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Abstract We investigated interactions between river regula-
tion, riparian black cottonwoods (Populus trichocarpa) and
beavers (Castor canadensis) with a paired comparison be-
tween the free-flowing Lardeau River and regulated lower
Duncan River in western Canada. Cottonwood saplings oc-
curred more broadly along Lardeau River transects (63 % vs.
38 %) and with increased density. Beavers preferred cotton-
woods over other shrubs and cutting was more intense (36 %
vs. 7 % of stems cut) along the regulated Duncan River.
Beaver cutting occurred in wider bands (25 m vs. 11 m from
river) along the Duncan, and there was also evidence for in-
creased cutting of a less-favored alternate, alder (A/nus
incana), while willows (Salix spp.) were substantially cut
along both rivers. River regulation has apparently reduced
cottonwood recruitment along the Duncan River and regula-
tion may also increase beaver accessibility to saplings since
higher river levels in late summer and autumn may promote
inland access. These ecosystem alterations may thus create an
imbalance between bottom-up cottonwood recruitment versus
top-down mortality. We overview some of the ecological in-
teractions in riparian woodlands in a schematic model recog-
nizing river flow regime, sediment patterns and bank forms,
and other riparian vegetation as key factors influencing cot-
tonwoods and beavers.
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Introduction

Riparian woodlands provide rich habitats for a wide variety of
plants and animals (Naiman et al. 2005). Being wetter and
ecologically more diverse than surrounding landscapes, these
provide essential resources for wildlife such as through travel
connectivity or microclimate refuge. These functions may be-
come increasingly vital due to continuing river valley devel-
opments and climate change (Naiman and Rogers 1997; Rood
et al. 2008; Seavey et al. 2009).

Throughout North America, cottonwoods (riparian
Populus trees) are a keystone component of riparian wood-
lands and provide multiple functions, extending from the pi-
oneer stage where they colonize barren sediments, through to
characteristics of structurally diverse old-growth forest (Polzin
and Rood 2000; Braatne et al. 2007). Cottonwood abundances
are determined by a dynamic balance between bottom-up fac-
tors that influence recruitment versus top-down influences on
mortality. The phrase bottom-up is literally appropriate since
seedling and clonal reproduction depend on the substrate con-
ditions created by river flows and sediment redistributions on
river banks and floodplains (Scott et al. 1997; Kalischuk et al.
2001; Rood et al. 2003). River damming alters these condi-
tions by changing the flow regime and by altering sediment
flux and channel form, and these hydrogeomorphic changes
alter cottonwood reproduction (Merritt and Cooper 2000;
Polzin and Rood 2000).

For cottonwood populations, top-down processes include
aging, drought stress and herbivory (Andersen and Cooper
2000; Breck et al. 2003a; Ripple and Beschta 2003; Bailey
and Whitham 2006). This phrase is also literally appropriate
for our investigation since beaver (Castor canadensis Kuhl)
cutting provides decapitation. For other riparian systems, top-
down impacts from herbivory can be important determinants
of population structure and ecosystem composition (Pastor
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and Naiman 1992; Breck et al. 2003b; Ripple and Beschta
2003).

In riparian zones, the beaver is one of the most influential
herbivores, and uniquely capable as an ‘ecosystem engineer’
(Wright et al. 2002; Rosell et al. 2005). These large rodents
alter riparian hydrology and channel and bank forms through
damming, canal dredging and other works (Naiman et al.
1988; Gurnell 1998; Cunningham et al. 2006). These diversify
channel habitats, filter and enrich water, and create ponds and
wetlands upon which invertebrates, amphibians, aquatic
mammals and waterfowl depend (Naiman et al. 1988; Rosell
et al. 2005; Green and Westbrook 2009; Hood and Larson
2015).

Beavers cut and remove trees and shrubs along stream
banks, and cottonwoods and aspen (Populus tremuloides
Michx.) are commonly preferred (Northcott 1971; Gallant
etal. 2004). Where beavers rely on other plants such as willow
(Salix) or alder (Alnus), body and colony sizes may be reduced
(Northcott 1971; Breck et al. 2001). The heaviest cutting oc-
curs from late summer through autumn, in preparation for
winter (Northcott 1971; Svendsen 1980; Breck et al. 2003a).
In spring and summer, beavers may feed extensively on her-
baceous plants ((Northcott 1971; Parker et al. 2007), reducing
the foraging pressure on trees and shrubs.

