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Development of thermodynamic induction up to second order gives a dynamical bifurcation for thermody-
namic variables and allows for the prediction and detailed explanation of nonequilibrium phase transitions
with associated spontaneous symmetry breaking. By taking into account nonequilibrium fluctuations, long-
range order is analyzed for possible pattern formation. Consolidation of results up to second order produces
thermodynamic potentials that are maximized by stationary states of the system of interest. These potentials
differ from the traditional thermodynamic potentials. In particular a generalized entropy is formulated for the
system of interest which becomes the traditional entropy when thermodynamic equilibrium is restored. This
generalized entropy is maximized by stationary states under nonequilibrium conditions where the standard
entropy for the system of interest is not maximized. These nonequilibrium concepts are incorporated into
traditional thermodynamics, such as a revised thermodynamic identity and a revised canonical distribution.
Detailed analysis shows that the second law of thermodynamics is never violated even during any pattern
formation, thus solving the entropic-coupling problem. Examples discussed include pattern formation during
phase front propagation under nonequilibrium conditions and the formation of Turing patterns. The predictions
of second-order thermodynamic induction are consistent with both observational data in the literature as well as
the modeling of this data.
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I. INTRODUCTION

Thermodynamic induction (TI) has recently been put for-
ward as a general approach toward the study of nonequilib-
rium systems and has been used to explain some important
particular details regarding the manipulations of atoms and
molecules by STM [1,2]. A new type of thermoelectric cool-
ing by TI has also been studied and proposed as a good test
for the existence of TI [3]. In short, TI can result in a thermo-
dynamic variable being influenced in a surprising way when it
plays the role of a gate, or control, variable. The variable may
be pushed away from equilibrium when there is no apparent
force to do so, thus giving the appearance of violating the
second law of thermodynamics (SLT). The direction of this
influence is always in such a way that facilitates the approach
to equilibrium of the entire system. When the entire systems
reaches equilibrium, the influence disappears.

So far, the TI theory applies to the case of a conduc-
tance coefficient (or kinetic coefficient) that depends on a
thermodynamic variable in a linear fashion, i.e., the case of
first-order TI (TI1)—for example, the electrical conductivity
of a channel depending on the temperature of the channel
[3]. What is missing in the theory is a treatment of second-
order TI (TI2). This step is important in this development of
nonequilibrium thermodynamics as it will allow treatment of
spontaneous symmetry breaking, pattern formation, as well
as a description on nonequilibrium phase transitions (PTs).
This approach also allows for a thermodynamic view of
bifurcations, a phenomenon usually approached in the realm
of pure, zero-temperature, mechanics.

By establishing TI up to second order, I will be able to
answer a very old and important scientific question, which I

term the entropic-coupling problem. Since the establishment
of the laws of thermodynamics, it has been noted that many
systems in nature are highly ordered and seem to break the
second law of thermodynamics. The often given explanation
is simply that even though entropy might decrease in a given
region, somewhere else the entropy must increase by at least
that much. This is surely the case but a rigorous theory for this
has proved elusive, until now. In fact, to my knowledge, no
theoretical work on this problem exists, beyond the qualitative
explanation just given.

There must exist some other system that increases its
entropy by at least as much, and this must be true at all
times. This means that the entropy production of this system
must always exceed any negative rate that may occur in the
given region. Here I explain both what this other system is,
as well as the details of the coupling. In the approach that
I outline here for solving the entropic-coupling problem, the
coupling is not energetic in the same way in which mechanical
systems are often coupled by adding a term to a Hamiltonian
that depends on the variables of both systems. Instead, the
coupling between variables occurs through the conductance.

Many of the considerations here are under circumstances
I refer to as well away from equilibrium. What is meant by
well away is far enough from equilibrium that kinetic and
transport coefficients will have significant deviations from
constancy, but not so far that destructive or catastrophic events
occur; i.e., the system can be repeatedly cycled well away
from equilibrium and back again. This variation of kinetic
coefficients is not merely for convenience of definition, but
plays a critical role in my analysis. As it turns out, this is a
modest step beyond the basic approach of near-equilibrium
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thermodynamics, such as used for calculation of transport
properties. Here, one is not dealing with far-from-equilibrium
physics where the concepts of equilibrium statistical mechan-
ics break down. In particular, the local temperature, pressure,
and chemical potential are still well-defined thermodynamic
parameters.

By combining TI results at both first and second order, I
construct a thermodynamic potential that is maximized when
the gate is well away from equilibrium and finds itself in a
stationary state. Finding such a potential has remained an open
question since the laws of thermodynamics were established.
Maximizing the entropy is not helpful because this is known
to happen at equilibrium. The potential here differs from the
entropy in general but does become the entropy when the
system is returned to equilibrium. Maximizing this potential
will, under certain circumstances, produce a PT, which may
or may not spontaneously create interesting patterns.

The time is right now to use this potential toward the es-
tablishment of governing principles for nonequilibrium ther-
modynamics. An abundant amount of data has been taken
from observations on a widely varying set of nonequilibrium
systems over a period of many decades now. These systems
have been described in a lengthy review article [4] as well as in
textbooks, including Refs. [5,6] as good examples. Moreover,
a great deal of modeling has been reported on these results
and much understanding has been gained from this. In this
work, I make a concerted effort to link general TI results to
this modeling.

I begin, in Sec. II, by developing a theory for thermody-
namic induction up to second order for one gate, or control,
variable. This includes showing that TI2 produces a nonequi-
librium PT with a well-defined order parameter. In Sec. III this
theory is extended to the case of more than one gate variable.
This includes the description of a nonequilibrium front and
pattern formation during chemical reactions. Review of and
comparison with various important models in the literature are
made.

II. GENERAL THEORY FOR THERMODYNAMIC
INDUCTION UP TO SECOND ORDER

Considered here is the coupled dynamics of two ther-
modynamic variables, referred to as the dynamical reservoir
(DR) and the gate. After some initial considerations with
both variables on an equal footing, emphasis will then be
placed on the gate variable. The gate is the system capable
of displaying interesting behavior such as pattern formation
and self-organization. The DR is simply a thermodynamic
variable with a large capacity so that when not in equilibrium,
the relaxation is slow. The relaxation of the DR is always
considered as slowly varying compared to all other timescales.
In fact the DR may be held static in many systems, for
example by continuously replacing reactants in or feeding
reactants into a reactor.

The DR thermodynamic variable xDR, normally considered
as slowly approaching an equilibrium value of xDR0 ≡ xDR −
a, has a conjugate force XDR = −gDRa, where g−1

DR can be
thought of as a generalized capacitance and would be large for
this type of reservoir variable. The dynamics for approaching

equilibrium is described by

da

dt
= ȧ = MDRXDR. (1)

So far the analysis closely follows standard textbook material
for nonequilibrium dynamics [7,8]. Ordinarily, the Onsager
coefficient MDR is considered as constant and describes strict
proportionality between the flux and force—for example,
Fourier’s heat transfer law. The key idea behind TI is that
MDR is not constant and may depend on thermodynamic
variables other than xDR. (A dependence on xDR creates non-
linear dynamics but fails to create the interesting coupling.)
The coefficient MDR is assumed to depend on these other
thermodynamic (gate) variables so that MDR can be broken
into a sum of a constant term LDR and a variable component
WDR which has a functional dependence on the gate variables.
For simplicity, I first consider the case where the dependence
of MDR on these variables is very weak and negligible, except
for one gate variable, xGT . The term WDR couples xDR and xGT

and plays a role similar to the perturbation potential in the
Hamiltonian description of mechanical systems. The coupling
does not occur through a Hamiltonian but instead through
entropy production rates. Both the DR and gate entropy
production rates play an important role here. The entropy
production rate for the DR is

σDR = XDRẋDR = LDRX 2
DR + WDRX 2

DR. (2)

For the gate I define the difference variable b ≡ xGT −
xGT 0, so that the conjugate force is XGT = −gGT b and the
change in entropy from equilibrium for the gate variable is

SGT − SGT,eq = 1
2 XGT b = − 1

2 gGT b2. (3)

The gGT parameter sets the extent of fluctuations with
〈b2〉0 = kB/gGT (the brackets 〈 〉0 denoting equilibrium
ensemble averaging). Since the gate is often thought of a
small system, fluctuations play an important role. The entropy
production rate for the gate which also plays an important
role in the formulation of variational principles is given by

σGT = LGT X 2
GT = LGT g2

GT b2. (4)

I will show below that important potentials may be formed as
linear combinations of σDR and σGT .

A. TI1

In previous work I considered the case where WDR depends
in a linear fashion on one or more gate, or control, variables
[1–3]. This resulted in a type of TI that is classified as first
order, i.e., TI1. If the TI1 gate variable is b then MDR,1 =
LDR + γ b, with γ as the TI1 coefficient, and the induction
effect gives dynamics for the gate variable that is not merely
dissipative but is instead given by

ḃ = γ X 2
DRLGT τ ∗ − LGT gGT b (1st order, uncorrected), (5)

where τ ∗ is the characteristic time for the fastest fluctuations
in the gate variable. For TI1 the induction term in Eq. (5)
is constant and this constant term pushes b away from its
equilibrium value of zero.
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Before proceeding to TI2, I point out that essentially the
same result, Eq. (5), can be found by considering the two vari-
ables a and b as random walkers. As pointed by Wigner in his
analysis of various proofs for the (linear) Onsager relations, a
random walker where the result of each step is weighted by
exp(�S/kB) will give a mean value that relaxes properly to-
wards equilibrium [9]. For the two variables considered here,
�S = −gDRa2 − gGT b2. I introduce an interesting coupling
by making the step length for variable a depend on b. In
Appendix A, the two random walker problem is analyzed and
for linear dependence the analytic results for the mean values
for a and b are given by

ȧ = −q1

τ0

(
l2
0 + δb

)
a (random walk, 1st order) (6)

and

ḃ = q1δ

2τ0
l2
2 (q1a2 − 1) − q2

τ0
l2
2 b (random walk, 1st order).

(7)
To compare this result with Eq. (1) and Eq. (5) one
notes that q1 = gDR/kB, q2 = gGT /kB, XDR = −gDRa, XGT =
−gGT b, and relaxation times τDR = 1/LDRgDR = τ0/q1l2

0 ,
τGT = 1/LGT gGT = τ0/q2l2

2 . This means LDR = l2
0 /kBτ0 and

LGT = l2
2 /kBτ0. The Onsager coefficients LDR and LGT are

simply the random walk diffusion coefficients divided by kB.
Equation (6) is the same as Eq. (1) as long as δ = γ kBτ0. With
this substitution Eq. (7) becomes

ḃ = γ

2
LGT τ0

(
X 2

DR − kBgDR
) − LGT gGT b

(random walk, 1st order). (8)

Thus, it is natural to identify the random walk time step as
twice τ ∗. This gives

ḃ = γ LGT τ ∗(X 2
DR − 〈X 2

DR〉0
) − LGT gGT b

(1st order, corrected), (9)

which closely resembles Eq. (5) except for the extra term
〈X 2

DR〉0 = kBgDR which represents the variance of the DR force
under equilibrium conditions. The extra term guarantees that
the mean value of ḃ is zero in equilibrium, as it should be.
Evidently the random walk analysis is more accurate than the
derivation of Eq. (5) presented in Ref. [1]. When the DR is
large then fluctuations play less of a role and the correction
term is small. The assumption made in Ref. [1] is that the DR
is very large and slow, so it makes sense that terms like 〈X 2

DR〉0

are missed in this analysis. In contrast, Eqs. (6) and (7) hold
regardless of how large and slow the DR is compared to the
gate.

Figure 1 shows the result of a single, representative random
walk (solid red circles for a, green crosses for b), which
clearly shows variable b being pushed away from zero. In the
numerical simulation, which uses a very simple code, it is the
square of the DR step length that has the form l2

0 + δb. In
the simulation l0 = 0.01 and δ = 0.04. The thin, black, solid
curve shows b after being averaged over 10 000 walks. After
about 20 time steps a relaxes to zero so that the induction on
b is greatly reduced. Afterward, b relaxes toward equilibrium.
The thick, solid, blue curve shows the averaged response of a
when δ = 0 (and hence b = 0), i.e., with the coupling between

FIG. 1. Random walk simulations for first-order TI. A single ran-
dom walk is shown with first-order TI parameter δ = 0.04, showing
the DR (GT) variable a, solid red circles (b, green crosses) initially
at 1.0 (0.0). An average for b over 10 000 walks is displayed as the
thin solid black curve. Also shown is the relaxation of a, thick solid
blue curve, when δ = 0, a and b uncoupled. Both parameters q1 and
q2 were set to 1000.

a and b removed (no induction). The approach to equilibrium
for a is substantially faster with δ = 0.04 than it is for the case
where δ is set to zero.

Though the essence of the results displayed in Fig. 1 was
already established in previous work it is reassuring to see a
different approach based on random walk simulations confirm
the expected TI1 predictions. This confirmation will also be
displayed for TI2. Before moving to TI2, I briefly discuss a
potential that is maximized under TI1.

