp = −∇w.
These forces would appear to be zero in equilibrium and

are certainly small near equilibrium. It is only for systems
well away from equilibrium that these forces emerge into
significance. Whenever these forces have significance in a
reaction-diffusion system, the dynamical equations must ac-
count for inertial effects and these equations would resemble
the Navier-Stokes equations for fluids. Most importantly, a
continuum version of Newton’s second law exists for the cen-
ter of mass of the reaction-diffusion particles. Among other
terms contributing to ρv̇rdp is f rdp. Phonon dynamics are also
affected, as discussed in Sec. II F, with the result of a modified
Guyer-Krumhansl equation.

B. Particle baths other than phonons

Clearly u̇ accounts only for energy dissipated into the
phonon field and that there may some of the initial stored per
particle energy E0 that gets dissipated away into other particle
fields other than phonons. These forms include photons of
course and could also include more exotic types of quasipar-
ticles such as spin waves.

If spin waves play an important role in a given system,
then the analysis would look very similar to what has been
presented here for phonons. The separation theorem would
look the same except that u̇ would now represent the rate at
which energy is dissipated into spin waves. The spin waves
would build up in the system much like phonons do to create
their heat bath and there would indeed be a thermal bath of
spin waves. The result would be that one could still write the
total force in the separation theorem in terms of u̇, if u̇ includes
both scattering into phonons and scattering into spin waves.

It is notable that the separation theorem concerns phonons
and phonon scattering and yet does not make specific refer-
ence to the precise details of the phonon dispersion relation.
For example, for the case of the adsorption reaction for a
system with a solid-liquid interface, there is one phonon dis-
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persion relation for the liquid phase, and another for the solid
phase which may be directional for a solid crystal. There will
also be phonons specific to the interface and propagating only
along the interface. Yet the expression f rdp = 1

3∇(τ ∗u̇) re-
mains the same. The same argument holds for the spin waves
and any other relevant quasiparticles. As long as one knows
the spatial distribution of how energy is dissipated then the
forces in the separation theorem can be calculated.

For the case of a system with both phonons and spin waves,
Eq. (99) would be modified to

f rdp = − f p − f spin, (100)

with f spin = ∇wspin. Note that for the two examples, phonons
and spin waves, discussed so far, both are examples of Gold-
stone bosons, created as a result of spontaneous symmetry
breaking. After symmetry is broken, a nonzero order pa-
rameter is created and the Goldstone bosons describe the
oscillating, gapless, wave modes of this order. Thus, any force
that acts on the Goldstone bosons is capable of creating or-
dered patterns which would amount to self organization in the
system.

The same argument applies to any other type of quasi-
particle that may be present with significant scattering cross
section with the reaction-diffusion particles and with large
enough numbers such that a thermal bath of these quasipar-
ticles exists. This line of reasoning leads to the possibility
that u̇ could account for all forms of dissipative scattering
into any types of quasiparticles, not just phonons. If so, then
the reaction-diffusion particles always become separated from
their Goldstone bosons.

Photons would seem to be an exception to the rule. In many
reaction-diffusion systems, recently created reaction products
emit infrared photons and these typically leave the system.
Thus, not all of the available stored energy will be available
for creating the forces in the separation theorem. There are
though, systems with short photon mean free paths, such as
the hot plasmas, for example, found inside burning stars. In
such systems the photons scatter frequently and become ran-
domized to such an extent that they constitute their own heat
bath. Under such conditions, photons and photon scattering
may also adhere to the separation theorem. If so, then the
separation theorem would hold with u̇ being the total rate of
dissipation arising from all possible processes. It remains to be
shown that the result does indeed hold for reaction-diffusion
particles scattering with photons since this would require a
relativistic treatment. Logically, if u̇ is the total rate of dissi-
pation arising from all possible processes, including photons,
then the result should then be called the strong form of the
separation theorem.

V. EXAMPLE SYSTEM: SPATIAL GRADIENTS
IN CATALYTIC SYSTEMS

For the previously studied electron-phonon system, a phys-
ical interface between two materials with different electrical
conductivities provided an excellent example system for ex-
hibiting a significant force on electrons, perpendicular to the
interface, and an equal, and opposite, force on phonons. A
chemical analogy would have the reaction transition proba-
bility varying spatially somehow. For a given reaction with

m reactants and n products, with the reaction transition prob-
ability represented by R, consider the hypothetical scenario
where all the particle concentrations and temperature are ini-
tially uniform but a nonzero gradient in the reaction transition
probability exists, i.e., ∇R �= 0. In a region with a larger than
average value of R, the rate u̇R will be larger and the potential
energy wR will be lower. Reaction-diffusion particles will,
overall, be pushed toward such a region and phonons will be
pushed away.