Beavers are slow-moving and vulnerable on land and con-
sequently a primary influence on foraging is the distance from
water (Naiman et al. 1988). Foraging decisions probably
reflect a dynamic weighting between energy output,
driven by the need for food or building materials, ver-
sus energy conservation and security, producing a ‘cen-
tral place’ foraging strategy (Raffel et al. 2009). Factors
that affect energy output, such as swift currents, or se-
curity, including predator abundance, would influence forag-
ing patterns. The availability of alternative foods would also
influence foraging.

Browsing by ungulates such as elk (Cervus canadensis
Erxl.) or deer (Odocoileus hemionus Zimm.) can also influ-
ence beaver utilization. Beavers avoid heavily browsed plants
due to the production of unpalatable phenolics (Basey et al.
1998), and heavy browsing by ungulates can also reduce
availability for beavers (Baker 2003; Hood and Bayley
2008b).

In healthy riparian woodlands, beaver cutting is tolerated
and even provides a form of rejuvenation since there is often
vigorous coppice resprouting and clonal suckering of cotton-
woods and willows. Conversely, excessive beaver cutting can
thin riparian woodlands and provide another stress on declin-
ing populations (Andersen and Cooper 2000; Lesica and
Miles 2004). Additionally, river damming and water with-
drawal can restrict cottonwood populations (Polzin and
Rood 2000; Braatne et al. 2007) and we might anticipate that
beaver cutting could become problematic along some regulat-
ed rivers.

@ Springer

There have been numerous studies of beavers along small
stream systems but few along large rivers, with fewer still
along regulated rivers. Along Montana’s Milk River,
Bradley and Smith (1986) did not detect differing impacts of
beaver cutting on prairie cottonwoods (P. deltoides Marsh)
upstream versus downstream of the Fresno Dam. In Alberta,
beaver cutting of the decrepit narrowleaf cottonwood
(P. angustifolia James) population downstream from the St.
Mary Dam, hindered attempts at cottonwood restoration
(Rood and Mahoney 2000). Extensive investigation by
Breck et al. (2001, 2003a, 2003b) along the free-flowing
Yampa River versus the regulated Green River indicated that
river regulation limited downstream cottonwood reproduction
and increased willow abundance, and that this and regulated
flow patterns altered patterns of beaver foraging on Fremont
cottonwoods (P, fremontii Watson).

Building upon these prior studies, we investigated effects
and interactions between river regulation, beavers and black
cottonwoods (P, trichocarpa Torr. & Gray) along a mountain
river in British Columbia. We used a paired comparison be-
tween two adjacent river reaches (Braatne et al. 2008), the
large, regulated lower Duncan River and its free-flowing trib-
utary, the Lardeau River (Fig. 1). Our primary hypothesis was
that there would be reduced cottonwood sapling recruitment
along the regulated Duncan River due to changes in seasonal
hydrology, sediment regime and channel form. Our secondary
hypothesis was that there would be increased beaver cutting
along the regulated Duncan River due to the sparser cotton-
wood occurrence and possibly due to altered seasonal river
stages that could increase beaver access.

Methods
Study Rivers and Flow Patterns

The study compared two sequential river reaches flowing into
the north end of Kootenay Lake (Fig. 1). The free-flowing
Lardeau River drains Trout Lake and its watershed, and is
characterized by a dynamic channel meandering in tight bends
through a 600 to 700 m wide floodplain bordered by steep
valley sides. The banks are dominated by cobbles and coarse
gravels with finer sediments along meander lobes and some
channel bars. The Lardeau joins the Duncan River just below
the outflow channel from the Duncan Dam, which was com-
pleted in 1967 following the North American Columbia River
Treaty. That Dam impounded a prior lake and wetlands com-
plex (Fig. 1) that would have trapped sediments and woody
debris, as the reservoir continues to do. The Duncan Dam has
no hydroelectric power facility but the released flows pass
through a sequence of hydroelectric dams downstream and
regulation also contributes to downstream flood attenuation.



Wetlands (2015) 35:945-954

947

\ —_—
\\ British |
), Columbia

Legend

A  Beaver Lodge Sites

B Transect Sites

! _: Duncan Lake Pre-Dam

Gooper OO

4 Kilometers

Lt ¢+ ¢ 1 ¢ 3 1 11:100,000

. Duncan
¢ Lake ?