TI1 principle of maximum entropy production

Since a correction for DR fluctuations has been added to
the dynamics, Eq. (9), for TI1, as compared to what was
derived in Ref. [1], a slightly updated form of the principle of
maximum entropy production (PMEP) is required here. To-
ward this end I define the following thermodynamic potential
function, a type of entropy production rate:

�1 ≡ σDR − λ1σGT =LDRX 2
DR + X 2

DRγ b

− λ1
[−gGT γ LGT τ ∗(X 2

DR − 〈
X 2

DR

〉
0

)
b + LGT g2

GT b2],
(10)

where the constant λ1 is a Lagrange multiplier. One maxi-
mizes the DR rate of entropy production, σDR, with respect
to b, subject to the stationary state constraint. Equivalently,
one also maximizes σT , subject to the same stationary state
constraint. Setting the first derivative of �1 to zero gives a
way to specify λ1 as

λ1 = τGT

τ ∗
X 2

DR

X 2
DR − 〈

X 2
DR

〉
0

, (11)
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FIG. 2. Random walk simulations for TI2. Three individual ran-
dom walks for the gate variable b are displayed, one with XDR,0 = 0
(black crosses, 1), and two with XDR,0 > Xc (red circles, 2, and blue
squares, 3). For the random walk with XDR,0 = 0, the DR a variable
(not shown) initial value was 0.0. The two walks with XDR,0 > Xc

are representative of bifurcations going up and down. For these two
random walks, the a variable initial value was 1.0. Both parameters
q1 and q2 were set to 1000 and β = 0.1. Note the pitchfork shape
would be evident over the range from −20 to +20 time steps.

which is positive definite. Explicitly, ∂�1/∂b = 2λ1gGT ḃ. At

the stationary state ∂2�1/∂b2 = − 2gGT

τ ∗
X 2

DR

X 2
DR−〈X 2

DR〉0
< 0, verify-

ing that �1 is maximized.

B. TI2

In many systems, symmetry considerations preclude the
linear form of MDR discussed above, and the quadratic term
becomes the leading term with WDR = αb2:

MDR = LDR + αb2, (12)

where again LDR is constant and α is the coefficient for TI2.
In these systems, one might expect spontaneous symmetry
breaking to occur. In TI1, the gate variable is pushed away
from equilibrium in a direction determined by the sign of γ .
In TI2, the gate can potentially veer away from equilibrium
in either direction, so a bifurcation may occur. This would not
occur when the DR is at or very near equilibrium so one might
expect a threshold needs to be exceeded before any bifurcation
occurs.

In Fig. 2, I present random walk results for the case where
the DR step length l for variable a depends quadratically on
b as l2 = l2

0 + βb2. Three individual random walks for b are
shown depicting no bifurcation (black crosses, trace 1) when
the DR is at equilibrium, and two representative walks (traces
2, 3) showing bifurcation when the DR is pushed well away
from equilibrium. As in the case of TI1, the induction has
significant impact on the gate variable. Without induction the

simulations always resemble trace 1. If induction is suddenly
introduced at t = 0 then after executing a random walk for
some time before t = 0 which resembles trace 1, at t = 0
the random walk resembles one of traces 2 and 3, and after
compiling many runs, one obtains the well-known pitchfork
bifurcation. In the second-order case the variable b averages
to zero over many random walks but as one would expect, b2

does show the bifurcation.
The analytic solution for the random walks is given in

Appendix A as

ȧ = −q1

τ0

(
l2
0 + βb2

)
a (random walk, 2nd order) (13)

and

ḃ = q1β

τ0
l2
2 (q1a2 − 1)b − q2

τ0
l2
2 b (random walk, 2nd order).

(14)

Equation (14), with the first term on the right-hand side
having a positive coefficient of b, shows a simple (pitchfork)
bifurcation, confirming the numerical random walk results.
Making a similar mapping to the thermodynamic problem as
done above with the first order, one obtains

ȧ = (LDR + αb2)XDR (2nd order TI) (15)

and

ḃ = 2αLGT τ ∗(X 2
DR − 〈

X 2
DR

〉
0

)
b − LGT gGT b

(2nd order TI, unconstrained). (16)

Equation (16) constitutes an important result of this paper as it
shows how unstable dynamics may occur in a purely dissipa-
tive system. The same result, though missing the 〈X 2

DR〉0 term,
is derived in a different way in Appendix B, using the same
approach used in Ref. [1] to establish TI1.

When the force XDR is small, the gate variables continue to
relax to equilibrium with the only effect of TI being that the re-
laxation time is lengthened. However when the DR is pushed
harder, a critical value for XDR can be reached which results in
a bifurcation and unstable growth of the gate variable:

Xc =
√

gGT

2ατ ∗ + 〈
X 2

DR

〉
0. (17)

For XDR fixed and above critical, Eq. (16) predicts unabated
growth in time of the form b(t ) = b(0) exp(t/τ) with

τ−1 = 2αLGT τ ∗(X 2
DR − X 2

c

)
. (18)

The second-order result expressed in Eq. (16) differs
significantly from TI1 which adds a constant positive term
to Eq. (16) [1]. There is no sudden transition (bifurcation)
in first-order TI and also no exponential growth; the gate
variable always relaxes to a nonequilibrium stationary state.

The form of Eq. (16) shows that TI can produce what is
effectively a negative relaxation time. In some systems this
could happen in the form of a negative (effective) diffusion
coefficient as in the physical examples discussed below in
Secs. III D and III E.

Introducing terms leading to negative relaxation times is
the basic approach in formulating the Swift-Hohenberg (SH)
model [4,5]. This mathematical model is quite sophisticated
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with extra terms added to constrain unstable solutions. Fol-
lowing this approach, I add a cubic term to Eq. (16) to produce

ḃ = 2αLGT τ ∗(X 2
DR − 〈

X 2
DR

〉
0

)
b − LGT gGT b − c2b3

(2nd order, constrained). (19)

The cubic term constrains what would otherwise be unabated
exponential growth. The physics behind the added term would
have to be justified on a case-by-case basis and there may be
more than one effect contributing to this cutoff.

For example, in the realm of purely dissipative systems,
treating the small b expansion for �S to higher order will
produce terms that will limit this growth. Replacing �S =
−gGT b2/2 with

�S = − 1
2 g2b2 − 1

2 g4b4 (20)

is equivalent to replacing gGT with g2 + g4b2 with the result
of producing Eq. (19) as long as c2 = g4LGT . This analysis
is only preliminary and a more thorough treatment should
be developed. Nevertheless this provides a simple mechanism
for limiting the unstable growth. This connection between the
entropy and the cutoff term will be invoked below in Sec. II G.

The new term in Eq. (19), cubic in b, modifies the dynamics
in a way that checks the exponential growth and allows for
stationary states (ḃ = 0) above critical:

bac =
√

2αLGT τ ∗(X 2
DR − X 2

c

)
c2

(above critical). (21)

Strictly speaking, this state is quasistationary and is only
meaningful when the relaxation time of the gate is much
shorter than that of the DR. In this case the XDR is slowly
changing and bac adjusts according to Eq. (21). The stationary
state value of b can be interpreted as an order parameter, which
spontaneously springs up from zero at the critical point. The
critical exponent of this nonequilibrium PT is defined by the
dependence on XDR just above the critical point, and here takes
the value 0.5.

Equation (19) does not account for fluctuations in b and
these will be dealt with below. The results, Eqs. (19) and (21),
are still useful in a certain limit which I refer to as the infinite-
Q limit. In this limit, induction does nothing when XDR < Xc,
and has a perfectly sharp transition at Xc. This will change in
the finite-Q case.

C. TI2 PMEP

In this section a PMEP will be established and will com-
plement the same principle which holds for TI1. For TI2
the PMEP will closely resemble the Ginzberg-Landau-Wilson
free energy functional [6] which has been successful in mod-
eling equilibrium PTs. Establishing a similar thermodynamic
potential should aid in understanding nonequilibrium PTs.

1. TI2 PMEP: Infinite Q

In the case of TI2, the starting point for a PMEP
potential is

�2,∞Q(b) ≡ σDR − λσGT = LDRX 2
DR + X 2

DRαb2 − λ

× [−2α
(
X 2

DR − X 2
c

)
LGT gGT τ ∗b2 + c2gGT b4

]
,

(22)

where λ above critical is found to be

λ2,∞Q = τGT

2τ ∗
X 2

DR

X 2
DR − X 2

c

(above critical). (23)

Above critical, at the stationary state, d2�2,∞Q

db2 = −8αX 2
DR,

which is always negative and shows that stationary states
maximize �2,∞Q. As will be shown below, Eq. (22) is only
valid above critical in the limit of infinite quality factor.

Above critical, �2,∞Q(b) resembles an upside down som-
brero with two maxima at nonzero b = ±bac which in turn
closely resembles the free energy functional found in Landau
theory [10]. Far enough above critical, transitions between
+bac and −bac become rare and the system essentially freezes
into one branch, i.e., a proper bifurcation in the sense of
nonlinear dynamics theory. As one varies XDR and approaches
the critical point from above, the two maxima soften and
coalesce into one maximum at b = 0.

2. TI2 PMEP: Finite Q

The form of λ2,∞Q is similar to that of λ1, with 〈X 2
DR〉0

replaced by the larger X 2
c . This means that the possibility of

〈X 2
DR〉0 less than X 2

c should be considered. Below critical, λ is
indeterminate and could be set to zero. From the mathematics
alone it seems reasonable to consider the function that is
the magnitude of X 2

1 /(X 2
1 − X 2

c + iε) as a function that could
cover cases both above and below critical. This can be justified
by analysis that takes fluctuations in b into better account.
From this analysis comes a line shape function to replace λ

with λ2(XDR) = (τGT /2τ ∗)μ, with μ given by

μ = X 2
DR√(

X 2
DR − X 2

c

)2 + X 2
DRX 2

c

/
Q2

(line shape), (24)

where the quality factor is specified by Q−2 = 4c2τGT 〈b2〉0.
The line shape function μ is identical to that which comes
about from the frequency response of a damped harmonic
oscillator. The familiarity of this line shape function helps
to make the thermodynamics of bifurcation quite intuitive.
Loosely speaking, the thermodynamic force XDR plays a role
similar to frequency or energy of excitation, and Xc is like
the resonant frequency. Fluctuations broaden the excitation
peak and produce the interesting consequence of the system
bifurcating (in a statistical manner) to some extent, below the
critical point. Unlike the case of pure classical mechanics at
zero temperature where bifurcation occurs with perfect sharp-
ness, here the bifurcation is broadened over a range ≈ Xc/Q.
This constitutes an important result in the thermodynamics of
bifurcations.

The line shape function reaches below critical, suggesting
that Eq. (22) might be applicable below critical if λ is replaced
by λ2. If so, then dynamics below critical would be specified
by making ḃ proportional to ∂�2/∂b. However, further analy-
sis requires care in treating fluctuations and in distinguishing
b2 from 〈b2〉. In Eq. (22) it is the dispersion of b, u ≡ �b2 =
〈b2〉 − 〈b2〉0, that is the argument and not the square of the
mean, 〈b2〉. In equilibrium it is u that is zero, not 〈b2〉.

Since focusing on fluctuations in the gate is the more
important issue for TI2, I will assume from now on that
fluctuations in the DR are negligible. This is justified by the
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DR being physically much larger than the gate. Multiplying
Eq. (19) through by b gives

db2

dt
= 2bḃ = 4αLGT τ ∗(X 2

DR − X 2
c

)
b2 − 2c2b4 (uncorrected).

(25)

Taking into account fluctuations in b means that a term 〈b2〉0

must be added into the dynamics for b2. This ensures that b2

takes the limit 〈b2〉0 well below critical. Equation (25) gets
modified to become

db2

dt
= 4αLGT τ ∗(X 2

DR − X 2
c

)
b2 + 4αLGT τ ∗X 2

c 〈b2〉0 − 2c2b4.

(26)
The dynamics for the difference u = b2 − 〈b2〉0 requires a

small adaptation for the quartic cutoff term:

du

dt
= 4αLGT τ ∗(X 2

DR − X 2
c

)
u + 4αLGT τ ∗X 2

DR〈b2〉0 − 2c2u2.

(27)
In terms of z ≡ XDR/Xc the stationary state for the dispersion
of b is

(�b2)ss = 2Q2〈b2〉0[z2 − 1 +
√

(z2 − 1)2 + z2/Q2]. (28)

In terms of the function h+ defined by h+(x) ≡ x − 1 +√
(x − 1)2 + x/Q2, (�b2)ss = 2Q2〈b2〉0h+(z2). For positive

argument h+ is always positive and resembles a hockey stick
with a sharp upward bend at x = 1. The function h+(z2)
differs very little from the infinite-Q limit except within the
interval centered at z2 = 1 and with a width of several Q−1.
For small x, h+(x) ≈ x/2Q2, while for x � 1, h+(x) ≈ 2x.
Far above critical, (�b2)ss = b2

ac, showing that this approach
connects seamlessly with Eqs. (22) and (23) when well above
critical. This also is consistent with classical chaos theory
(where Q is infinite) and one expects the classical particle
to strictly go to either +bac or −bac after bifurcation. Near
critical the level of fluctuation is substantially higher than it is
in equilibrium. This enhancement motivates defining the term
nonequilibrium fluctuations, as an interpretation of Eq. (28).

To describe conditions both above and below critical for
TI2 one must use a potential �2 that is a function of u since the
mean value of b is technically zero. In this case the Lagrange
multiplier is λ2 = τGT μ/2τ ∗, and the correct form for this
potential is

�2(u)=LDRX 2
DR + gGT μ

2τ ∗

[
z2〈b2〉0 + uh+(z2) − u2

4Q2〈b2〉0

]
.

(29)

For all u � 0, �2 is maximized, with respect to u, at the
stationary state Eq. (28). As in the first-order case, one maxi-
mizes σDR (or equivalently σT ) subject to the stationary state
constraint.

The second-order PMEP nicely complements the first-
order PMEP first discussed in Ref. [1]. The second-order
result is quite a bit more involved; attempts to use the same
variable for the arguments of both �1 and �2 are not success-
ful. In the end, it is the statistical moments of the statistical
variable b that are used as the arguments, i.e., 〈b〉 for �, and
〈u〉 = 〈b2〉 − 〈b2〉0 for �2. The two moments are generated
from a probability distribution. It is helpful to think then of

a Gaussian distribution for b. The distribution is centered at
〈b〉 and is shifted by TI1. For the case of TI2, with 〈b〉 = 0,
the variance of the distribution is given by 〈b2〉. Again for
TI2, as one raises XDR upward through the critical point,
the Gaussian distribution spreads suddenly to describe the
initiation of bifurcation.