One way to have R vary spatially is to introduce a catalyst.
Wherever the catalyst is present, R is larger, thus creating
a potential energy well at the location of the catalyst. This
will enhance the catalytic effect. Since the catalyst already en-
hances the reaction rate, the physics introduced here provides
a further enhancement. This makes the language challenging;
the phrase enhanced catalysis is awkward yet may be apt.
Catalysis with active transport also works.

The forces on some if not all of the reactants and products
are uphill and therefore result in active transport. In this case
it is primary active transport, whereby the active transport is
driven by the release of stored chemical potential energy, i.e.,
by the �G of the reaction. In most discussions of active trans-
port a biological membrane is present. Here it has been shown
that primary active transport is possible in nonbiological sys-
tems and even in systems lacking a membrane. One role of
such a membrane would be to allow for large concentrations
inside the structure confined by the membrane, for example,
a bacteria or a mitochondria. Also, for these small structures,
chemical energy can be released at a high rate while maintain-
ing a suitable operating temperature. On this point, the phonon
force f p will direct phonons to the exterior and this should
help cool the structure. Thus, even though active transport
can theoretically occur in nonbiological systems, biological
systems may be best suited for creating significant examples
of such transport.

A. Homogeneous catalysis and primary active transport

Before considering biological systems, some physical sys-
tems will be discussed. The first is an example of catalysis.
A good example of homogeneous catalysis is acid catalysis
in which there is a correlation between the reaction transition
probability R and the pH of the system. One specific reaction
is

CH3CO2CH3 + H2O � CH3CO2H + CH3OH,

involving the hydrolysis of methyl acetate into acetic acid.
The reaction-diffusion particles in this example are the reac-
tants CH3CO2CH3, H2O, the products CH3CO2H, CH3OH, as
well as the catalyst H+. This reaction proceeds very slowly
at neutral pH but proceeds rapidly under acidic conditions
[43]. The analysis presented here predicts that if a pH gradient
exists, then reactants and products will be pushed along the
gradient lines toward lower pH regions.

To set up a simple calculation consider first a region of
space which is pH neutral where u̇ and w are both approx-
imately zero. In a nearby region with low pH, the potential
energy density w = − 1

3τ ∗u̇ [see Eqs. (82) and (95)] will be
negative. Dividing w by the particle density gives a per parti-
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FIG. 5. Plots of calculated potential difference �V versus den-
sity of dissipated power. A particle concentration of 6.0 × 1023 m−3

was used for the solid (black) curve. At the 50 meV threshold (hori-
zontal dashed line), u̇ = 1.47 × 1016 W/m3. For the dot-dash (blue)
curve, both the TNT particle density of nrdp = 4.39 × 1027 m−3 and
detonation velocity of 6900 m/s were used, and u̇ = 1.27 × 1021

W/m3 at the 50 meV threshold. In comparison, for the short dash
(red) curve the same density was used but with a smaller front
velocity of 700 m/s. Here u̇ = 2.22 × 1020 W/m3 at the 50 meV
threshold. For the medium dash (green) curve nrdp = 6 × 1019 m−3,
and u̇ = 1.4 × 1012 W/m3 at the 50 meV threshold. Finally, for
the long dash (gray) curve nrdp = 6 × 1018 m−3, and u̇ = 1.4 × 1011

W/m3 at the 50 meV threshold. In all five plots, τ ∗ = 1 ps was used.

cle potential energy difference:

−�V ≡ w

nrdp
. (101)

For a typical concentration of 0.001 mol/L (6×1023 m−3), a
plot of �V versus u̇ is indicated in Fig. 5 as the solid (black)
curve. A value of 1 ps is assumed for τ ∗. From this curve,
one needs a u̇ value above 1×1014 W/m3 before a chemical
potential difference of even 1 meV is created. At lower power
levels the potential difference predicted here is unlikely to be
detected. Given that the phonon lifetime τ ∗ value is near 1 ps,
the reaction in question would have to proceed very quickly
before potential differences over a meV can be established.
Reaction half lives would have to be near τ ∗ and half lives
near 1 s and even near 1 ms give very small �V . Even half
lives near 1 µs give small potential differences that would be
difficult to detect.