Duncan
River

y Kootenay ,
( Lake ‘f\'\

Fig. 1 Map of the study area showing the Lardeau (L) and Duncan (D)
Rivers, Kootenay Lake, the Duncan Dam and Duncan Lake (reservoir),
with the shoreline of the prior natural Duncan Lake indicated with a

Below the Lardeau, the lower Duncan River provided the
regulated study reach. This floodplain is about 1800 m wide,
and the channel bed and banks are characterized by finer

dashed line. Study transect locations are indicated as well as the
positions of beaver lodges. The inset displays British Columbia with X
indicating the study area and V indicating Vancouver

sediments than along the Lardeau, with gravels, sands and
silts. Following damming, the Duncan River channel
narrowed by about one-third, and some side-channels were
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abandoned (Miles 2002). The large, free-flowing Meadow,
Hamill and Cooper Creeks (Fig. 1) provide additional contri-
butions of water, sediments and woody debris.

To assess historic hydrology, we obtained mean daily dis-
charges (Q) from the Water Survey of Canada’s HYDAT data-
base for the Lardeau River At Marblehead (08NH0070, from
1929) and for the Duncan River Below Lardeau River
(O8NH118, from 1963). We averaged daily values across
years for the pre-dam interval from 1963 to 1967 and for
subsequent decade intervals after damming. The post-
dam flows were fairly similar across those decades
(Polzin et al. 2010) and we present the mean hydrograph
for the interval 1998-2008 (Fig. 2), which preceded the
field study.
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Fig.2 Average daily discharges (Q) of the Lardeau River (top) and lower
Duncan River (bottom) for a decade prior to the Duncan Dam and the
decade prior to the field study
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Study Design

To assess vegetation we utilized cross-sectional belt transects that
extended perpendicular from the river up through the barren and
sapling zones to tagged trees in the mature cottonwood (Populus
trichocarpa) forest. For transect positioning, we divided the river
reaches into numbered segments but excluded higher terraces,
older forest, building developments or agricultural lands. From
the remaining locations, the transect positions were randomly
selected, and assessed in 2009 and 2010. There were 10 transects
along the Lardeau River and 26 along the Duncan River (Fig. 1),
with the increased Duncan sampling reflecting the emphasis of
an overlapping study (Polzin et al. 2010).

Along each transect we established successive 5 m (along
transect) x 10 m quadrats on the downstream side of a tape
line. In each quadrat, we counted the intact and beaver cut
stems of all trees and shrubs by species, within five basal
diameter classes: 0-2, 24, 4-7, 7-15 and >15 cm. For each
quadrat we rated ungulate browse intensity with a scale of 0 to
5 (none to complete browsing, Luttmerding et al. 1998).

To determine the width of the beaver cutting zone, we
averaged two values for each transect One value was the dis-
tance along the transect line to the furthest inland beaver cut-
ting. The other was the distance of beaver cutting along a line
running at 45° toward the river from the tag tree or furthest
inland cutting position. Where cutting continued inland past
the tag trees along two transects, we extended the lines. Four
transects were positioned across narrow islands with beavers
browsing right across the islands and we used the mid-island
widths as the cutting width. We also assessed substrate texture,
woody debris accumulation and adjacent water depth at each
transect. As another approach to assess beaver cutting along
the Duncan River, we reassessed twenty-seven 11 m circular
plots that had been established in 2002, recording juvenile
cottonwood numbers and sizes and beaver cuts.

Beaver Colonies and Developments

We recorded and mapped the beaver developments along both
rivers, including dams, canals, dens, food caches, dragging
trails and scent mounds (Naiman et al. 1988; Green and
Westbrook 2009). We inventoried beaver colonies through a
count of winter food cache and den complexes in late fall and
early spring (2010-2011) as described by Hay (1958), and as
supported by findings that northern beaver colonies cluster
together in winter (Novak 1977; McTaggart and Nelson
2003). Caches were identified as large piles of freshly cut
sticks, anchored in mud or logs, with den entrances within
about 10 m. The survey scanned all channels over 50 cm deep
but small portions of the Lardeau River floodplain were inac-
cessible. We noted scent mounds, 10 to 100 cm tall piles of
mud and vegetation, which indicate colony territory bound-
aries (Svendsen 1978; Sun and Muller-Schwarze 1998).
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Data Analyses

Sapling values for cottonwoods, alders (4/nus incana) and
willows (Salix spp.) were recorded by quadrat and these were
aggregated to provide single values for each transect. For each
transect, we assessed the sapling interval as extending from the
first to last quadrat with any intact or cut sapling. We assessed the
sequential quadrats within this interval and for Occurrence we
calculated the percentage of those quadrats that contained at least
one cottonwood, alder or willow sapling. We summed the num-
bers of intact or cut saplings from the quadrats within the sapling
interval and this provided the basis for the density values for each
of the three plants for that transect. The intact and cut densities
were combined to provide the total density, and the extent of
beaver cutting was calculated as the number of cut stems/total
stems (cut + intact) for each plant. For ungulate browsing we
chose the maximum intensity value along each transect and this
provided a similar outcome as comparison with the mean inten-
sities per transect.