For convenience, the symbols 〈 〉 for ensemble averaging
will be dropped in the discussion below, and it is understood
that b and u actually represent 〈b〉 and 〈u〉.

In principle, third and higher orders of induction would
be dealt with in a similar way to TI1 and TI2. There may
be systems with both α = 0 and γ = 0 which would require
treatments at higher order. These systems are expected to be
rare, however, and given the success demonstrated in Sec. III
below in using TI2 on real systems, leaving higher-order TI
for future work is justified for now.

D. Generalized entropy with focus on the gate

At this point, I move from a principle that maximizes
the entropy production of the entire system to a principle
that focuses on the gate. As I will show, the DR still plays
an important role, but only in supplying parameters for the
theory focused on describing the gate. I will treat first- and
second-order cases separately before combining them. The
procedure merely amounts to multiplying �1 and �2 by con-
stants, thus preserving their maximization properties. These
multiplicative constants will be chosen in such a way as to
produce the entropy when the DR is restored to equilibrium.

1. First order

Multiplying �1 by a term independent of b also gives
a potential that is maximized when the gate is stationary. I
define a thermodynamic potential as

1 ≡
(

τ ∗

2

)(
X 2

DR − 〈
X 2

DR

〉
0

X 2
DR

)
�1

=
(

τ ∗

2

)(
X 2

DR − 〈
X 2

DR

〉
0

X 2
DR

)
σDR − τGT

2
σGT . (30)

Though 1 has the same units as entropy, it is not the same
as the total system entropy. It is a nonequilibrium potential
since it depends on XDR. In the limit where X 2

DR is small
and approaches 〈X 2

DR〉0, 1 takes the limit of − 1
2τGT σGT =

− 1
2 gGT b2, which is equal to the difference �SGT = SGT −

SGT,eq when this difference is taken up to second order in
b. At or near XDR = 0, the guiding principle of maximizing
1 for determining b is to maximize SGT , which of course is
the governing thermodynamic principle for the gate at or near
equilibrium. Thus, maximizing 1 has the attractive feature
of determining the (stationary) state of the gate when the DR
is driven well away from equilibrium and also seamlessly
determining the equilibrium state of the gate when the DR
is at equilibrium.

The potential function 1 is an excellent tool for deter-
mining nonequilibrium thermodynamics specifically for the
gate. The DR is effectively separated away from the gate,
much like how in equilibrium thermodynamics, the thermal
reservoir (heat bath) is mathematically separated away from
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the system of interest to produce the Helmholtz free energy
of that system. With the traditional heat bath the only process
that matters for the system of interest is the transfer of
thermal energy with the bath. Transferring thermal energy will
increase the entropy of one of either that system or the bath,
at the expense of the other; there is then one energy value
that maximizes the total entropy. The rate at which the bath
increases entropy with energy is described in a simple manner
by one parameter, β = 1/kBT .

Here, at a fixed XDR, adjusting b will increase one of σDR or
σGT at the expense of the other (while the gate is stationary).
One particular value bss will maximize 1. From Eq. (30), 1

may be rewritten as

1(b) = 1,0 + kBβ1b − 1
2 gGT b2, (31)

where 1,0 = 1
2 LDRX 2

DRτ ∗, β1 = γ X 2
DRτ ∗/kB, and with fluc-

tuations in XDR ignored. The rate at which the DR increases
entropy production with b is described by one parameter,
β1. Theoretically, β1 for the DR is analogous to β for the
heat bath, or the chemical potential μ for a particle bath.
Since β1 vanishes when XDR = 0 it is not surprising that
this parameter was not discovered during investigations of
equilibrium thermodynamics. Because of the similarities with
how the Helmholtz free energy is formulated to account
for interactions of a system with a heat bath, the term free
entropy is apt for 1. One thinks then of some amount of
entropy as being available in some sense; in particular the gate
(dynamically) lends entropy to the dynamical reservoir.

2. Second order

In terms of �b2, the thermodynamic potential 2 ≡ τ ∗
μ

�2

becomes

2(u) = 2,0 + kBβ2u − gGT

8Q2〈b2〉0
u2, (32)

where 2,0 = LDRX 2
DRτ ∗/μ + 1

2 gGT z2〈b2〉0, and β2 =
gGT h+/2kB. This free entropy function is maximized both
above and below critical when u = uss, and the second
derivative at u = uss is always negative. Near the maxima,
well above critical, the dependence for 2 near b = ±bss

goes as −gGT z2(b ± bss)2 which is on the same order as the
dependence of SGT − SGT,ss = − 1

2 gGT b2 at equilibrium. Well
below critical, terms in 2 that go as u disappear, so the
potential flattens out, and the induction essentially disappears.
Also,

lim
XDR→0

2(u) = 0 − 1
2 g4u2, (33)

where 0 = LDRX 2
c τ ∗.

Given the definition of the second-order variable u, with
inspection of Eq. (20), the best expression for describing small
changes from equilibrium of the gate entropy, up to second
order, is

�SGT = SGT − SGT,eq = − 1
2 g2b2 − 1

2 g4u2. (34)

Equation (34) allows for the connection of the first- and
second-order potentials, simply by adding 1 and 2. This
is consistent with the z = 0 limit:

lim
XDR→0

[1(b) + 2(u)] = 0 + SGT − SGT,eq. (35)

3. Combining up to second order

Establishment of both 1 and 2 places the PMEP on a
solid footing for a great many physical systems; for those
thermodynamic systems where the gate symmetry is already
broken in equilibrium, one would use and maximize 1, and
for systems where symmetry in thermodynamic equilibrium
is not broken, 2 is the potential chosen to be maximized.
If one forms a potential function  ≡ 1(〈b〉) + 2(�b2) as
the sum of first- and second-order potentials then one must
consider the free entropy  as a function of two variables, the
mean, and the dispersion of b and maximize with respect to
each variable separately. In practice, one may very well use
only one of the 1 and 2 potentials in a given problem. This
usage would be determined by symmetry considerations.

Since  is a linear combination of �1 and �2, it satisfies
the stationary state PMEP with regard to both b and u. This
alone is a key result and allows for the formulation of vari-
ational principles when order parameter fields are discussed
below. The specific linear combination that I have chosen
will connect nicely to the traditional entropy when the DR
is in equilibrium. Equation (35) shows that apart from the
constant term 0, 1 + 2 approaches SGT − SGT,eq as XDR

approaches zero. Thus the quantity SGT,eq +  − 0 is the
gate entropy at or near equilibrium and would be maximized
according to equilibrium thermodynamics. Well away from
equilibrium, I have found that SGT,eq +  is also maximized,
not by the equilibrium state, but by the stationary state. Of
course, the stationary state becomes the equilibrium state as
XDR is turned down to zero. Thus, the potential

SNE ≡ SGT,eq +  − 0 (36)

differs from  by only constants and makes a seamless
transition to the entropy as XDR goes to zero, i.e.,

lim
XDR→0

SNE = SGT . (37)

The potential SNE is not the entropy; the standard entropy
function provides an incomplete description well away from
equilibrium. The potential SNE is what the relevant thermo-
dynamic potential becomes when the DR is well away from
equilibrium, and SNE can be thought of as the generalized
entropy.

Equivalently, one may define the excess entropy, � ≡  −
0 + 1

2 g2b2 + 1
2 g4u2, which leaves the generalized entropy

expressed as

SNE ≡ SGT + �. (38)

This bookkeeping allows one to identify � as something com-
pletely outside of the realm of equilibrium thermodynamics,
i.e., � = 0 when XDR = 0, even if some other agent pushes b
away from zero. Explicitly then,

�(b, u) = �0 + kBβ1b + kBβ2u, (39)

where �0 = LDRX 2
DRτ ∗( 1

2 + 1
μ

− 1
z2 ) + 1

2 gGT z2〈b2〉0. Since
each term in Eq. (39) contains a factor of τ ∗, � is essentially
an entropy created during the time span of a scattering event
so it may be referred to as a dynamical entropy. The term
rheological entropy may also be apt. It is also important to
note the additive nature of Eq. (38); this is not a trivial result,
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as there are many ways to mathematically extend S to the
nonequilibrium realm (S being a short form for SGT ).

At this point it is helpful to summarize physical laws as
a three-tier structure: (1) standard mechanics, both classical
and quantum, taking place at zero temperature where S = 0
(assuming no degeneracy in the ground state) and � = 0;
(2) equilibrium thermodynamics where the temperature is
raised above zero, S 
= 0, and � = 0; and (3) nonequilibrium
thermodynamics where XDR is adjusted from zero, S 
= 0, and
� 
= 0. In tier 1, the guiding principle is finding extrema in
the Lagrangian. In tier 2, the guiding principle is maximizing
S, and in tier 3, the guiding principle is maximizing SNE .

This three-tier structure bears a strong resemblance to the
laws of thermodynamics, especially how maximizing a gener-
alized entropy SNE is so similar to the SLT, i.e., maximizing
entropy in equilibrium thermodynamics. Also, having � = 0
when XDR = 0 bears strong resemblance to having S = 0
when T = 0. These results are compelling and lead to the
following principles for governing nonequilibrium systems:

Nonequilibrium principle 1. The generalized entropy for
the gate is additive: SNE = S + �.

Nonequilibrium principle 2. SNE is maximized when the
gate is in a stationary state.

Nonequilibrium principle 3. � = 0 when the DR is in
equilibrium.

It is important to point out that the gate is not the entire
system. For the entire system the guiding principle is still the
SLT; i.e., the system always evolves so that ST is eventually
maximized. What these three principles do is describe key
aspects of the dynamics as the entire system evolves toward
equilibrium. If these principles are in time to become es-
tablished as laws there must always exist a function � that
satisfies these three laws, no matter how complicated the
system. This function exists and the three laws work for a
pitchfork bifurcation. The question remains about whether
they also apply to more complicated instabilities, e.g., Hopf
and Takens-Bogdanov bifurcations [11,12].

It also remains to be seen whether these results apply
to systems that are not purely dissipative, i.e., systems that
have inertial degrees of freedom as well as damping. Some
discussion of the physical significance of the variable b in
Eqs. (9) and (19) is warranted. If b is a mechanical vari-
able then under certain circumstances the dynamics can be
purely dissipative, for example the LR circuit and mechanical
equivalent, an otherwise free particle with damping. If a small
spring constant is added, the system is highly overdamped
and is still well approximated by purely dissipative dynamics.
However, when the damped harmonic oscillator becomes
underdamped, it becomes difficult to define a stationary state
in the pure sense (ḃ = 0) because of the natural oscillations. In
this case the dynamics described in Eq. (19) would be for the
envelope of b(t ). This approach is quite effective for the highly
underdamped case where the oscillation period is much less
than the relaxation time. This, essentially, is coarse-graining
in time, and it is understood that some detailed information
about the system is filtered out of the dynamical equations.

A fundamental assumption for thermodynamic variables
is that they provide an incomplete description. Describing a
macroscopic system with only several variables means that
there are many distinct microstates corresponding to a given

thermodynamic state, in this case for a given value of b. It
is reasonable then that after coarse-graining, the dynamics
of thermodynamic variables would be purely dissipative even
when the dynamics for internal microscopic dynamics is not.
Stationary states would then always be achievable and the
principle of maximizing SNE will always be valid.

Given the paucity of general thermodynamic results in
the nonequilibrium realm [13], I anticipate these laws as
building on the Onsager symmetry relations to constitute the
current extent of such general knowledge. Indeed the Onsager
symmetry relations might be referred to as the initial (or
perhaps zeroth) law of nonequilibrium thermodynamics.

E. Nonequilibrium Le Chatelier’s principle

In this section I establish a nonequilibrium version of Le
Chatelier’s principle, for the case of second-order TI. For
TI1 this principle has already been established [1] and this
treatment follows my previous one closely.

If the DR is pushed away from equilibrium, while the gate
is held fixed in its equilibrium state, then the total rate of
entropy production σT coincides with σDR|{XGT =0} = LDRX 2

DR.
The question then is in determining how this rate compares
with that when the gate is allowed to relax. If the gate is
released at t = 0 then right after t = 0, as u grows from zero,
the gate would appear to violate the SLT if an observer were
unaware of the DR, since σGT = −g4uu̇. By Eq. (27),

σGT = −g4u
[
4αLGT τ ∗(X 2

DR − X 2
c

)
u

+ 4αLGT τ ∗X 2
DR〈b2〉0 − 4c2u2

]
. (40)

As u = 0 at t = 0, for small t , u = 4αLGT τ ∗X 2
DR〈b2〉0t to

leading order, and σGT = − τ ∗
τGT Q2 αX 2

DRu. In the meantime

σDR = LDRX 2
DR + αX 2

DRu and the net rate is σT = LDRX 2
DR +

αX 2
DRu(1 − τ ∗

τGT Q2 ). The relaxation time τGT is always larger
than τ ∗ which is typically the fastest timescale in the analysis.
Also, Q � 1 typically, so there is no risk of σT being negative
for short times. Indeed, the relaxation of the gate increases σT .

For longer times, u2 becomes significant, but only if z � 1.
The rate σGT increases for some time before it eventually
decreases and falls to zero when the gate becomes stationary.
The maximum for σGT occurs at umax = 2〈b2〉0(z2 − 1) at
which σGT = −(τ ∗/τGT )αX 2

DRumax[(z − 1/z)2 + 1/Q2]. Q is
normally much greater than unity and σGT does not overcome
the αX 2

DRu term in σDR, unless z2 is very large, i.e., on the
order of τGT /τ ∗. Achieving z values of 1 or 2 is not easy in
real systems, and making z2 on the order of τGT /τ ∗ could
lead to catastrophic conditions for real systems. Also, even
if z2 could get this large there is still the LDRX 2

DR term (from
σDR) to overcome, making violation of the SLT unlikely.
Nevertheless it is interesting to note that under conditions with
very large XDR there is a possibility of briefly violating the SLT
when the gate is a very small system with a relaxation time
approaching τ ∗.