By the same considerations, heterogeneous catalysis could
also provide uphill active transport and perhaps be better at
creating larger �V values. For a solid catalyst, it is the sur-
face, i.e., the solid-gas or solid-liquid interface at which the
catalytic activity occurs, and the potential energy well w is
narrowly located at the interface. Away from the interface w is
essentially zero. A complicating factor is that the energy well

in w could easily be confused with the significant potential en-
ergy well that is created by the chemisorption or physisorption
processes at such interfaces.

With either type of catalysis, it is clear that very large
power dissipation rate densities are needed to produce �V
values near or above kBT , where the effect becomes signifi-
cant. For larger systems the heat load becomes problematic,
creating an excessive temperature rise. For a sustained pro-
cess, releasing energy quickly in structures at the nanometer
scale is more plausible as heat can be dissipated away quickly
enough. Otherwise, one can consider systems where the re-
lease of chemical potential energy energy is both brief and
unbridled.

VI. EXAMPLE SYSTEM: EXPLOSIVE REACTIONS

Solid explosives may be characterized as having high den-
sity of stored chemical energy as well as high detonation
velocities. Energy is released rapidly while high tempera-
tures are attained. Trinitrotoluene (TNT) is a good example,
with each molecule containing three high-energy N ≡ N triple
bonds and a detonation velocity vd of 6900 m/s [44]. As the
combustion front moves the reaction timescale can be as small
as n−1/3

rdp × v−1
d which takes a value for τrdp of 0.09 ps for TNT.

Making use of the cutoff time implemented in Eq. (60), as well
as τ ∗ = 1 ps, the cutoff time τ̃ = 0.083 ps. Equation (101)
becomes

�V ≡ − w

nrdp
= τ̃ u̇

3nrdp
, (102)

which is used to add the (blue) dot-dash curve to Fig. 5.
With E0 = 34 eV of energy per molecule of TNT, u̇ =

5.0 × 1021 Wm−3, which is represented as the open square
lying on the curve. The corresponding potential difference is
�V = 0.197 eV. At 197 meV of potential energy the effect
would be to significantly push the molecules toward regions
of higher density and constitutes another example of active
transport in physical systems. Along the direction of the prop-
agating explosion front this effect is still small compared to
the pressure wave. However, significant transverse forces and
velocities can exist if there are any density gradients along
the front. Such gradients are expected in any real explosion;
even if the system is designed with high symmetry, there will
always exist small density gradients to begin with, and these
will be enhanced by active transport.

By Eq. (49), a net impulse can be delivered to reaction-
diffusion particles that depends on how strong this gradient
α is. In this context it is understood that the final velocity
v f discussed here is the reaction-diffusion particle center of
mass net velocity. The (green) short-dashed curve in Fig. 6
represents the monotonic relationship between the transverse
final velocity v f and the pre-reaction stored chemical energy
A0, with a small gradient α = 3 × 105 m−1. With a specific
A0 = E0 value for TNT, v f takes a value of 1.5 m/s. The
direction of this velocity is perpendicular to the front velocity
vector vd , and toward the larger concentration of reactants
and products, i.e., in the direction opposite to diffusion.
Larger gradients produce larger final velocities as indicated
by the (red) dashed curve in Fig. 6 with a modest gradient of
α = 1 × 107 m−1.
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FIG. 6. Plots of calculated transverse boosted velocities versus
reaction affinity. The solid (black) curve is calculated at a gradient
parameter of α = 1.0 × 1010 m−1, which gives an s value close to
the maximum value of unity. The dot-dash (blue) curve is calculated
at α = 4.35 × 108 m−1, while the long-dash (red) curve is calculated
at α = 1.0 × 107 m−1, and the short-dash (green) curve is calculated
at α = 3.0 × 105 m−1. Also indicated is the dashed vertical line at
34 eV, the stored energy value for a molecule of TNT.

The second law barrier, as described in Sec. II G 1 for the
case where phonon energy can be extracted as useful work,
represented here as s = 0.5, is indicated by the (blue) dot-dash
curve at α = 4.35 × 108 m−1. From this curve, a final velocity
v f of 1010 m/s is predicted at the same A0 for TNT. Though
not as high as the detonation velocity, this velocity still is very
significant since it applies to particle motion transverse to the
propagation direction of the front.