We thus determined a value for each characteristic for each
transect, and then considered the values from the 10 Lardeau
transects versus the 26 Duncan transects, with statistical anal-
ysis with SPSS (PASW 18, IBM Corp., NY). We undertook t-
tests, following Levene’s Test for Equality of Variances to
determine if equal variances would be assumed or not, and
undertook log transformations for density data. With the 10
and 26 values, the degrees of freedom was consistently 34 and
we assessed outcomes as: trend () p < 0.1, significant (*)
p <0.05 or highly significant (**) p < 0.01. We also undertook
Mann—Whitney U non-parametric paired comparisons and
these provided very consistent outcomes, and only the t-test
results are presented (Table 1).

Results
River Flow Patterns

Prior to damming, the natural flow regimes of both rivers
displayed nival, snow-melt dominated patterns (Fig. 2).
Winter flows were low and discharge rose in spring to maxi-
mal flows commonly in June. Flows declined through the
summer and autumn to return to low flows in the winter.
This is illustrated with the averaged Lardeau River
hydrographs in the pre- and post-dam intervals and the aver-
aged Duncan hydrograph prior to damming (Fig. 2).
Following damming in 1967, the seasonal patterns changed
considerably along the lower Duncan River (Fig. 2). High
flows were attenuated, with 2-year and 10-year maximum
daily discharges reduced to about one-half of the pre-dam
values (pre-dam: 530, 800 m>/s: post-dam: 310, 430 m3/s),
and late summer to winter discharges substantially increased
(Fig. 2). The regulated patterns for the three decades from

1968 through 1997 were generally similar (not shown) and
then the flow regime was further altered during the decade
from 1998 to 2007 (Fig. 2).

Cottonwoods

Black cottonwoods were the predominant riparian trees along
both rivers. At higher elevations on older surfaces there were
large mature cottonwoods, commonly with western red cedar
(Thuja plicata Donn), white spruce (Picea glauca (Moench)
Voss), paper birch (Betula papyrifera Marsh.) and mountain
alder (Alnus incana (L.) Moench ssp. Tenuifolia). At lower-
positions on younger surfaces, patches of black cottonwood
saplings occurred on gravel bars, young islands, accreting
edges of meander lobes and older islands, flood channels
and some side channels. Young patches of cottonwood were
mixed with willow while older patches were mixed with alder,
red osier dogwood (Cornus stolonifera Michx.), river birch
(Betula occidentalis Hook.) and other plants.

Testing our primary hypothesis, we found that cottonwood
saplings occurred in a significantly higher percentage of the
quadrats along transects by the Lardeau than the Duncan
River (Fig. 3, Table 1). Cottonwood sapling densities were
variable and averaged about five times higher along the
Lardeau, another significant difference (Fig. 3, Table 1).
Beaver cutting was apparently slight along the Lardeau and
about five times higher along the Duncan River (Fig. 4,
Table 1). Cutting heights ranged from 5 cm to 120 cm, with
30 to 40 cm being common.

Widths of Beaver Foraging Zones

Testing our second hypothesis, the beaver cutting bands were
significantly wider along the Duncan than Lardeau River tran-
sects (Table 1). The circular plot reassessment supported the
widths along the Duncan River (Fig. 5). Within plots 20 m or
closer to the channel, 80 to 100 % of the cottonwoods were
generally cut over the interval from 2002 to 2010. The extent
of cutting dropped abruptly around 25 m from the water, with
minimal beaver cutting beyond 35 m.

Alder and Willow

Mountain alder was a frequent riparian shrub that tended to be
more common along the Lardeau than Duncan River (Fig. 3;
Table 1). Beavers rarely cut alders along the Lardeau River but
sometimes cut alders along the Duncan River, with results
suggesting a difference (Table 1). There were several sites
where beavers left alder standing after cottonwood and willow
were cut, indicating a lower preference, consistent with
Northcott (1971).