For even later times, the gate settles into its stationary
state where σGT = 0 and the positive definite nature of σDR

guarantees that the total entropy always increases. More care-
ful inspection reveals an even stronger result: If σDR|{XGT =0}
is the total entropy production with the gate at equilibrium,
and σDR|{JGT =0} is the total entropy production with the gate
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stationary (so the flux JGT = ḃ is zero), then one always has
the condition

σDR|{JGT =0} � σDR|{XGT =0}
(2nd-order nonequilibrium Le Chatelier’s principle). (41)

The same result was previously established for TI1 [1].
Similarly to TI1, the physical meaning of this result is

that the DR produces entropy faster when the gate variable
is allowed to relax by bifurcating away from equilibrium and
becoming stationary. This result constitutes a nonequilibrium
version of Le Chatelier’s principle. In the traditional Le
Chatelier’s principle, when a given thermodynamic variable
is pushed away from equilibrium, other thermodynamic vari-
ables relax to new equilibrium values, so that the total entropy
is again maximized, and the new relaxed entropy is always
greater than the unrelaxed entropy [14]. Here, when the DR
variable is pushed away from equilibrium, the gate variable
will temporarily move away from equilibrium to stationary
states, and the new rate of entropy production is always
greater. The actual difference is

σDR|{JGT =0} − σDR|{XGT =0} = τ ∗LGT

c2
α2X 4

DR

(
h+
z2

)
. (42)

The right-hand side of Eq. (42) is always positive definite.
Since the entropy production rate σGT of the gate is zero
when the gate is stationary, the nonequilibrium Le Chatelier’s
principle also applies to the total rate of entropy production,
σT = σDR + σGT ; then the principle works also for σT , i.e.,
σT |{JGT =0} � σT |{XGT =0}. In fact, the principle will work for
any quantity formed by the sum of σDR and any multiple of
σGT . The induction effect always causes the DR to approach
equilibrium faster, thus leading to the conclusion that the gate
will always facilitate the DR’s approach to equilibrium.

F. Entropic-coupling problem

In the second-order facilitation of the approach to equilib-
rium, the gate will be shifted away from its own thermody-
namic equilibrium, and if XDR is large enough compared to
Xc, the disruption of the gate equilibrium may be detected.
The stationary state result Eq. (28) suggests that for TI2 the
gate entropy change from equilibrium is given by

�SGT,ss = − 1
2 kBQ2h2

+ < 0. (43)

For consistency this does coincide at large z2 with the infinite-
Q result using the scheme gGT = g2 + g4b2. This change is
important regarding the entropic-coupling problem, which
will be further discussed in Sec. II F. One verifies that the
entropy is continuous through the transition at z = 1 and
therefore the physics described here is similar to that of a
second-order (equilibrium) PT. Equation (43) provides a sort
of budget that is available for forming patterned structures in
the gate.

Equation (43), along with the corresponding first-order
result discussed in Ref. [1] and the nonequilibrium Le Chate-
lier’s principle, up to second order, solves the entropic-
coupling problem. The gate can achieve a state that may
be considered to be patterned, or self-organized or self-
assembled, by having its entropy lowered relative to its

equilibrium, and during the entire time of this self-assembly,
the SLT is never violated. The result holds for both TI1 and for
TI2, both below and above the critical bifurcation point. The
DR plays a key role as that system which always increases its
entropy by at least as much as the decrease in the entropy of
the gate. I stress the dynamical nature; if the DR returns to
equilibrium, the entropy budget �SGT,ss goes to zero.

This type of coupling between the DR and the gate is
unconventional. Ordinarily one couples two systems mechan-
ically via a potential energy term. When the potential energy
depends on variables from the two systems then the dynamical
differential equations become coupled. Here, the physics is
purely dissipative and potential and kinetic energies do not
play a role. Instead, it is the entropy production that depends
on both DR and gate variables, and produces the interesting
couplings in the dynamics. More specifically, the ultimate
source of the coupling is that the DR conductance coefficient
MDR depends on the gate variable. One can say that the
conductance becomes paramount in nonequilibrium systems,
playing a role similar to the potential energy in equilibrium
systems.

I will resume discussion on this problem below in
Sec. III H.

G. Nonequilibrium canonical distribution

For (isolated) systems in equilibrium, all accessible mi-
crostates receive equal statistical weight, according to the
postulate of equal a priori probabilities [7,15]. In this section I
show how this changes in nonequilibrium and I derive revised
weighting functions.

The thermodynamic potentials 1 and 2 may be used
to calculate nonequilibrium partition functions for the gate
specifically. These would be multiplied by the regular equi-
librium partition functions to provide the full picture. I define
the first-order partition function as

Z1,noneq ≡ c′
∫ ∞

−∞
e1(b)/kB db, (44)

where c′ is a constant to be determined below. Using Eq. (31)
the integral is easily evaluated as

Z1,noneq = c′ e1,0/kB

√
2πkB

gGT
ekBβ2

1 /2gGT . (45)

The same result for Z1,noneq can be found by focusing on
microstates of the gate and it is instructive to do this analysis.
The variable b represents a macrostate to which there are
�GT (b) gate microstates all corresponding to the same b. The
probability of the gate having value b is proportional to the
total multiplicity: �T = �DR�GT (b). The assumption is that
all microstates for the entire system are accessed equally. The
DR multiplicity �DR does not depend directly on b, but its rate
of change does because the Onsager coefficient MDR depends
on b. The way to physically interpret  is to not evaluate
�DR at time t but rather at t + τ ∗/2, i.e., to reach forward in
time the time required for a scattering event. This means using
not �DR but �DR exp (σDRτ ∗/2kB) when attempting to derive
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a probability distribution. The probability of the gate having
value b is proportional to exp [1(b)/kB]. Noting that

�GT (b) = �GT,eq exp (−gGT b2/2kB), (46)

which is independent of any TI effects, and inspecting
Eq. (31), the probability of the gate having value b is found
to be proportional to exp (β1b)�GT (b).

In equilibrium, the probability of any particular gate mi-
crostate being occupied is equal to any other. Away from
equilibrium, this is not the case; For each gate microstate i,
with corresponding bi, the probability of occupancy is the
nonequilibrium canonical distribution,

P1,i = c1eβ1bi . (47)

The normalization constant c1 is evaluated in the standard
manner, invoking a partition function:

c−1
1 = Z1,noneq =

∑
i

eβ1bi =
∫ ∞

−∞
db eβ1bi�GT (b). (48)

Inserting �GT (b) from Eq. (46) into Eq. (48) allows the
integral to be evaluated, leading to

Z1,noneq = �GT,eq

√
2πkB/gGT exp

(
kBβ2

1

/
2gGT

)
. (49)

After comparing to Eq. (45), one identifies the constant c′ =
�GT,eqe−1,0/kB .

From Eq. (49) one readily verifies that 〈b〉 =
∂ ln Z1,noneq/∂β1, which equals the expected value bss.
Also 〈(�b)2〉 = ∂2 ln Z1,noneq/∂β2

1 = kB/gGT . From Eq. (48)
one notes that to a good approximation,

kB ln Z1,noneq = SGT,eq + kBβ1〈b〉 − gGT 〈b〉2/2, (50)

which can be expressed as kB ln Z1,noneq = SGT + kBβ1〈b〉.
Using Eq. (32), the second-order partition function is then

Z2,noneq ≡
∫ ∞

−∞
e2(u)/kB du

= e2,0/kB

√
8πQ2〈b2〉0

gGT
exp

(
2kBQ2〈b2〉0β

2
2

gGT

)
. (51)

To a good approximation, Z2,noneq ≈ e2(〈u〉)/kB .
In order to obtain the probability distribution for gate

states, i, with values ui, one notes that the multiplicity function
for the gate is a function of both b and u: �GT (b, u) =
�GT,eq exp (−g2b2/2kB − g4u2/2kB). Proceeding similarly to
the first-order case then gives

P2,i = 1

Z2,noneq
eβ2ui . (52)

For z � 1 this probability distribution is flat, coinciding with
equilibrium expectations. Near and above the critical point
at z = 1 the situation changes and larger values of �b2

are favored, leading to the bifurcation. Combining first- and
second-order for a total nonequilibrium partition function
gives Znoneq = Z1,noneqZ2,noneq = �GT exp(β1〈b〉 + β2〈u〉).

In equilibrium thermodynamics the partition function is
simply related to the Helmholtz free energy. The analysis
presented so far in this section leads naturally to the definition
of a generalized free energy as

F ≡ F − kBT β1〈b〉 − kBT β2〈u〉, (53)

where F = U − T S is the Helmholtz free energy, with U
and S being understood as the internal energy and entropy,
respectively, of that part of the gate that is removed from
the heat bath. Equation (39) can be used to express this
generalized free energy as F = F − T (� − �0). There is a
great deal of physics built into the function F which has
a general, all-encompassing quality, with application to all
scientific problems. The internal energy U accounts for the
mechanics of interparticle interactions, the entropy S uses the
state-counting multiplicity function, often using combinato-
rial methods, and finally � keeps track of the nonequilibrium
fluxes from thermodynamic forces, including TI.

H. Nonequilibrium phase transitions

Well away from equilibrium, U may not have interesting
behavior as XDR changes, even through a nonequilibrium PT.
The internal energy may provide minor corrections, but the
key elements of the PT are determined by �, not U . The
nonequilibrium PT is clearly distinct from equilibrium PTs
at which a free energy F is minimized. While it is true that
at the critical temperature for an equilibrium PT there may
be large fluctuations with a nonequilibrium character, this is
qualitatively very different from a nonequilibrium PT. In a
nonequilibrium PT, a thermodynamic variable is pushed well
away from equilibrium, where F is nowhere near its min-
imum value and fluctuations from equilibrium would reach
only extremely rarely. When this variable reaches its critical
value, the thermodynamic potential  is maximized (and F
is minimized). In the above analysis, energetic considerations
play no significant role and the free energy F would display
no interesting behavior at the transition.

I also make a note on terminology; since the nonequilib-
rium PT occurs at the bifurcation point and the bifurcation
can now be described thermodynamically, then in the context
of the thermodynamics of dissipative systems, bifurcation and
nonequilibrium PT are interchangeable terms.

It is instructive to compare nonequilibrium PTs to the
second-order PTs of equilibrium thermodynamics. Second-
order PTs are well described by minimizing the (Helmholtz)
free energy function of Landau, FL = F0 + ξ1b2 + ξ2b4, with
the transition occurring at ξ1 = 0 as ξ1 varies with an external
parameter such as temperature. Below (above) critical, ξ1 > 0
(ξ1 < 0), and FL resembles a parabola (sombrero). For the
nonequilibrium PT well above critical, F will resemble the
sombrero function because of the form of �2 in Eq. (22). With
γ = 0 (TI2 only), �1 gives the desired parabolic appearance
for F. The similarity ends there though as for the function
�2 to be useful above and below critical it is actually a
function of u, and F is a function of two variables, 〈b〉 and
u. Unlike the equilibrium case, one must minimize F with
respect to two variables. The simple graphical pedagogy used
for Landau theory with a varying ξ1 does not work so easily
in the nonequilibrium case.

These nonequilibrium PTs occur when a balance between
(gate) entropy and TI is achieved. In contrast, equilibrium PTs
occur when a balance is created between entropy and energy.
Without the energetics, the analysis is of course very different.
Very close to an equilibrium PT it is known that many higher-
order terms in the perturbative analysis are required which
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creates a challenging problem [16]. While it may be true
that a more accurate description of nonequilibrium PTs would
require expanding exp(�S/kB) to higher than first order, this
analysis would differ from the energetic approach that would
be described in terms of particle-particle interactions.

Finally, I point out that a second class of nonequilibrium
PTs is possible, where a balance is achieved between energy
and induction only. As a possible example, consider a percola-
tion network [17] that is nonconductive at or near equilibrium,
but which becomes conductive well away from equilibrium
when the applied bias XDR reaches a certain threshold. The in-
duced changes in the network that make it conductive may be
subtle and purely mechanical. This indeed may be behind the
type of nonequilibrium PTs reported as directed percolation
[18].

I. Auxiliary potential for TI2

The thermodynamic potentials �2(u) and 2(u) were de-
vised after the dynamics for u was established in Eq. (27). It
turns out that proceeding in the other direction has a complica-
tion that needs explanation; simply differentiating one of the
potentials with respect to u does not give Eq. (27). Instead an
auxiliary potential is also required. Before doing so it is con-
venient to define h−(x) = x − 1 −

√
(x − 1)2 + x/Q2, β− =

g2h−/2kB, u+ = 2Q2〈b2〉0h+, and u− = 2Q2〈b2〉0h−. Both u+
and u− are solutions to the quadratic equation formed when
setting du/dt = 0. However, only u+ makes physical sense as
the stationary state. The auxiliary potential − is defined as
− = 2,0 + kBβ−u − gGT

8Q2〈b2〉0
u2. Creating − poses no extra

difficulties after 2 is created. Toward obtaining du/dt from
potentials, note that ∂−/∂u = − g2

4Q2〈b2〉0
(u − u−), which is

positive definite for the range of physically allowable u. Using
both potentials gives the dynamics as

du

dt
= − 2L2

GT

c2(τ ∗)2

(
∂−
∂u

)(
∂2

∂u

)
. (54)

In contrast, an auxiliary potential is not required in the
infinite-Q approach where the dynamics for b comes directly
from 2,∞Q ≡ τ ∗(1 − z−2)�2,∞Q and

db

dt
= LGT

2

(
∂2,∞Q

∂b

)
. (55)

J. Nonequilibrium free energy functional

The above results are easily transferable to the treatment
of order parameter fields, where b(t ) is replaced by φ(r, t ),
which varies spatially. For TI1, one uses the variable 〈φ(r, t )〉.
For example, for the first-order free entropy potential, one
uses 1(〈φ(r, t )〉), which gets abbreviated for convenience to
1(φ(r, t )). For second order, the variable to use is ψ (r, t ) ≡
〈φ2(r, t )〉 − 〈φ2(r)〉0, and the TI2 free entropy potential is
2(ψ (r, t )).