The final curve (black solid) in Fig. 6 is calculated at the
relatively large value of α = 1.0 × 1010 m−1. Theoretically
this is near the maximum allowed value when s = 1, accord-
ing to the discussion in Sec. II G.

This example is important as it demonstrates that the forces
calculated here can indeed become significant. Fast camera
techniques could observe such active transport during explo-
sions. Similar techniques used in the infrared could be used to
observe temperature patterns and look for any abnormal heat
flow as evidence of active phonon transport.

Also emphasized is the idea that a large power density is
needed before these forces attain significant levels. In this case
the large power density arises from the burning of chemical
fuel at a high rate. At the propagating denotation front, very
high values of u̇ are attained, though briefly.

A related question is whether or not there exists any system
that can produce significant forces f rdp and potentials wR over
sustained periods of time, i.e., with large rates of fuel burning
but without an explosion. This could happen with burn fronts
moving at smaller velocities. It can also happen with smaller
concentrations. The (red) short dash curve in Fig. 5 is the same

as the TNT case but with a smaller front velocity of 700 m/s.
This shows that the same potential difference can be created
at smaller power density. For example, the 50 meV threshold
can be achieved at u̇ = 2.22 × 1020 W/m3.

A clear picture emerges; in liquids and solids where τ ∗ is
near 1 ps and particle densities are around 1027 m−3, it is dif-
ficult to obtain 50 meV of potential energy difference unless
the rate u̇ is very large, indeed so large that the system is likely
to be explosive. One way to avoid the explosion scenario is to
invoke the bottlenecking effect discussed in Sec. III A 6. If a
component B is sparse, such that nB is relatively small, then
these particles will experience a potential energy given to a
good approximation by

�VB ≡ − w

nB
= τ ∗ u̇

3nB
. (103)

In biological systems, good candidates for the B component
are small ions such as H+, Na+, and K+.

VII. EXAMPLE SYSTEMS: PRIMARY ACTIVE
TRANSPORT THROUGH A BIOLOGICAL

SEMIPERMEABLE MEMBRANE

Biological systems such as bacteria and mitochondria
could provide ideal conditions to drive processes that release
energy at high power density, but without being explosive.
The small size allows heat to be conducted away efficiently,
while the semipermeable membrane allows for the creation
of large concentration differences between the inside and out-
side. For many biological systems a membrane potential of
about 50 meV is universally measured for ions such as H+,
Na+, and K+, capable of passing through the membrane. The
results presented here show that such a potential is possible,
but the u̇ levels must be high. Glucose has a high-energy
density, 77% as high as TNT, and given that it is consumed
inside bacteria and mitochondria, the potential for creating
significant forces f rdp and f p exists, if the rate of glycolysis
is sufficiently high.

The argument for spatial gradients is the same as for the
example of homogeneous catalysis in Sec. V. For example,
as long as u̇ is significant inside the mitochondrial matrix,
then the gradient in u̇ exists because the rate of glycolysis is
low outside. The gradient will be greatest inside and near the
transport channels of the semipermeable membrane.

If the rate u̇ is indeed high enough, then all involved
reaction-diffusion particles, i.e., reactants, products, and cata-
lysts, could, in principle, build up a potential difference near
50 meV. The list of such particles is quite long, given the
multistep complexity of the Krebs cycle, for instance.

A. Proton pumping in mitochondria during glycolysis

Many of the reaction-diffusion particles cannot pass
through the semipermeable membrane of the mitochondria.
Smaller particles such as protons can pass. As shown in
Sec. III A 5, for a given reaction, a significant fraction of the
released energy E0 can go toward pumping protons uphill.
Thus, protons can be pumped uphill up to a proton potential
of possibly 50 meV, as long as protons play an important role
in glycolysis.
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A specific reaction that is an important step in the citric
acid cycle that also involves protons is the decomposition of
nicotinamide adenine dinucleotide:

NADH � NAD + H + 2e−.

This reaction is an good example of how a significant frac-
tion of any released energy can go toward proton pumping.
Indeed, this reaction is known to push protons outside of
the mitochondrial matrix as an example of primary active
transport [5].

