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Abstract

Wetlands represent one of the world's most biodiverse and threatened ecosystem

types and were diminished globally by about two‐thirds in the 20th century. There

is continuing decline in wetland quantity and function due to infilling and other human

activities. In addition, with climate change, warmer temperatures and changes in

precipitation and evapotranspiration are reducing wetland surface and groundwater

supplies, further altering wetland hydrology and vegetation. There is a need to auto-

mate inventory and monitoring of wetlands, and as a study system, we investigated

the Shepard Slough wetlands complex, which includes numerous wetlands in urban,

suburban, and agricultural zones in the prairie pothole region of southern Alberta,

Canada. Here, wetlands are generally confined to depressions in the undulating

terrain, challenging wetlands inventory and monitoring. This study applied threshold

and frequency analysis routines for high‐resolution, single‐polarization (HH)

RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season

surface water extent hyroperiod‐based wetland classification, which can support

water and wetland resource monitoring. This 3‐year study demonstrated synthetic

aperture radar‐derived multitemporal open‐water masks provided an effective index

of wetland permanence class, with overall accuracies of 89% to 95% compared with

optical validation data, and RMSE between 0.2 and 0.7 m between model and field

validation data. This allowed for characterizing the distribution and dynamics of 4

marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and

permanent, and mapping of the sequential vegetation bands that included emergent,

obligate wetland, facultative wetland, and upland plant communities. Hydroperiod

variation and surface water extent were found to be influenced by short‐term rainfall

events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly

variable if there was a decrease in the temporary or semipermanent hydroperiod

classes. In years with extreme rain events, the temporary wetlands especially

increased relative to longer lasting wetlands (84% in 2015 with significant rainfall

events, compared with 42% otherwise).
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1 | INTRODUCTION

Wetlands are vital for replenishing and storing groundwater,

preventing flooding, reducing erosion, filtering and purifying water,

and storing substantial amounts of carbon (Kettridge &

Waddington, 2013; Turetsky et al., 2011). Prairie potholes are

depressions formed after glacial retreat in the last ice age

(~12,000 years ago), promoting wetland formation in these depres-

sions (Winter, 1989). They are classified by Stewart and Kantrud

(1971) and Cowardin, Carter, Golet, and LaRoe (1979) as marsh

wetlands having less than 1‐m water depth at peak volume, with

vegetation and surface water cover being the indicators of marsh

type and permanency. Prairie pothole wetland water levels and

extent can fluctuate daily, seasonally, and unpredictably following

prolonged periods of rainfall, affecting the ecological characteristics

of a wetland controlled by the presence and duration of open

water, referred to as the “hydroperiod” (Ewel, 1990; Mitsch &

Gosselink, 2007).

As these freshwater resources become increasingly scarce, there

is a need for improved wetland monitoring and management through

mapping and inventory (Ozesmi & Bauer, 2002). Changes in the water

balance are driven by changes in the input (precipitation) and the

primary output (actual evapotranspiration), which is driven by air

temperatures and other factors (Milly & Dunne, 2011, 2016). There

are trends in net radiation (Wild, 2009), vapour pressure (Willett,

Jones, Gillett, & Thorne, 2008), and wind speed (McVicar et al.,

2012) that also influence water balance. Furthermore, warmer temper-

atures and reduced precipitation trends are causing drying of wetland

surface and groundwater, resulting in changes to hydrology and vege-

tation (Klein, Berg, & Dial, 2005; Riordan, Verbyla, & McGuire, 2006;

Roulet, 2000). Although policy makers have sufficient scientific infor-

mation to understand the need to take steps toward conservation,

the global extent and spatial scale of wetlands are immense. Tradi-

tional mapping methods require significant amounts of in situ data

collection, which can be logistically challenging and costly and may

omit or underestimate the extents of many smaller seasonal or annual

wetlands (Frey & Smith, 2007; Halsey et al., 2004). Therefore,

governing entities increasingly rely on developing remote sensing

techniques to quantify wetland changes for water monitoring and

management, where changes can be tied to ecosystem function using

in situ validation methods.
FIGURE 1 Marsh wetland classifications based on water permanence an
Stewart and Kantrud (1971)
1.1 | Remote sensing for water mask generation

Remote sensing application domains use spatial and temporal data

covering large areas that are not geographically limited by in situ

access and include flood extent delineation, habitat mapping, and

wetland assessments that have been found to greatly enhance water

resources monitoring, ecological studies, and infrastructure manage-

ment (Brisco et al., 2017; Irwin, Beaulne, Braun, & Fotopoulos, 2017;

Ozesmi & Bauer, 2002).