The nonequilibrium free entropy is written as a functional
of two functions φ and ψ as [φ(r, t ), ψ (r, t )] =∫

d3rf [φ(r, t ), ψ (r, t )] with free entropy density
f (φ(r, t ), ψ (r, t )). For the special case where γ = 0 and

〈b〉 = 0, a prototype form of

fp = f0 − kBT β2ψ (r, t ) + T gGT

8Q2〈b2〉0
ψ2(r, t ) (56)

borrowed from Eq. (32) will work.
For TI2 in the infinite-Q scheme, the φ field is used with

2,∞Q[φ(r, t )] = ∫
d3rf2,∞Q[φ(r, t )], where

f2,∞Q[φ(r, t )]=LDR
(
X 2

DR − X 2
c

)
τ ∗+g2(z2 − 1)φ2 − 1

2 g4φ
4.

(57)

Modifying Eq. (55) for a functional derivative gives the dy-
namics for the order parameter in this scheme as

∂φ

∂t
= (z2 − 1)

τGT
φ − 1

4Q2〈φ2〉0τGT
φ3. (58)

Equation (58) resembles the SH equation. The SH equa-
tion is an important tool for researchers of nonequilibrium
systems and has, for example, been successfully utilized
to model patterns formed in laminar flame fronts, certain
types of Poiseuille flow, trapped ion modes in plasmas, and
systems with Eckhaus instabilities such as Rayleigh-Bénard
convection [4–6,19–22]. The most important feature of the
SH equation is a tunable parameter r which can produce a
negative relaxation rate, and instability, at r = 1 in

∂φ

∂t
= (r − 1)φ − 2∇2φ − ∇4φ − φ3 (SH equation).

(59)

In Eq. (58) the first term on the right-hand side is the vital
component in the SH equation, with XDR being the tunable
parameter. A nonequilibrium PT occurs when X 2

DR exceeds
X 2

c , or equivalently, r > 1.
The key differences between Eq. (58) and the SH equation

are the derivative terms, in particular a type of negative
diffusion term, −2∇2φ. Dealing with such terms requires an
analysis for more than one gate variable which is the topic of
Sec. III. Before doing so, one can add some simple physics for
the order parameter as either diffusion or as a surface tension
(or interface energy) term to modify Eq. (58) to

∂φ

∂t
= (z2 − 1)

τGT
φ + D∇2φ − 1

4Q2〈φ2〉0τGT
φ3. (60)

The form of Eq. (60) is identical to the Langevin model A
equation (without noise), under the Hohenberg-Halperin clas-
sification scheme used to describe the (nonconserved) order
parameter critical dynamics, including quench dynamics, near
an equilibrium PT [6]. This comparison works right down
to the term z2 − 1 playing the role of T − Tc, and changing
sign at the critical point. I point out that the physics of this
comparison is unclear, as far as whether or not TI2 would play
any role near an equilibrium PT. At the very least, the TI2
approach presented here could play a useful role in modeling
quench dynamics near equilibrium PTs. Using ψ instead of φ

will account for fluctuations in the order parameter field. The
following adaptation of Eq. (27) (plus adding in diffusion),

∂ψ

∂t
= 2

(z2 − 1)

τGT
ψ + 2

z2

τGT
〈b2〉0 + Du∇2ψ − 2c2ψ2, (61)
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will provide just as good a model for describing quenching
as the Langevin model A equation. Near the critical point ψ

becomes large and thus describes well the fluctuations that
would be created by adding in a noise term to the Langevin
model A.

III. CASE OF MORE THAN ONE GATE VARIABLE

Many of the results presented in Sec. II are easily trans-
ferable to the case of more than one gate variable. For the
case where there are N identical copies of the gate system
considered in Sec. II, each gate would have the same values
of α, Xc, and Q. Having more gate systems has the obvious
advantage of boosting the entropy budget available for creat-
ing patterns. The expression in Eq. (43) is multiplied by N ;
in particular at criticality (z = 1), �SGT,ss = −2NQkB. If one
is interested in patterns being used to store information, then
this entropy budget is sufficient to store up to 2NQ/ ln 2 bits
of information. How the storing of this information occurs
is not a trivial matter and will depend on the pattern quality
which involves characteristics such as the long-range order. If
q physically represents a wave vector then all length scales
will be excited with equal weight. If all modes are excited
equally then long-range order is not expected and clear pat-
terns are unlikely to form. This analysis is carried out below
in Sec. III F. Thus, pattern formation requires α to depend
on q.

When variables α, gGT , and c depend on q, the bifurcation
point Xc depends on q with a relationship I call the dispersion
relation. Equation (17) becomes

Xc,q =
√

gq

2αqτ ∗ . (62)

Since the parameters gq and αq must always remain positive it
is natural to define the excitation gap, Xeg, as the minimum
value of Xc,q. As one ramps up XDR from zero there will
be an interval, this excitation gap, over which little happens
before XDR reaches the first of a set of discrete levels at
Xc,q, each one creating a transition at a given mode q that
makes bq nonzero. This is analogous to quantum transitions
in molecular systems when the excitation energy matches or
exceeds the energy gap between highest occupied and lowest
unoccupied molecular orbitals, or in solid state insulators
where energy levels coalesce to form bands, and the exci-
tation energy meets or exceeds the band gap energy. This
point of view is in the infinite-Q limit. For finite Q, there
will be enhanced fluctuations as XDR approaches the gap. In
either case, when the excitation gap is surmounted one might
expect some type of pattern to form in the system with a
Fourier transform peaked around qeg. This patterned system
could also be referred to as a self-assembled or self-organized
structure.

The potentials �1, �2,Q∞, and �2 are straightforward to
generate from Eqs. (10), (22), and (29):

�1 = LDRX 2
DR +

∑
q

[
X 2

DRγqbq − λ1,q
(−gqγqLqτ

∗X 2
DRbq + Lqg2

qb2
q

)]
, (63)

�2,∞Q = LDRX 2
DR +

∑
q

{
X 2

DRαqb2
q − λQ∞,q

[−2αq
(
X 2

DR − X 2
c,q

)
Lqgqτ

∗b2
q + c2

qgqb4
q

]}
, (64)

�2(u) = LDRX 2
DR +

∑
q

{
gqμ

2τ ∗

[
z2

q

〈
b2

q

〉
0 + uqh+

(
z2

q

) − u2
q

4Q2
q

〈
b2

q

〉
0

]}
, (65)

where λ1,q = τq/τ
∗, λQ∞,q = τqX 2

DR/2τ ∗(X 2
DR − X 2

c,q ), and
z2

q = X 2
DR/X 2

c,q. When constructing the free entropy potentials
it is best to first drop the LDRX 2

DR terms in the � potentials
and then divide each term by the required factors including
the Lagrange multipliers. Dropping the LDRX 2

DR terms makes
no difference in equilibrium and also when differentiating by
any variables bq and uq. This construction yields

1 =
∑

q

[
kBβ1,qbq − 1

2
gqb2

q

]
, (66)

2,∞Q =
∑

q

[(
z2

q − 1
)
gqb2

q − 1

2
g4,qb4

q

]
, (67)

and

2 = 1

2

∑
q

[
gqz2

q

〈
b2

q

〉
0 + gquqh+

(
z2

q

) − g4,qu2
q

]
. (68)

As discussed below, these q sums may or may not include
q = 0, depending on the physical details of the DR. Replacing
h+ with h− in Eq. (68) gives the auxiliary potential − from
which one may derive the dynamics for each uq, following

Eq. (54):

duq

dt
= − 2

(cgqτqτ ∗)2

(
∂−
∂uq

)(
∂2

∂uq

)
. (69)

Equation (69) accounts for fluctuations of many modes q near
a PT, and represents the most complete description to date of
nonequilibrium dynamics in a system that breaks symmetry at
a nonequilibrium PT.

From 1 and 2, one constructs  = 1 + 2, SNE and F,
which obey general extremum principles by stationary states
(one for each q).

A. Case where αq = α0 + α2q2 + α4q4

I now show that the SH equation can be derived from first
principles via the infinite-Q approach inside of TI2, if the
induction parameter αq has the following small-q expansion
up to fourth order:

αq = α0 + α2q2 + α4q4. (70)
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The starting point is the linearized (unconstrained) Eq. (16)
modified for each mode q:

ḃq = z2
0 − 1

τGT
bq + DT I q

2bq + d4q4bq, (71)

where z2
0 = 2τ ∗X 2

DRα0/gGT , DT I = 2LGT τ ∗X 2
DRα2, and d4 =

2LGT τ ∗X 2
DRα4. As the bq are Fourier components of φ(r) then

the Fourier transform of Eq. (71) gives the desired result after
diffusion with coefficient D is taken into account, and the
cubic cutoff term is returned:

∂φ

∂t
= z2

0 − 1

τGT
φ + (D − DT I )∇2φ + d4∇4φ

− 1

4Q2〈φ2〉0τGT
φ3. (72)

With negative d4, Eq. (72) is the SH equation, Eq. (59).
The induction parameter DT I acts like a negative diffusion
coefficient. This means that instabilities can be created by
making XDR large enough and this can lead to either a neg-
ative effective relaxation rate, a negative effective diffusion
coefficient, or both. This has been shown to produce patterns
in simulations [5]. When returning to Fourier components, the
condition for instability is

z2
0 − 1

τGT
− (D − DT I )q2 + d4q4 > 0. (73)

Solving for XDR at the instability threshold gives the nonequi-
librium dispersion relation:

XDR(q) = Xc0

√
1 + τGT Dq2

αq/α0
. (74)

The dynamics for the SH equation can be obtained from a free
entropy functional as

∂φ

∂t
= 1

2

δ

δφ

∫
d3r

[
z2

0 − 1

τGT
φ2 − (D − DT I )(∇φ)2

+ d4(∇2φ)2 − 1

4Q2〈φ2〉0τGT
φ4

]
. (75)

For the case of dissipative systems, any phenomenon
successfully modeled with the SH equation is also success-
fully modeled by TI2. When D − DT I < 0, the SH model
on its own violates the SLT, but under TI2 the solution to
the entropic-coupling problem applies and the SLT is never
violated.

When dealing with fluctuations, Eq. (27) may be modified
to

1

2

duq

dt
=

(
z2

0

τGT
+ DT I q

2 + d4q4

)
(uq + 〈b2〉0)

− uq

τGT
− Dq2u − c2u2

q. (76)

A real-space version can be produced as

1

2

∂ψ

∂t
=

[
z2

0

τGT
ψ + (D − DT I )∇2ψ + d4∇4ψ

]
× [ψ + 〈b2〉0δ(r)] − c2ψ2. (77)

Equations (76) and (77) would describe the finite-Q broad-
ened resonant transition as XDR is varied above the excitation
gap. Near the gap fluctuations are large and these equations
should be useful in modeling any nonequilibrium phenom-
ena with large fluctuations. Such systems have been mod-
eled using the Edwards-Wilkinson (EW), Burgers, complex
Ginzberg-Landau, and Kardar-Parisi-Zhang (KPZ) equations,
all of which have noise terms added in artificially [5,6,23].
I believe that the essential physics contained in all of these
models can be arrived at from the basic TI analysis up to
second order, leading to Eqs. (76) and (77). In Eqs. (76) and
(77) noise is incorporated more naturally, with noise levels
varying sensitively with Q and XDR.

The EW and KPZ equations do not have a negative diffu-
sion coefficient or a negative relaxation time so are not models
corresponding to behavior above a nonequilibrium critical
point. They also do not have higher-order quenching terms.
They do, however, possess an external stochastic noise term.
The EW equation is simply the diffusion equation with an
added noise term. Since fluctuations are large near the critical
point, Xeg, the EW equation and Eqs. (76), (77) are well suited
for describing nonequilibrium systems just below, and right
up to, the critical point.

A nonequilibrium PT may be an explanation for the kinetic
roughening transition sometimes observed in film growth and
modeled by the EW and KPZ equations [6,24,25]. A high in-
flux of adsorbates, and thus a large XDR, would be required to
achieve this type of nonequilibrium PT. Above the bifurcation
point, the EW equation is not suitable, whereas Eqs. (76) and
(77) are well suited for this task, as the adjustable reactant flux
in film growth flux is related to XDR.

B. Case of conserved order parameter

In systems with conserved order parameters, direct relax-
ation has little influence and Eq. (72) becomes

∂φ

∂t
= ∇2

[
(D − DT I )φ + d4∇2φ − 1

4Q2〈φ2〉0τGT
φ3

]
. (78)

The extra ∇2 operator arises from the relation ∂φ

∂t = −−→∇ · j

while the current density is given by j = −M
−→∇ μ. The chem-

ical potential μ can be expressed as μ(r, t ) = δF/δφ where

F = 1

2M

∫
d3r

[
(D − DT I )φ2 − d4(∇φ)2

− 1

4Q2〈φ2〉0τGT
φ4

]
. (79)

Mathematically, Eqs. (78) and (79) coincide with the
Langevin B model used to model the interfacial structure
created after quenches through equilibrium PTs. This model
is built from the Landau-Ginzberg-Wilson free energy func-
tional, F LGW. In this case the first coefficient (D − DT I )
changes sign at the transition temperature and the physics
behind this is well understood without invoking TI. Even
though it is tempting to associate XDR with (Tc − T )/T 2

c in the
specific quenching case discussed here, the physical reasoning
for any induction is unclear. As things stand, Eqs. (78) and
(79) should be only thought of as an effective model for PTs
with conserved order parameters. From the modeling point
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of view, Eqs. (76) and (77) may provide better results than
Eq. (79) since they better account for fluctuations.