On the issue of how much energy must be released, the
medium-dash (green) curve in Fig. 5 shows the relation in-
dicated in Eq. (103) at a H+ concentration of nB = 6 ×
1019 m−3, i.e., at a pH of 7.0. Also shown by the long dash
(gray) curve is the same relation at a pH of 8.0, which is
close to conditions inside the mitochondrial matrix. At a pH
of 8.0, the 50 meV threshold occurs at a power level of
u̇ = 1.4 × 1011 W/m3.

There are other steps in the citric acid cycle that also
actively transport protons to the exterior, so this one reaction
does not need to produce the entire 50 mV of potential. The
calculations developed here do show that the measured poten-
tial difference of protons can be produced if power levels are
near 1011 W/m3. Since this is about eleven orders of magni-
tude lower than for the explosive TNT reaction, such sustained
power levels should not lead to irreparable physical damage.
If mitochondria do indeed burn glucose near this rate, then
this makes f rdp a good candidate for explaining the physical
mechanism for primary active transport in mitochondria. For
active transport of ions there is an electrostatic force that must
be overcome. This external force was represented by Fext in
Eq. (1). If the second-order force discussed here can overcome
this external force, then active ion transport is possible.

The pumping process for a given proton can be very quick,
while u̇ is very large. Given that 50 mV of proton potential
inside a small structure such as a mitochondria only requires
a small number of protons (≈10), one realizes that u̇ does
not need to be large all of the time. There can be short
bursts of time where u̇ is large and proton pumping is active,
followed by longer periods of time where u̇ is small and the
mitochondrial membrane seals itself off. The enzyme protein
ATP synthase, located nearby the membrane channels may
play a role in this alternating state of either allowing or block-
ing proton transport across the membrane, i.e., in controlling
the duty cycle. Time averaging over such a duty cycle may
give a power production density inside a mitochondria that is
considerably smaller than the u̇ values discussed here.

B. Photosynthesis example

Another example of note is photosynthesis in which a
visible photon is absorbed at a chloroplast and exergonically
converted into a proton membrane potential that can later
provide the energy for ATP synthesis. The excitonic cascade
at a cytochrome b6f complex, immediately following the pho-
tonic excitation, occurs over a timescale of about 30 ps [5].
A significant portion of the photon energy is used to pump
protons into the chloroplast. The potential energy stored in
protonic electrochemical potential is used subsequently to
create ATP. Again, this creates a plausible model with a few

eV of energy dissipated into a small volume over a short
time. Large rates u̇ are possible. Putting some numbers in for
chlorophyll b, photons are absorbed at E0 = 2.7 eV, at a pH
of 7.0, nproton = 6 × 1019 m−3, and making use of the 30 ps
timescale, i.e., τrdp = 30 ps, then u̇ = 8.6 × 1011 W/m3. By
Eq. (103), �Vproton = 90 meV, which is more than sufficient
to establish the observed proton potential.

C. Directionality of active transport

In the two biological examples considered earlier in this
section, transport theory including second-order scattering is
capable of explaining active proton transport that is effective
enough to produce an electrical potential of 50 mV.

For a first principles physical theory to explain active
transport in biological membrane systems, the following four
conditions must be satisfied: (1) As just discussed, energy
must be released at both a high rate and at a high density.
When u̇ is large enough then potential differences in the range
of 50 mV can be created across the membrane. (2) The second
law of thermodynamics must not be violated. Calculations
suggest eex is limited to no more than one-third. (3) The
exergonic conversion factor eex must not be too small. From
the analysis in Sec. III A 5, calculations for eex suggest it is
close to the one-third limit, using reasonable estimates for the
relevant parameters. Realistically the factor would need to be
near this limiting value. If eex is too small, then too much
energy must be expended by the organism for too little gain.
A high spatial gradient α is essential to this, and again the
membrane plays an important role. (4) The active transport
must be highly directional, and of course, in the right direc-
tion. For active proton transport in particular, no clear physical
explanation exists for the directionality of this motion. The
availability of energy does not guarantee that any ions can be
pushed uphill energetically. There are indeed many chemical
reactions that release energy while not being known for any
type of active transport, self assembly, or pattern formation.
Something else is needed besides the energy; the actively
transported particles must be directed uphill.

For the photosynthesis example discussed in Sec. VII B,
the calculated force f rdp which is always in the same direction
as the gradient in τ ∗u̇, will point point inwards, i.e., to draw
particles from the outside to the inside of the chloroplast.
This is indeed what is observed for protons in such systems
during photosynthesis, i.e., protons are actively pumped into
the chloroplast.