Willows were abundant in the lower position riparian zones
with the most common being Bebb willow (Salix bebbiana
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Table 1 Characteristics and t-test

comparisons for saplings and Characteristic Lardeau R. Duncan R. t probability

beaver influences in transects

along the Lardeau and lower Transects 10 26

Duncan Rivers. Signiﬁcant Occurrence (% of quadrats)

(p = 0.03) values are in bold and a Cottonwood 63.0 £ 11.5 382+ 6.1 204 0.050

trend (p < 0.1) is italicized. With

36 transects the df was generally Alder 56.0+9.3 40.6 £53 1.45 0.143

34, but slight reductions occurred Willows 649 +£9.5 75.0 + 4.8 1.05 0.304

for beaver cutting when a plant Density (#/ha)

species was absent Cottonwood 6914 + 3127 1398 + 538 2.65 0.012
Alder 1716 + 118 2126+ 636 0.39 0.695
Willows 16,396+ 6120 39,983 + 11,300 1.26 0.075

Beaver Cutting (% of saplings)

Cottonwood (n = 9,21) 7.34 £2.99 35.94 + 8.75 2.10 0.045
Alder (n = 10,25) 0.244 + 0.244 6.69 + 4.04 0.99 0.125
Willows (n = 9,26) 14.8 = 8.37 19.3 £ 3.97 0.55 0.588
Width of Cutting (m) 10.95 +£2.99 2522 +£2.17 3.60 0.001
Beaver lodges & food-caches 10 13
Ungulate browsing index 1.80 = 0.36 246 £ 0.15 2.03 0.050

Sarg.) and Pacific willow (S. lucida Muhl. ssp. Lasiandra).
Extensive and dense thickets of willows occurred in low-lying
areas with fine-textured sediments, which were more common
along the Duncan River. Smaller patches of willows occurred
along the main and side channel banks and around backwater
areas and beaver ponds and about two-thirds of quadrats in the
sapling intervals along both rivers included willows (Fig. 3;
Table 1). Sandbar willow (S. exigua Nutt.) was abundant along
the downstream end of the Duncan River especially on the delta.
Willow densities were apparently lower along the Lardeau River
(Table 1) and this may have included a longitudinal pattern since
willows were sparse along the upstream transects of the Lardeau
(Fig. 3).

Beavers substantially utilized willow along both rivers
(Table 1). Along the Duncan River this cutting was about
one-half of that for cottonwoods and around three times that
for alder (Table 1), indicating a preference of cotton-
wood, willow and then alder. Willows in extensive
patches such as on the delta near Kootenay Lake were
generally lightly cut while small patches near channel
edges were sometimes heavily cut, and apparently cut
over successive years to produce coppice forms resem-
bling managed hedges.

Ungulate Browsing

There was increased intensity of ungulate browsing along
transects of the Duncan River (Table 1). Beavers may have
avoided ungulate-browsed plants since we did not observe
ungulate browsed stems in beaver cut piles or caches.
Conversely, ungulate browsing was common on coppice
shoots sprouting from beaver cut stems.
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Beaver Developments

Most winter lodges (Fig. 1, Table 1) were a combination of
bank dens and stick lodges and were located along small side
channels, back channels and distributaries that had been bea-
ver dammed or deepened by beaver dredging. Two lodges
were located along the Duncan River main stem. Several were
located under log jams and two were free-standing stick
lodges in ponds on old side channels. There were ~0.4 colo-
nies per km of Duncan River channel, and ~0.3 colonies per
km of channel along the Lardeau River. Winter food caches
were typically observed within a few m of lodge entrances.

Beaver dams were built across small channels and ranged
from small seasonal stick dams to more permanent large mud
and log structures. The major dams and pond complexes were
associated with fine-textured alluvial sediments, sands and
silts. All dams created some ponding that was associated with
wetland habitat development.

We also observed beaver canals, which were apparently ex-
cavated to bring supplemental water to smaller channels or ponds
or to dry low-lying areas, or alternately as waterways to access
food. Some canals appeared to improve access for beavers to
inland cottonwood saplings. Most canals were also located in
fine textured sediments and the most extensive canal systems
were associated with low-lying willow communities.