Returning to fundamental thermodynamics, it is not sur-
prising that the Landau-Ginzberg-Wilson free energy func-
tional F LGW has been used to model nonequilibrium phe-
nomena, given the success of using this functional towards
understanding second-order equilibrium PTs [6]. However the
physical significance of minimizing this functional has never
been established since F LGW is the Helmholtz free energy
and can only be minimized in thermodynamic equilibrium.
The reality is that F LGW has been used because there were
no other options available. Thermodynamic functionals that
have extrema at nonequilibrium PTs must be different, and I
have shown here how these functionals are constructed, with
F being the best substitute for F LGW.

C. Case where the DR is the q = 0 mode

At this point I will emphasize important systems that
approach equilibrium through diffusion, i.e., where the re-
laxation rate 1/τGT is effectively Dq2. In particular I focus
on systems where the complete set of q modes acts as both
DR and gate. The q = 0 mode is the DR and all other wave
vectors are gate states. To make a clear demarcation between
DR and gate, the induction must disappear as q approaches
zero. For this reason I consider only systems with α0 = 0
and I consider specifically the restricted case where α = α2q2.
These results will be applicable to two important physical
examples discussed below in Secs. III D and III E.

The DR dynamics is given by

ḃ0 = LDRXDR + 1

2
α2XDR

∑
q

q2b2
q. (80)

For the variables describing the gate, Eq. (16) becomes

ḃq = 2
α2

g2
Dq4τ ∗X 2

DRbq − Dq2bq − g4

g2
Dq2b3

q. (81)

Equations (80) and (81) are extensively coupled in general
since XDR = −gDRb0. However when the DR is very large
and slow, XDR is considered to be essentially constant in
Eq. (81). There is an issue with Eqs. (80) and (81) having
a discontinuity at q = 0. From Eq. (81) ḃq is very small for
small q, while ḃ0 may in fact be quite large. The best way to
deal with this is to use the well-known procedure of redefining
the real-space variable φ as following the “front” as done in
the formulation of the KPZ equation [6]. To linear order this
is done by adding the spatially uniform term LDRXDRt to φ.
This works well if LDRXDR varies slowly in time and this is
indeed the case when studying short-term front dynamics. One
can refine this by adding the (also spatially uniform) term
1
2α2XDR

∑
q q2b2

q as well, to follow the growth more accu-
rately. Explicitly then the new front-following field is φ′ =
φ − (LDRXDR + 1

2α2XDR
∑

q q2b2
q)t . For this front-following

procedure, a spatial average is implied, so the dynamics for
the bq modes in Eq. (81) is unaffected, while for the primed
variable Eq. (80) for the q = 0 mode becomes a trivial iden-
tity. This procedure will work just as well on systems without
a physical front or interface, for example, when b0 represents
the extent of reaction during a chemical reaction. When taking
the Fourier transform of bq (see below), Eq. (81) does indeed

have ḃq continuously going to zero as q approaches zero.
For further analysis below the prime on φ′ is dropped for
convenience and φ is to be understood as tracking the front.

The appropriate potentials at this level of analysis are the
infinite-Q potentials �2,∞Q and 2,∞Q, each functions of the
set bq. For �2,∞Q(b), Eq. (64) becomes

�2,∞Q = LDRX 2
DR+

∑
q 
=0

{
α2X 2

DRq2b2
q − λq

[−2α2
(
X 2

DR−X 2
c,q

)
× Dq4τ ∗b2

q + g4Dq2b4
q

]}
, (82)

where Xc,q =
√

g2/2α2τ ∗q2, λq = 0 when XDR < Xc,q, and
λq = (1/2Dq2τ ∗)[X 2

DR/(X 2
DR − X 2

c,q )] when XDR � Xc,q. Be-
low the threshold for each q there is no induction in

the infinite-Q limit. Defining qc ≡
√

g2/2α2τ ∗X 2
DR, the sum∑

q 
=0 in Eq. (82) may be replaced by
∑

q>qc
. The correspond-

ing free entropy, from Eq. (67), is

2,∞Q =
∑
q>qc

(
2α2X 2

DRτ ∗q2b2
q − g2b2

q − 1

2
g4b4

q

)
. (83)

If the linearized version of Eq. (81) is Fourier transformed
and an appropriate large-amplitude cutoff is reintroduced then
the following PDE is

∂φ

∂t
= 2

α2

g2
Dτ ∗X 2

DR∇4φ + D∇2φ + g4

g2
D∇2φ3. (84)

A functional defined as

2,∞Q[φ(r, t )] ≡ −
∫

dd r
[

2α2X 2
DRτ ∗(

−→∇ φ)2

+ g2φ
2 + 1

2
g4φ

4

]
(85)

is appropriate for determining nonequilibrium dynamics by
taking one functional derivative with XDR held constant:

∂φ

∂t
= 2g2

D
∇2

(
δ2,∞Q

δφ

)
. (86)

A time-independent function φ(r) that maximizes 2,∞Q will
also be a stationary state. When dealing with fluctuations, one
adapts Eq. (27) to become

duq

dt
= 4

α2

g2
τ ∗(X 2

DR − X 2
c

)
Dq4uq

+ 4
α2

g2
τ ∗X 2

DRDq2〈b2〉0 − 2
g4

g2
Dq2u2

q. (87)

In terms of the real-space fluctuation function ψ (r, t ),

∂ψ

∂t
= 2D∇2

[
2
α2

g2
τ ∗X 2

DR∇2ψ + ψ

+ 2
α2

g2
τ ∗X 2

DR〈b2〉0∇2δ(r) + g4

g2
ψ2

]
. (88)

In this section I have established the first-principles theory
required to treat two important physical examples, discussed
next. In these systems relaxation occurs by diffusion with rate
Dq2, the complete set of q modes acts as both DR and gate,
and there is a sound physical basis for having nonzero α2.
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D. Front propagation

Phase separation is common in nonequilibrium systems
and the interface or front between the two phases will be
expected to move as one phase overtakes the other. These
fronts can form after a quench occurs through an equilibrium
PT. The velocity v of the front, when spatially averaged, will
follow the typical dissipative relation:

v = MDRXDR, (89)

where XDR = −�μ/T and �μ is the chemical potential dif-
ference between the two phases in question. If the mean front
velocity is in the z direction, and χ (y, z) is the local position
of the front, then purely geometric effects arising from the

eikonal factor
√

1 + (
−→∇ χ )2 play an important role in the

dynamics [6,19]. Incorporating this effect into the rate of front
motion results in the following expression for the Onsager
coefficient for each Fourier mode q:

MDR,q = LDR
(
1 + 1

2 q2b2
q

)
, (90)

where the small-amplitude approximation was made, and the
bq are Fourier coefficients of χ . The eikonal factor means that
curvature in the interface will enhance the spatially averaged
dynamics. This enhancement attenuates at long wavelengths.
From the definition of αq the eikonal factor directly results in
TI2 with

αq = 1
2 LDRq2. (91)

Thus, the following structure emerges: (1) the q = 0 mode is
the DR variable, (2) all modes with q 
= 0 are gate modes,
and (3) the DR and gates are distinct in this scheme because
the TI2 effect goes as q2 and gate states near q = 0 are
affected very little. In this system both the DR and gate are
built into the same continuous variable describing the front.
The DR variable is the overall (spatially averaged) position
of the front, which is being driven by the chemical potential
difference between the two competing phases. Equation (80)
represents not only the overall motion of the front but also
the considerable rate at which entropy is being created as one
phase turns into another. It is precisely this rate of entropy
increase that prevents the SLT from being violated if any
patterns were to form in the shape of the front. The gate
variables in this case describe the shape of the propagating
front. As the front propagates, the front will be exchanging
particles with both phases (the particle reservoir) and possibly
heat, with again the phases on both sides of the front. Thus,
it is the shape of the front and all of this exchanging that
is actually the gate, which winds up being almost all of the
system, in this example. Equation (91) represents the entropic
coupling between the DR and the gate modes, q 
= 0.

All of Eqs. (80) through (88) apply to this case with α2 =
1
2 LDR. In particular the DR dynamics is given by Eq. (80)
while in real space the dynamics of the spatially averaged
front position is

dχ̃

dt
= LDRXDR

[
1 + 1

2
˜

(
−→∇ χ )2

]
. (92)

As pointed out in the literature, the front velocity is always
greater when undulations in the front, or interface, are taken

into account [6]. This is an example of the nonequilibrium Le
Chatelier’s principle.

When treating the dynamics for the gate states, the re-
laxation of undulations in the front shape occurs by diffu-
sion only and the relaxation rate is Dq2. When Eq. (81) is
linearized and expressed as ḃq = (DT I − D)bq, where DT I =
LDRDq2τ ∗X 2

DR/g2, the result is a variable effective diffusion
coefficient D − DT I , which can become negative with large
enough XDR, i.e., at XDR = Xc(q) =

√
g2/LDRτ ∗q2. This is the

main result as far as how TI affects front propagation. The
Fourier-transformed linear equation is

∂χ (r)

∂t
= D∇2χ (r) + LDRDτ ∗X 2

DR

g2
∇4χ (r). (93)

Equation (93) is very similar to the linearized Kuramoto-
Sivashinsky (KS) equation, which also has both q2 and q4

terms [6]. It is well known that modeling with the KS equation
can produce instabilities and interesting pattern formation
when the diffusion coefficient is made negative.

The KS equation is another important model in the field of
nonequilibrium systems and has been successfully utilized to
model patterns formed in laminar flame fronts, certain types
of Poiseuille flow, trapped ion modes in plasmas, and systems
with Eckhaus instabilities such as Rayleigh-Bénard convec-
tion [4–6,19–22]. Though the SH equation has been used
widely as a model, no clear explanation has been provided in
the literature for why a diffusion coefficient can be negative.
The TI2 analysis presented here shows precisely how this
negative (effective) diffusion coefficient in the KS equation
can exist.

The essential physics is now in place for understanding
how so many nonequilibrium phenomena may be modeled,
i.e., the possibility of tuning user-controlled parameters such
as XDR to create an effective diffusion coefficient that is nega-
tive, all without violating the SLT. Parameters may be tuned to
produce instabilities and patterns at a certain wave vector, qc.
These features, along with the enhanced front velocity from
Eq. (92), are the key elements of the KS model. The analysis
presented here improves upon the KS equation, as it properly
accounts for an excitation gap, an essential feature, I believe,
for nonequilibrium PTs. Equation (93) can be derived from a
free entropy functional 2,Q∞ in Eq. (85) which is constructed
in the infinite-Q limit. This provides a good example of the
usefulness of the infinite-Q analysis, and also motivates the
finite-Q approach as an improvement which better accounts
for fluctuations.

The analysis presented here is a good example of entropic
coupling; this specific solution to the entropic-coupling prob-
lem shows how real diffusion is overcome by TI to produce a
nonequilibrium PT in such a way as to not violate the SLT.
Any patterns that may form from undulations of the front
have an entropy cost, but while the pattern is forming, the
front as a whole is always moving fast enough to ensure that
the total entropy is always increasing. A similar conclusion is
drawn with the reaction-diffusion system discussed in the next
subsection.

The approach given here can be used to successfully model
undulations of a propagating front separating any two phases
with a large miscibility gap �μ (XDR = −�μ/T ), e.g., fronts
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in laminar flames, liquid-gas PTs, and autocatalytic chemical
reactions. These types of dissipative systems, as well as any
others that can be modeled by TI2, present themselves as
strong evidence for the existence of TI.

E. Turing patterns in chemical systems

In Sec. III D I discussed an example of second-order TI
with a physical interface (front). In more general terms, a
physical interface is not necessary for spontaneous pattern
formation. Turing suggested that a uniform chemical mixture
could, under the right reaction conditions, spontaneously self-
organize and form patterns [5,26]. Nonlinearity is required
in the reaction-diffusion equations; in theory, under the right
conditions a bifurcation in the dynamics could be reached and
the instability would break symmetry to produce patterns.

Recently, Turing patterns have been observed while ob-
serving the chlorite-iodide-malonic acid (CIMA) reaction
and the Belousov-Zhabotinsky (BZ) reaction which involves
bromide and bromous acid [12,27–31]. For example, the
well-studied CIMA reaction is known for producing two-
dimensional patterns possessing clear crystal-like symmetry,
some with hexagonal patterns, others resembling modulated
stripes, as well as mixed states [4,5,12,27,28]. That almost
four decades passed between Turing’s theoretical paper and
the first experimental observations of Turing patterns shows
that in most chemical reactions it is very difficult to produce
XDR values large enough to achieve pattern formation. In
the systems which do show patterns, diffusion coefficients
must be optimized, presumably bringing the bifurcation point
closer to thermodynamic equilibrium and thus making it eas-
ier to access. Clearly these are not transitions that occur near
thermodynamic equilibrium and qualify as nonequilibrium
PTs.

For these interesting reactions a thermodynamic analysis is
warranted. If reaching the threshold for this type of nonequi-
librium PT is challenging then it makes sense to study how
the system will behave both near criticality and just below. I
consider a chemical reaction much simpler than the CIMA and
BZ reactions. A second-order chemical reaction will suffice
to produce the TI effects which will demonstrate the induced
pattern formation, so for the sake of simplicity, the following
reaction is considered:

A + 2B ←→ C. (94)

The volume concentration nB is assumed to be much smaller
than nA, making nB the bottleneck, or gate variable, for the
system; i.e., there is plenty of A but a small amount of B
that limits the reaction. The extensive thermodynamic variable
NA = nAV is identified with the dynamical reservoir (DR), i.e.,
xDR = NA. When driven away from the equilibrium value NA0

by an amount �NA ≡ aDR, the relaxation time for the DR is
very long so that over the gate timescales, relative changes in
NA are always small. The thermodynamic force conjugate to
aDR is

XDR = − A

T
, (95)

expressed in terms of the affinity [8,32]:

A = μA + 2μB − μC . (96)

The DR capacitance coefficient, given by g−1
DR = NA/kB, is

considered very large in this analysis.
The DR dynamics is given in terms of standard chemical

rate theory with the reaction rate v given by

v = RF (1 − e−A/kBT ), (97)

RF = k f nAn2
B, (98)

where RF is the forward reaction rate and k f is the forward
rate constant. For very small affinity Eq. (97) becomes v =
RF A/kBT and the dynamics can ordinarily be expressed in
terms of Eq. (1), with the Onsager coefficient given by

MDR = α0N2
B, (99)

with

α0 = k f nA

V kB
. (100)

In the limit of very small nB the bottleneck effect is severe
as there is so little of component B available. In this case
the reaction can proceed forward more rapidly by having
some regions gaining in component B at the expense of other
nearby regions, i.e., by spontaneously forming undulations
in nB. This type of borrowing and lending of B will be
difficult at long wavelengths but rather easy to accommodate
at microscopic length scales. This motivates a reaction rate
that is proportional to (

−→∇ nB)2 as opposed to simply n2
B. The

coefficient α0 in Eq. (99) is replaced by α0q2/q2
0 where q−1

0
defines a length scale below which the borrowing or lending
becomes significant.