As encouraging as these calculations are that f rdp does in-
deed play an important role in biological transport processes,
the complete picture still awaits and there is more work to
be done. For example, for the glycolysis example discussed
in Sec. VII A, the equations predict f rdp to point inwards,
because u̇ is larger inside, and yet the protons are pushed
outwards. They are pushed uphill, energetically, but a detailed
explanation is lacking for why f B points opposite to f rdp.
The situation is quite simple when there is only one type of
reaction-diffusion particle; the force on that particle is f rdp
and the direction at any point in space is determined by the τ ∗u̇
field. For multicomponent reactions such as glycolysis taking
place inside of mitochondria, the τ ∗u̇ field only determines
the center-of-mass force f rdp. The proton force need not be
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in the same direction as f rdp. In such systems, the magnitude
of f rdp should, at best, be considered a good estimate for the
magnitude of the proton force. More accurate calculations for
the proton force, as well as forces on other products and reac-
tants, requires using Eqs. (92) and (93). The integrals in these
force expressions would need to be evaluated numerically in
any future work.

These expressions have great potential for calculating dy-
namics of all reactants and products, as well as heat flow,
to great detail. Many examples of proton pumping involve
the well studied enzyme ATP synthase. This is a large pro-
tein complex (≈500 kDa) some of which is embedded in
a membrane. The enzyme facilitates proton transfer across
the membrane in both the energetically downhill and uphill
directions. Moreover, the proton transfer is coupled to me-
chanical rotation of large subunits of the ATP synthase, for
example the F0 rotor [45,46]. This rotation orientation is also
coupled to the catalysis of ATP in both directions, synthesis
and hydrolysis.

The formalism developed here, Eqs. (92) and (93), may
be capable of providing a detailed explanation of this en-
zyme’s dynamics, including the rotation and any uphill active
transport. This formalism does allow for forces, and therefore
torques, all calculated at second order, to be exerted on any
participating reaction-diffusion particles, including protons,
ADP, ATP, and the various components making up the en-
zyme. These are forces and torques that cannot be accounted
for by first-order, linear, transport theory.

VIII. CONCLUSIONS

For reaction-diffusion systems, a Boltzmann transport
equation is formulated which accounts for collisions up to
second order. Reactants and products scatter with phonons for
first order and this is combined with three-phonon scattering
for the second order to produce the reaction-diffusion-phonon
Boltzmann transport equation. All possible types of reactions
have been considered, including combination and bimolecular
reactions.

Two forces are produced in general which push all reac-
tants, products, and catalysts together in one direction while
the phonons are pushed in the opposite direction. Momentum
is conserved. Because of these forces, exergonic conversion

is possible, i.e., not all of the released energy becomes heat.
Spatial gradients play an important role. This includes gra-
dients in particle concentrations, temperature, and scattering
strength for both reaction-diffusion particle-phonon scatter-
ing as well as phonon-phonon scattering. In cases where the
reactive cross section varies spatially, the reaction-diffusion
particles are pushed toward regions of higher catalytic activity.

These forces are simply expressed in terms of the gradient
of the product of the phonon lifetime and the rate of dissi-
pation. When strong gradients are combined with fast energy
release the forces can be significant. Numerical calculations
show this to be the case during explosive reactions. Similar
calculations at lower power demonstrate the possibility that
these forces are responsible for active proton transport across
semipermeable biological membranes. While obeying the sec-
ond law, up to one-third of the available chemical energy is
converted by ion pumping to create sufficient electric potential
energy for Mitchell’s chemiosmotic theory to be workable.

The analysis shows that phonon transport plays an im-
portant role in reaction-diffusion systems. The phonon force
can produce instability in the temperature field which in turn
can produce Turing patterns. Indeed, the separating force pair
can exist, even if the temperature and all concentrations are
uniform.

Given that the spatial gradients discussed here realisti-
cally exist in all nonequilibrium systems, the forces predicted
to separate reaction-diffusion particles from phonons should
play some role in all reaction-diffusion systems. Indeed, given
these forces have been also predicted in the electron-phonon
system, it would seem that the forces may exist in all nonequi-
librium systems.