Discussion

At the study outset we anticipated that cottonwoods, beavers
and their interactions would be influenced by river regulation.
Our field observations demonstrated these influences,
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Rivers. The vertical dashed line designates the position where the
Lardeau River joins the Duncan River below Duncan Dam. Note the

suggesting that flow regulation of the Duncan River has im-
pacted the cottonwood population through bottom-up imped-
iments to cottonwood reproduction, and by increasing the top-
down pressure from beaver cutting. The results support our
primary hypothesis, as cottonwood saplings along the lower
Duncan River were more limited in occurrence and less dense
than along the free-flowing Lardeau River. The results also
support our second hypothesis, as beaver cutting was more

different y-axis log scales for densities. The > or < indicate differences
across the two rivers, with statistical results in Table 1 (¢=trend, p <0.1; *
p<0.05)

intense and influenced a broader zone inland from the river
edge along the Duncan River.

The reduction in juvenile cottonwoods is probably partly
due to the altered flow regime following operation of Duncan
Dam. With regulation, there were high and even increasing
flows through July and August (Fig. 2), about a month after
the primary interval of seedling establishment (Polzin and
Rood 2006; Herbison et al. 2015). The augmented flows
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Fig. 4 Percentages of beaver cut cottonwood saplings in transects along
the Lardeau and Duncan Rivers (< indicates lower value for Lardeau, *
p < 0.05, statistics in Table 1)

would submerge and erode new germinants that had
established during the receding limb of the spring freshet.
High winter flows would also scour recruitment zones, remov-
ing more seedlings (Benjankar et al. 2014). The attenuation of
spring peaks reduces geomorphic disturbance and the creation
of cottonwood colonization zones (Polzin and Rood 2006;
Tiedemann and Rood 2015), and along the lower Duncan
River flood attenuation has also resulted in simplification
and narrowing of the river channel (Miles 2002), further re-
ducing cottonwood colonization sites.

The higher intensity of cutting and broader foraging zone
along the regulated Duncan River might reflect reduced cot-
tonwood abundance, as the remaining saplings would face
greater cutting pressure and be sought further inland. These
differences might also be explained by improved inland
access for beavers along the Duncan. The elevated river
stage from late summer through autumn could increase
water access to the inland saplings when the heaviest
cutting occurs for winter food caches (Svendsen 1980;
Gallant et al. 2004). In contrast, in late summer and autumn
the Lardeau River is low and dropping, limiting water access
to cottonwood saplings.
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Fig. 5 Percentages of cottonwoods cut by beavers versus distance from
water for circular plots along the lower Duncan River that were
established in 2002 and reassessed in 2010
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Fig. 6 Apparent ecological interactions related to riparian woodlands
along the Lardeau and Duncan Rivers, with‘top-down’ and ‘bottom-up’
components of the ecosystem

Our study also indicates the importance of geomorpholog-
ical factors that affect beaver occurrence and their influ-
ence on cottonwoods. Bank and channel sediment tex-
ture is probably important, with silts to clays apparently
preferred for bank dens, canals and other structures.
Channel morphology and stability are also likely to be
important and probably differ along the Lardeau versus
lower Duncan River.

In addition to cottonwoods, our study also indicated that
other woody riparian plants are important for beavers and are
also probably influenced by river regulation. Willows were
abundant along both rivers and were extensively cut by bea-
vers, providing an alternate source of food and building ma-
terials. Beaver developments such as canals and ponds were
common with low-lying willow thickets, especially along the
lower Duncan River. Like cottonwoods, willows are respon-
sive to river damming (Rood et al. 2010, 2011) and Breck
et al. (2003b) suggested that willows might thrive with the
flow-regulated conditions along the Green River and that this
might increase the beaver population, which could then in-
crease impacts on cottonwoods. Conversely, we believe that
there may be the potential for willows and the wetland plants
around beaver ponds to buffer the impacts of beavers on cot-
tonwoods, especially if combined with complementary
beaver-wetland management practices such as described by
Pollock et al. (2014).
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We recognize the factors and interacting processes observed
along the Lardeau and Duncan Rives in an integrative model
(Fig. 6) that relates river flow regime, sediment fluxes and the
channel and bank forms, riparian vegetation and especially
cottonwoods and willows, and beavers as an ‘ecosystem en-
gineer’. We would expect generally similar interactions along
other North American rivers. This model blends some of the
concepts of floodplain biogeomorphology as advanced by
Hughes (1997), with concepts from the hydrogeomorphic
analysis for river and floodplain processes (Tockner et al.
2010; Rood et al. 2015). This conceptualization could contrib-
ute to river flow scheduling and floodplain management for
woodland conservation and restoration, and may also provide
insight into influences from watershed development or cli-
mate change (Hood and Bayley 2008a; Rood et al. 2008).
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