When the concentrations vary spatially, Eq. (99) is modi-
fied by replacing N2

B by the spatial average which is denoted

with a tilde as Ñ2
B . Any patterns that we seek will be expressed

by Fourier expansion of the density function for component B
as

nB = n0 +
∑
q 
=0

nq cos(qr − φq). (101)

Spatial averaging after squaring gives

ñ2
B = n2

0 + 1

2

∑
q 
=0

n2
q. (102)

The gate variables are defined as x0 = n0V , and bq ≡ V nq

with q 
= 0. Comparison of Eq. (12) with Eq. (102) shows that
αq = α0q2/2q2

0 and α2 = α0/2q2
0.

Systems displaying Turing patterns are often referred to
as reaction-diffusion systems because of the important role
played by diffusion [6,33]. When the system relaxes to equi-
librium via diffusion, gq = �μ/�NB = ζμB/nBV , where ζ

is a dimensionless parameter typically close to unity. After
incorporating diffusion as well as second-order TI and the
cutoff term, all the dynamics are well described by Eqs. (80)
through (88). In particular,

ḃq =
(

A2

A2
c,q

− 1

)
Dq2bq − c2

qb3
q. (103)

Similarly to the KS equation the possibility of an effectively
negative diffusion coefficient arises when the affinity is large
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enough in magnitude. The critical condition for the affinity is

|Ac,q| =
√

q2
0gqT 2

q2α0τ ∗
q

. (104)

Thus, in an experiment where concentration levels for A or
C are pushed from equilibrium far enough, the system will
become unstable and Turing pattern formation could occur.
Equation (104) defines the dispersion relation and shows
clearly the existence of a threshold; control parameters such
as reactant concentrations are adjusted until A is away from
equilibrium by a sufficient amount. This is indeed observed
in the reported literature. For example in one report on the
CIMA reaction, a clear threshold at a specific malonic acid
concentration was observed as the system transitioned from
the normal state to a striped pattern [30]. Even though the
CIMA reaction has a good deal more complexity than Eq. (94)
and there exists more than one bifurcation point, the essential
feature of a threshold for a nonequilibrium PT has been estab-
lished. Note that the analysis presented here does not predict
the precise type of patterns that are observed in CIMA and
BZ reactions; these reactions are more complex than Eq. (94).
Reported analysis of the stability equations for the CIMA
reaction have been shown to predict specific patterns [4,6,34].
Fluctuations should play an important role in the specifics
of pattern formation. Indeed, the long-range-order analysis
presented below in Sec. III F shows that pattern formation
could be more robust in lower-dimensional systems. Thus,
with more work, TI2 could explain multiple bifurcation points
and complex phase diagrams.

The dynamics of Eq. (103) can be derived from a free
entropy functional 2,Q∞ in Eq. (85) which is constructed in
the infinite-Q limit, thus providing another application of this
useful functional. It is interesting to go beyond this approach
and include effects of nonequilibrium fluctuations. For exam-
ple, my analysis shows that just below critical there should
be large fluctuations that could be interpreted as chemical
turbulence. It is interesting that the CIMA reaction does in-
deed show a transition between striped patterns and chemical
turbulence under certain conditions [27]. This might be the
result of frustration between hexagons, stripes, and rhombic
patterns, but it might also be the result of thermodynamic
fluctuation just below the instability point. If so then the
dynamics would be described by the following equation for
the fluctuations in bq:

u̇q = 2

(
X 2

DR

X 2
c (q)

− 1

)
uq

τq
+ 2

(
X 2

DR

X 2
c (q)

)〈
b2

q

〉
0

τq

− 2Dq2uq − 2c2
qu2

q. (105)

Large thermodynamic fluctuations below critical might also
explain how for the case of the BZ reaction, reports make
mention of a long-lived and complicated transient state before
a sustained pattern is produced [5,35].

The long-range-order analysis presented below in Sec. III F
shows that nonequilibrium fluctuations may make pattern
formation difficult in 3 dimensions, and likely easier in
2-dimensional systems. Given the typical design of reaction
cells in the literature [12,27,28,30,31,35], as a gel is contained
between two closely spaced plates, it makes sense that pattern

formation may be difficult for q values larger than the inverse
of the plate spacing (typically 0.2 mm for the CIMA reaction
[30]).

It is worth pointing out the similarities between this type
of Turing pattern formation in reaction-diffusion systems
and what occurs in Langevin B systems immediately after
a quench through an equilibrium PT, with initial conditions
being a completely uniform system. Well before formation of
any clear fronts and boundaries between two distinct phases,
density undulations at certain wave vectors would be required
to break symmetry. The equations presented here predict that
these undulations would occur at larger spatial frequencies, at
least for short times. These undulations would after long times
develop into fronts separating phases.

Finally, I note that I have now produced two good examples
with nonequilibrium PTs and in both cases the PTs begin first
at high spatial frequencies for modest XDR. More examples
are needed but this behavior at high spatial frequencies is an
indicator of universal behavior [36]. In these two examples
the dynamics are generally quite slow and inertial effects
are not prominent. Future TI work on faster systems such as
ultrasonic propagation and second sound would require more
development. The recent formulation of extended irreversible
thermodynamics is well suited for studying such fast phenom-
ena [37]. Incorporating the DR into this formulation should
allow for future TI studies of such fast systems.

F. Fluctuations with many modes and long-range order

Any patterns that may be formed near and/or above a
critical point will be determined by a sum over Fourier modes
q, and such patterns would be examples of order by induction.
Some level of long-range order would be required to create
a discernible pattern and any function used to describe long-
range order should also involve a (weighted) summation over
q of plane waves. The dispersion relation Xc(q) will play an
important role in the weighting. For example, if all waves eiqx

are weighted equally then there will be no long-range order
and one would not expect pattern formation. Instead one may
see an increase in fluctuations at all length scales, a result
resembling hydrodynamic turbulence. Such an effect, termed
chemical turbulence, has been observed in reaction-diffusion
systems [28,38]. It may indeed be the case that in systems
exhibiting chemical turbulence, the dispersion relation is very
flat. In contrast, if the dispersion relation has a prominent min-
imum at qmin then one might expect a clear pattern resembling
a standing wave with wave vector qmin. However, fluctuations
may play an important role in disrupting pattern formation.

For equilibrium PTs it is well known that thermal fluc-
tuations can disrupt long-range order. The Mermin-Wagner
theorem dictates that long-range order is lost in one- and two-
dimensional systems because of fluctuations at long wave-
lengths [39,40]. To date the only way around this theorem
is the Kosterlitz-Thouless PT which involves ordering in
topological defects such as magnetic vortices in two dimen-
sions [41]. Many of the observations of pattern formation
in nonequilibrium systems are essentially two-dimensional
systems. These systems may also be interesting exceptions
to the Mermin-Wagner theorem. Indeed it may be easier to
achieve long-range order in one and two dimensions near
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nonequilibrium PTs than it is for equilibrium PTs. For equi-
librium PTs long-range order is determined using the Boltz-
mann factor exp (−H/kBT ) in the statistical weighting. The
Hamiltonian H typically goes as q2 as it does for systems
with spin-spin interactions. The q2 dependence makes the
weighting factor soft for long-wavelength (Goldstone) modes
[10]. In contrast the weighting factor for TI2 is exp [2(u)].
The extent of fluctuations is controlled by the term − 1

2 g4u2

which does not scale as q2 and is not expected to depend on q,
as the entropy cost of an undulation depends on the amplitude
of the undulation, not the slope. Thus the weighting factor for
TI2 remains stiff at large length scales. This means that one
does not expect long-wavelength Goldstone modes to disrupt
long-range order.

For the case where the dispersion relation Xc(q) has a
minimum at finite qmin then for large Q the PT occurs when
XDR is raised up to Xc(qmin), with the expectation of a clear
pattern and long-range order. When XDR is raised slightly
higher, modes with q values over the range from q1 to q2,
where Xc(q1) = XDR and Xc(q2) = XDR, will be excited. These
excitations are the Goldstone modes for this case. Follow-
ing the example for equilibrium PTs, Goldstone modes are
excitations on top of the (nonequilibrium) PT that have a
small cost in 2, or the nonequilibrium free energy, F. If,
for the sake of simplicity, each excited mode is weighted
equally, the sum 〈ψ〉 = ∑

q cos(q · r) can show effects of
the disruption of long-range order. These sums are similar
to the ones used in elementary optics calculations for co-
herence in diffracting systems. For example, in one dimen-
sion 〈ψ〉 = q2sinc(q2x) − q1sinc(q1x). When �q = q2 − q1

is small, 〈ψ (x)〉 = 2�qsinc(�qx) cos(qminx), and one iden-
tifies the correlation function as the envelope of 〈ψ〉, here
2�qsinc(�qx). As expected then, as XDR is raised higher, �q
grows and the Goldstone modes decrease long-range order.
Thus if the quality factor is very high and if XDR is finely
tuned enough then formation of a clear pattern is guaranteed.
In some systems qmin may be very large and the pattern not
easily observed at small length scales.

For a more general analysis of long-range order the corre-
lation function 〈ψ (r)ψ (0)〉 should be investigated. Taking the
Fourier transform and ignoring a prefactor gives

K (r) ≡
∑

q

eiq·r〈uq〉. (106)

The average 〈uq〉 is taken with the weighting factor
exp [2(uq)]. The result has already been calculated as the
stationary state from Eq. (28), reexpressed as

〈uq〉 = 〈
b2

q

〉
0 + 2Q2

〈
b2

q

〉
0

[
z2

q − 1 +
√(

z2
q − 1

)2 + z2
q/Q2

]
,

(107)

where zq = XDR/Xc(q). The function describing long-range
order would be the modulus of K (r). When XDR is below
the excitation gap, K is small and then becomes substantial
as the excitation threshold is reached. In the two important
examples discussed in Sec. III D and Sec. III E, the induction
was derived from first principles and in both cases αq goes as
q2 and the dispersion relation Xc(q) goes as q−1. This would
imply gapless excitation at infinite q. However, at microscopic

length scales induction is expected to taper off, and there is
a physical cutoff qcut for the wave vector. For example, in
a chemical reaction the mean-free path would likely dictate
the value of qcut. The excitation gap is then Xc(qcut ) and
this would likely be much smaller than the excitation gap
in a system with a flat dispersion relation. Though systems
with αq proportional to q2 will allow easier excitation of
nonequilibrium PTs, these transitions are more difficult to
discover and study with the very small pattern period.

If XDR is raised further above Xc(qcut ) the period of the
pattern will increase and should become easier to observe.
For such XDR the critical wave vector is qc < qcut such that
Xc(qc) = XDR. In the calculation for K (r), q values with mag-
nitudes between q1 and qcut will make the largest contribu-

tions. For large q the expansion
√

1 + q2b2
q ≈ 1 + 1

2 q2b2
q used

in Sec. III D for the eikonal will break down. This produces

a natural cutoff at large q since
√

1 + q2b2
q ≈ qbq means that

TI2 becomes TI1, which leads to a stationary state bq,ss = 1/q
and uq,ss = 1/q2. This result represents a type of universality
since any nonequilibrium front will show this bq,ss = 1/q
behavior for q > qc. The critical wave number qc will set the
periodicity of any patterns and one would identify this mode
with the PT. Technically, all wave numbers larger than qc are
involved in individual PTs. Since excitation of these modes
tends to suppress long-range order of the mode at qc, they
may be thought of as Goldstone modes. For these types of
nonequilibrium PTs, Goldstone modes present themselves at
high spatial frequencies and may be generally characterized
as turbulence.

When uq = 1/q2 the sum in Eq. (106) allows easy calcu-
lation of K (r) = r2−d cos (qcr). In one and two dimensions,
the long-range order is strong, and somewhat marginal in
three dimensions. This trend is opposite to what happens
in equilibrium PTs where long-range order is disrupted by
Goldstone modes at low dimensions.

Finally, I note that these results favor the possibility of
fluctuations at large q being enhanced by TI. If so, then the
physics at the nanometer scale becomes even more interest-
ing; at very small length scales systems that are profoundly
influenced by thermal and quantum fluctuations may also be
influenced by these types of nonequilibrium fluctuations.

G. Nonequilibrium thermodynamic identity

The main result presented as SNE being maximized by sta-
tionary states may be expressed as dSNE = 0. For equilibrium
thermodynamics, the total entropy ST is maximized, which
leads to the thermodynamic identity dU = T dS − PdV +∑

i μidNi, where S refers to the system of interest that is
removed from the thermal reservoir, particle reservoirs, etc.