The forces are unexpected, as they do not exist in ther-
modynamic equilibrium. One can characterize these forces as
emergent, i.e., these forces contribute to emergent behavior
such as Turing pattern formation. The analysis presented here
also clearly shows how such emergent and complex behavior
can be reduced down to the fundamental and simple forces of
physics.
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APPENDIX A: NEAR EQUILIBRIUM EXPANSION FOR DIFFUSION

Even with the focus away from near equilibrium it is still instructive to show the standard near equilibrium expansion for gk.
One begins with the equilibrium distribution,

g0
k = e−β(Ek−μ) = 1

Z
e−βEk , (A1)

with Ek = h̄2

2m k2. For the nonequilibrium reaction-diffusion particle distribution one shifts the wave vector by a small amount
k0ẑ:

Ẽk = h̄2

2m
(k − k0ẑ)2 ≈ Ek + h̄2

2m
k2

0 − h̄2

m
k0kz. (A2)

To a good approximation

gk

g0
k

=
{

1 + β h̄2kzk0

m
− βK

[
1 − β h̄2k2

z

m

]}
, (A3)

024201-21



S. N. PATITSAS PHYSICAL REVIEW E 108, 024201 (2023)

where the kinetic energy

K ≡ h̄2k2
0

2m
. (A4)

Thus, the difference:

gk

g0
k

− e−βεq′′ gk′

g0
k

= β h̄2k0

m
(kz − k′

z ) + ξ
β h̄2

m

[
k2

z − (k′
z )2

]
. (A5)

When inserted into Eq. (10) the result is

u̇ph = β2h̄2K

m

∫∫∫
g0

k

(
1 + h0

q′′
)
W

k′,q′′
k δ(k − k′ − q′′)

[
k2

z − (k′
z )2

]
εq′′dkdk′dq′′. (A6)

By symmetry this must be same as if k2
z − (k′

z )2 is replaced by k2
x − (k′

x )2 or k2
y − (k′

y)2 or 1
3 [k2 − (k′)2]. Since Ek = Ek′ + εq′′ :

u̇ph = 2

3
β2K

∫∫∫
g0

k(1 + h0
q′′ )Wk′,q′′

k δ
(
k − k′ − q′′)ε2

q′′dkdk′dq′′. (A7)

Here one sees directly that the force is proportional to k2
0 which is proportional to |∇nc|2.

APPENDIX B: VERIFICATION OF PHONON FORCE FOR COMBINATION REACTIONS

For phonon wave vector q the second-order collision integral analogous to Eq. (70) is

∂hq

∂t

∣∣∣∣
R2

=
∫ ∞

0

∫∫∫∫∫ [{−e−t ′/τ1,>gAgBhq(1 + hq′ ) + e−t ′/τ1,<gC (1 + hq)hq′
}
Q

q′
q′′,qδ(q′′ + q − q′)

+ {
e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gChqhq′

}
Q

q,q′
q′′ δ(q′′ − q − q′)

]
× (1 + nq′′ )nq′′R

C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdq′dq′′dt ′. (B1)

Similarly, for q′,

∂hq′

∂t

∣∣∣∣
R2

=
∫ ∞

0

∫∫∫∫∫ [{
e−t ′/τ1,>gAgBhq(1 + hq′ ) − e−t ′/τ1,<gC (1 + hq)hq′

}
Q

q′
q′′,qδ(q′′ + q − q′)

+ {
e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gChqhq′

}
Q

q,q′
q′′ δ(q′′ − q − q′)

]
× (1 + hq′′ )hq′′R

C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdqdq′′dt ′. (B2)

The phonon force is

f p,R = 1

2
h̄

∫
q
∂hq

∂t

∣∣∣∣
R2

dq + 1

2
h̄

∫
q′ ∂hq′

∂t

∣∣∣∣
R2

dq′. (B3)

Explicitly,

f p,R = 1

2
h̄

∫ ∞

0

∫∫∫∫∫∫ [{−e−t ′/τ1,>gAgBhq(1 + hq′ ) + e−t ′/τ1,<gC (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q

+ {
e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gChqhq′

}
Q

q,q′
q′′ δ(q′′ − q − q′)q

]
× (1 + hq′′ )hq′′R

C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdqdq′dq′′dt ′

+ 1

2
h̄

∫ ∞

0

∫∫∫∫∫∫ [{e−t ′/τ1,>gAgBhq(1 + hq′ ) − e−t ′/τ1,<gC (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q′

+{e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gChqhq′}Qq,q′
q′′ δ(q′′ − q − q′)q′]

× (1 + hq′′ )hq′′R
C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdqdq′dq′′dt ′. (B4)

Regrouping gives

f p,R = 1

2
h̄

∫ ∞

0

∫∫∫∫∫∫ [{e−t ′/τ1,>gAgBhq(1 + hq′ ) − e−t ′/τ1,<gC (1 + hq)hq′}Qq′
q′′,qδ(q′′ + q − q′)q′′

+{e−t ′/τ2,>gAgB(1 + hq)(1 + hq′ ) − e−t ′/τ2,<gChqhq′}Qq,q′
q′′ δ(q′′ − q − q′)q′′]

× (1 + hq′′ )hq′′R
C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdqdq′dq′′dt ′. (B5)
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Making use of Eqs. (14), (15), (16), and (17) in Eq. (B5) allows simplification to

f p,R = h̄
∫ ∞

0

∫∫∫∫ [{
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

− e−t ′/τ1,<gChq′′
1

τ ′
1,<

}
q′′

+
{

e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

− e−t ′/τ2,<gChq′′
1

τ ′
2,<

}
q′′

]
R

C,q′′
A,B δ(kA + kB − kC − q′′)dkAdkBdkCdq′′dt ′. (B6)

Dropping the two reverse flow terms gives

f p,R = h̄
∫ ∞

0

∫∫∫∫
q′′

[
e−t ′/τ1,>gAgB(1 + hq′′ )

1

τ ′
1,>

+ e−t ′/τ2,>gAgB(1 + hq′′ )
1

τ ′
2,>

]
R

C,q′′
A,B

× δ(kA + kB − kC − q′′)dkAdkBdkCdq′′dt ′. (B7)

Comparing to Eq. (77) one verifies that f p = − f rdp,R.

APPENDIX C: NEAR EQUILIBRIUM EXPANSION FOR DIFFUSION AND COMBINATION REACTION

If a concentration gradient in reactant A created during the combination reaction A + B ↔ C + p, then a subsequent number
current density JA is produced. The transport analysis is similar to that in Appendix A [see Eq. (A7)] with the following result:

u̇p,A = 2

3
β2KA

∫∫∫∫
g0

Ag0
B

(
1 + h0

q′′
)
R

C,q′′
A,B δ(kA + kB − kC − q′′)ε2

q′′dkAdkBdkCdq′′, (C1)

where

KA = mAJ2
A

2n2
A

. (C2)

The analysis is similar for reactant B and product C, giving the additive factors, KB = mBJ2
B

2n2
B

and KC = mC J2
C

2n2
C

. Adding the three
terms gives Eq. (C1) with KA replaced by KA + K + B + KC .

Reactions are distinguished from diffusion when noting that even with reactant and product densities uniform, there can be a
nonzero affinity. De Donder’s affinity is defined as

A = �μA + �μB − �μC . (C3)

Referring to Eq. (68):

gAgB(1 + hq′′ ) − gChq′′ = [
g0

Ag0
B

(
1 + h0

q′′
)
eβ(�μA+�μB ) − g0

Ch0
q′′ eβ�μC

]
, (C4)

gAgB(1 + hq′′ ) − gChq′′ = eβ�μC
[
g0

Ag0
B

(
1 + h0

q′′
)
eβ(�μA+�μB−�μC ) − g0

Ch0
q′′

]
, (C5)

gAgB(1 + hq′′ ) − gChq′′ ≈ [
g0

Ag0
B

(
1 + h0

q′′
)
eβ(�μA+�μB−�μC ) − g0

Ch0
q′′

]
, (C6)

gAgB(1 + hq′′ ) − gChq′′ ≈ [
g0

Ag0
B

(
1 + h0

q′′
) − g0

Ch0
q′′

] + βAg0
Ag0

B

(
1 + h0

q′′
)
, (C7)

gAgB(1 + hq′′ ) − gChq′′ ≈ βAg0
Ag0

B

(
1 + h0

q′′
)
, (C8)

u̇reaction = βA
∫∫∫∫

g0
Ag0

B

(
1 + h0

q′′
)
R

C,q′′
A,B δ(kA + kB − kC − q′′)εq′′dkAdkBdkCdq′′. (C9)

Note there is one less factor of εq′′ as compared to Eq. (C1). For exothermic combination reactions, A > 0 and u̇reaction is positive.
The net power dissipation is

u̇p,R = u̇p,A + u̇p,B + u̇p,C + u̇reaction. (C10)
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