The generalized entropy SNE accounts for the gate which
includes traditional thermodynamic reservoirs. The next step
is to take the gate and separate away the system of interest
from such reservoirs including but not limited to thermal,
volume, and particle reservoirs. The variables xGT and b are
adapted to x j , b j respectively, where x j can be U , V , Ni, etc.
This accounts for the Onsager coefficient MDR depending on
internal energy, volume, particle numbers, etc., so that γ j =
∂MDR/∂x j . Equations (38) and (39) are modified to account
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for more than one gate variable:

SNE = SGT +
∑

j

�0, j +
∑

j

kBβ1, jb j +
∑

j

kBβ2, ju j .

(108)

Separation of the system of interest away from the traditional
reservoirs is straightforward, though care must be taken to
distinguish the standard variables such as U , V, Ni from
the mode variable bq that becomes excited in TI2. At this
point I will explicitly treat the three types reservoirs, thermal,
volume, and particle, where it is understood that there are
at least two components present (e.g., 2 phases to form a
front, or 3 components for chemical reaction, as in the above
examples), which allows for one variable with Fourier modes
bq and uq:

SNE = S − U

T
− PV

T
+ 1

T

∑
i

μiNi + S′

+ kBβ1,U (U − Ueq ) + kBβ1,V (V − Veq )

+ kB

∑
i

β1,Ni (Ni − Ni,eq )

+ kBβ2,U uU + kBβ2,V uV + kB

∑
i

β2,Ni uNi

+ kB

∑
q 
=0

β2,quq, (109)

where S is the entropy of the system of interest, and S′ is con-
stant. When applying the condition dSNE = 0 it is understood
that U , V , N , uU , uV , and uN are varied independently while
T , P, μ, β1,U , etc., are held constant. The result is a revised
version of the thermodynamic identity:

dU = T dS − PdV + μdN

+ kBT β1,U dU + kBT β1,V dV + kBT
∑

i

β1,Ni dNi

+ kBT β2,U duU + kBT β2,V duV + kBT
∑

i

β2,Ni duNi

+ kBT
∑
q 
=0

β2,qduq. (110)

Equation (110) is illuminating as to the influence of the
DR on the system of interest. When XDR is held constant
by some external agent then the dynamical reservoir has the
same type of effect on the system of interest as the traditional
reservoirs. For example, the effect of MDR depending on
V gives an effective pressure Peff = P − kBT β1,V . Thus, the
classical thermodynamic variables can be altered when the
DR is well away from equilibrium.

Just as working under conditions of constant tempera-
ture, pressure, and chemical potential is often more conve-
nient, so is likely the case for constant β1,U , etc. Legendre
transformations for the nonequilibrium variables are just as
straightforward as for the equilibrium variables. For example
a generalized Gibbs potential may be defined as

G ≡ U + PV − ST − kBT β1,UU − kBT β1,V V

− kBT β2,U uU − kBT β2,V uV . (111)

Implementing the thermodynamic identity gives for the
differential

dG =
∑

i

μidNi + V dP − SdT + kBT
∑

i

β1,Ni dNi

+ kBT
∑

i

β2,Ni duNi + kBT
∑
q 
=0

β2,qduq

− kBUd (T β1,U ) − kBV d (T β1,V )

− kBuU d (T β2,U u) − kBuV d (T β2,V ). (112)

Under conditions of constant T , P, uNi , β1,U , β1,V , β2,U , β2,V ,
and uq, dG = ∑

i μi,eff dNi, where μi,eff = μi + kBT β1,Ni .
New Maxwell relations can be derived from Eq. (112). For

example ∂G/∂β1,U = −kBTU and ∂G/∂β1,V = −kBTV , and
equating the crossing second-order derivatives merely results
in a consistency check for ∂2MDR/∂U∂V = ∂2MDR/∂V ∂U .
Another Maxwell relation is created by crossing P and β1,V ,
giving

∂V

∂β1,V
= −kBT

∂V

∂P
. (113)

It is understood that the isothermal compressibility on the
right-hand side of Eq. (113) is taken at constant β1,V and is
not the same as the traditional isothermal compressibility.

Establishment of the nonequilibrium thermodynamic iden-
tity, Eq. (110), shows that TI can be incorporated into the
existing thermodynamic framework by making use of the DR.

H. Entropic-coupling problem with many modes

Returning to the important entropic-coupling problem,
most of the interesting nonequilibrium systems that exhibit
self-organization or pattern formations would occur with
many modes q being excited. A variety of models exist in the
literature that are capable of exhibiting such pattern formation
and self-organization [5,6]. The TI analysis presented here
gives insights into pattern formation and the key to gaining
these insights is incorporation of the DR into the analysis.
With the DR properly accounted for, one sees that the spon-
taneous formation of patterns in the gate do not violate the
second law of thermodynamics and that no patterns can form
if the DR is at equilibrium, or even below the excitation gap.
Moreover, the creation of such patterns coincides with an
increase in overall entropy production. In fact, the total rate of
entropy production is maximized. This leads to the somewhat
dualistic physical interpretation (1) that a large XDR above
the excitation gap is what drives the pattern formation or
(2) that the patterns form as the gate facilitates the DR to
create entropy at the greatest rate possible.

Since each mode q acts independently and always adds a
positive term to the total entropy production, there is no limit
in principle to how many modes can become excited, as long
as the αq coefficients are large enough. With the assumption
that all such modes are stationary the entropy change of the
gate due to pattern formation is given by

�SGT,ss = −2kB

∑
q

Q2
q

[
z2

q − 1 +
√(

z2
q − 1

)2 + z2
q

/
Q2

q

]
.

(114)
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With many modes excited this entropy reduction can be sub-
stantial. If one associates this entropy budget with information
storage, then it would seem that the more modes excited, the
more information that can be stored. If it assumed that this
information would be stored in any pattern that forms then
the situation is not so simple; from the results of Sec. III F
more excited modes may actually disrupt pattern formation,
because of nonequilibrium fluctuations of Goldstone modes.
There would seem to be a trade-off as far as the benefit
of more excited modes goes. Clearly, more study is war-
ranted on the topic of information storage in nonequilibrium
systems.

IV. CONCLUSIONS

With the general thermodynamics presented here, it is the
right time now for the research community to discuss the
establishment of a new set of physical principles suitable for
governing nonequilibrium systems. Here a thermodynamic
potential, the generalized entropy, has been constructed such
that it is maximized in nonequilibrium situations when the
traditional entropy is not maximized. The generalized entropy
is maximized when the gate is in a stationary state. Moreover
when the entire system is returned to equilibrium the gener-
alized entropy becomes the traditional entropy. These results
have been summarized in a form very much analogous to the
laws of equilibrium thermodynamics.

The key to arriving at these results was in identifying the
dynamical reservoir and separating this away from the gate, in
much the same way as traditional reservoirs are treated. This
separation also answers the historically important entropic-
coupling problem. It is now clear that the second law of
thermodynamics is never violated even when patterns self-
organize in the gate. During periods where the entropy of the
gate decreases, the dynamical reservoir creates entropy at a
greater rate, ensuring that the total rate of entropy production
is always positive. In two important examples, front propaga-
tion and Turing pattern formation, the dynamical reservoir is
simply the zero-wave-vector mode. In these examples, pattern
formation with long-range order has been shown to be pos-
sible, although the disruptive influence of Goldstone modes
has been pointed out. In contrast to the case of equilibrium
second-order phase transitions, long-range order in patterns is
more robust at lower dimensions.

At the heart of the results presented here is thermodynamic
induction. Developing thermodynamic induction up to sec-
ond order now allows one to explain spontaneous symmetry
breaking and phase transitions in the nonequilibrium realm.
Real-space examples with many wave vector modes have been
discussed here and second-order thermodynamic induction
in these examples leads to pattern formation at nonequilib-
rium phase transitions. Thermodynamic induction, as a first-
principles theory, works well at producing the equations and
models such as the Swift-Hohenberg, Edwards-Wilkinson,
and Kuramoto-Sivashinsky equations and therefore TI pro-
vides a good description of all the systems successfully
modeled and reported so far in the literature. Logically then,
the large number of observations of nonequilibrium phenom-
ena that have been successfully modeled with these equa-
tions becomes evidence for the existence of thermodynamic

induction. For example, the production and observations of
patterns in laminar flame fronts is to be considered as evidence
for second-order thermodynamic induction since the first-
principles results presented here for second-order thermody-
namic induction predict the Kuramoto-Sivashinsky equation,
and this equation has been developed and used to model the
behavior of these flame fronts.

The approach presented here for obtaining dynamical
equations emphasizes conductance, not energetics. An ap-
proach based on energetics, such as a Hamiltonian-based ap-
proach, was destined to be difficult, as evidenced by a lack of
a solution to the entropic-coupling problem since the second
law of thermodynamics was established. It is my hope that this
work stimulates more study in the research community of the
dynamics of variables coupled to each other via a conductance
or kinetic coefficient.
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APPENDIX A

Here is treated the case of two random walk variables, a
and b, governed by a multiplicity-type statistical weighting
factor �[a, b] ≡ exp(− 1

2 q1a2 − 1
2 q2b2). Variable b will have

a constant step length l2 while the step length for a is variable,
of the form l (b). If the two variables begin a time step at
(a, b) then the probability of both variables moving to the
right (increasing) is proportional to �[a + l (b + l2), b + l2].
The four possible outcomes with probabilities are

prr = c�[a + l (b + l2), b + l2], (A1)

plr = c�[a − l (b + l2), b + l2], (A2)

prl = c�[a + l (b − l2), b − l2], (A3)

and

pll = c�[a − l (b − l2), b − l2]. (A4)

The normalization constant c = 1
4�[a, b] when the step sizes

are assumed small. The mean displacement for the single step
is then

〈�a〉 = prrl (b + l2) − plrl (b + l2)

+ prl l (b − l2) − pll l (b − l2) (A5)

and

〈�b〉 = [prr + plr − prl − pll ]l2. (A6)

Making use of the form of � gives

〈�b〉
l2

= 1

2
cosh [q1al (b + l2)]e−1/2q1l2(b+l2 )e−q2bl2 (A7)

−1

2
cosh [q1al (b − l2)]e−1/2q1l2(b+l2 )eq2bl2 . (A8)

For TI1, l (b) is specified as l2 = l2
0 + δb, while for TI2,

l2 = l2
0 + βb2. After some algebra, again, assuming small step
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sizes,

〈�b〉
l2
2

= −q2b + q1δ

2
(q1a2 − 1) (1st order), (A9)

〈�b〉
l2
2

= −q2b + q1β(q1a2 − 1)b (2nd order). (A10)

Similarly one finds

〈�a〉 = −q1a[l (b)]2. (A11)

APPENDIX B

Before including induction effects, the dynamics for the
gate variable is given by ḃ = −b/τGT where the time constant
is related to the Onsager coefficient LGT and the generalized
capacitance coefficient g−1

GT as τGT = 1/LGT gGT . To deter-
mine the complete dynamics of the gate variable b, the follow-
ing approach is used which has been successful in describing
dissipative systems approaching equilibrium:

〈ḃ(t ′)〉 = 〈
ḃ(t ′)e�S(t ′−t )/kB

〉
0, (B1)

where the brackets 〈 〉0 denote ensemble averaging over equi-
librium states. This approach has worked well for cases where
kinetic coefficients are constant and when they vary linearly
with gate variables, i.e., first-order TI [1,2]. However when
the dependence is quadratic, the equilibrium averaging gives
zero since 〈b〉0 = 0. Here a more refined type of averaging
is required, the gate system still very close to equilibrium
but with a nonzero average value. Apart from this restric-
tion all microstates will be sampled as equally as possible.
This is the essence of the exponential factor in Eq. (B1);
configurations with greater multiplicities receive more weight
in the statistical averaging, and the entire system is pushed
toward equilibrium. Thus I replace the brackets 〈 〉0 with the
brackets 〈 〉ne, denoting near equilibrium. This means that not
all microstates will be accessed. Instead all microstates are
equally accessed, subject to the restriction 〈b〉 
= 0. For small

time intervals, the change �S is small and

〈ḃ(t ′)〉 = 1

kB
〈ḃ(t ′)�S(t ′ − t )〉ne. (B2)

Integrating both sides of Eq. (B2) over the time interval �tq
gives the coarse-grained time derivative:

¯̇b = 1

kB�t

∫ t+�t

t
dt ′〈ḃ(t ′)�S(t ′ − t )〉ne. (B3)

A bar is used to denote the coarse-graining and it is understood
that the time step �t is very short but still much larger
that the correlation time τ ∗ for the random force driving the
fluctuations. The difference �S(t ′ − t ) is replaced by the time
integral of ṠT . The component of ṠT from to the gate alone
results in the familiar term LqqXq while ṠDR is what supplies

the more interesting induction term. The contribution to ¯̇b that
is exclusively thermodynamic induction is obtained by using
only the αX 2

DRb2 contribution to ṠDR. Thus

¯̇bind = αq

kB�t

∫ t+�t

t
dt ′

∫ t ′

t
dt ′′〈ḃ(t ′)X 2

DRb2(t ′′)
〉
ne, (B4)

which can be reexpressed as

¯̇bind = αX 2
DR

kB�t

∫ t+�t

t
dt ′

∫ t ′

t
dt ′′

∫ t ′′

−∞
dt ′′′〈ḃ(t ′)ḃ(t ′′′)b(t ′′′)〉ne.

(B5)

The correlation function 〈ḃ(t ′)ḃ(t ′′′)〉0 ≡ Kqq(t ′ − t ′′′) is very
small unless |t ′ − t ′′′| < τ ∗. Thus 〈ḃ(t ′)ḃ(t ′′′)b(t ′′′)〉ne is ex-
pected to be proportional to Kqq(t ′ − t ′′′)〈b(t ′)〉ne. When com-
paring to Eq. (A10) the constant of proportionality must
be 2.

Evaluating the time integrals gives kBLGT τ ∗�t so that
(dropping the coarse-graining symbol)

ḃind = 2αX 2
DRLGT τ ∗b. (B6)

Adding the induction to the regular dynamics gives

ḃ = 2αX 2
DRLGT τ ∗b − LGT gGT b. (B7)
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