Synthetic aperture radar (SAR) backscatter signals have been com-

monly used for surface water extraction (Brisco, 2015; Schlaffer, Chini,

Dettmering, & Wagner, 2016; White, Brisco, Pregitzer, Tedford, &

Boychuck, 2014), having two distinct benefits for earth observation

applications: (a) Radar systems can collect any time of day or night and

under poor weather or atmospheric conditions, and (b) backscatter

(radar reflections) provide different information to optical sensors. High

spatial resolution (1–5m) modes from RADARSAT‐2 have been used to

monitor small wetlands and enhance discrimination between land and

water allowing for better characterization and classification of wetlands

(Brisco, 2015; Schmitt, Liechtle, & Roth, 2012;White et al., 2014). Open

water areas have a high dielectric constant and act as a specular reflec-

tor under calm conditions causing very little backscatter to the sensor;

therefore, water appears dark (Di Baldassarre, Shucmann, Brandimarte,

& Bates, 2011). Based on this, several water boundary extraction algo-

rithms have been developed using pixel, object based, or threshold

classification approaches (Bolanos, Stiff, Brisco, & Pietroniro, 2016;

Brisco, 2015; Martinis, Kuenzer, Wendleder, & Dech, 2015).
1.2 | Wetland classification system

While the combination of several wetland classification systems

(regionally variable) enhances and clarifies wetland classification,

Stewart and Kantrud (1971) and Cowardin et al. (1979) are founda-

tional documents used for most marsh wetland assessments in the

PPR of North America (USA and Canada). Marshes are divided into

five different types based on open water and vegetation zones

(Figure 1). Each of these zones is subject to variable water levels and

vegetation succession depending on snowpack melt and rainfall. Class

I is highly variable, generally not displaying surface water, and has little

associated ecological or monetary value compared with the other clas-

ses (II to V; Alberta Environment and Sustainable Resource
d spatial relation of associated wetland riparian zones. Adapted from
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Development (ESRD), 2015); therefore, it is excluded from the study.

Hydroperiod of the four marsh wetland types (Table 1) is indicative

of how permanent the wetland is both seasonally and annually (Ameli

& Creed, 2017; Kantrud, Millar, & Van Der Valk, 1989; Stewart &

Kantrud, 1971). Semipermanent and permanent wetland types have

been merged into one class because of the limited 3‐year data series

(certainty of permanent [V] wetlands requires a longer time frame).

1.3 | Objective

This study examines how high‐resolution, C‐HH (horizontal transmit

and return to sensor) SAR data can be utilized to classify dynamic marsh

and shallow‐open water wetlands by associating surface water extent

and permanence. Objectives of the study were to (a) present and evalu-

ate an effective approach to derive water masks from SAR imagery and

compare them to water masks derived from temporally similar optical

imagery and (b) classify open water wetland hydroperiod and perma-

nency using frequency analysis over a 3‐year time period.
2 | MATERIALS AND METHODS

2.1 | Study area

The Shepard Slough study site is located along the western boundary

of the PPR (Figure 2) in a 278‐km2 polygon east of the City of Calgary,
TABLE 1 Marsh hydroperiod and defining vegetation zone based on the

Wetland type (S&K) Hydroperiod

Temporary (II) Surface water present for short time aft

Seasonal (III) Surface water present throughout grow

Semipermanent (IV) Surface water is present for most or all

Permanent (V) Surface water present throughout year.

FIGURE 2 (a) PPR in Canada and USA; (b) Shepard Slough case study are
Pumpjack; (e) Algae; and (f) Pothole. Vegetation transects surveyed in 201
Alberta, Canada (Figure 2b). Shepard Slough is characterized as an

urban fringe, suburban, agri‐human, and agricultural, modified prairie

pothole environment in the grassland natural region, with gently

rolling plains dominated by moderately calcareous glacial tills at an

average elevation of 1,030 m (Natural Regions Committee, 2006).

Four wetland study sites are examined, identified by defining

landscape features or proximity to existing wetland monitoring infra-

structure: “West Chestermere” (Figure 2c) and “Pumpjack” (Figure 2

d) are individual wetlands in agricultural fields in well‐defined depres-

sions (determined from a Lidar DEM). “Algae” (Figure 2e) and

“Pothole” (Figure 2f) are larger spatial scale areas containing many

individual hydrologically variable wetland components in dynamic

prairie pothole landscapes. These latter two wetland areas are more

disconnected from surface hydrological inflows due to upstream flow

diversions. The differences in hydrological drainage characteristics and

spatial coverage between the wetland focus areas were chosen to

evaluate the utility and effectiveness of the presented hydroperiod

analysis over a range of scales and wetland types.
2.2 | Synthetic aperture radar

RADARSAT‐2 SAR data were collected at each repeat cycle (24 days)

in 2013 to 2015 during the ice‐off season. Eighteen (six each year,

[Table 2]) Ultra‐Fine (U77) single look complex 20 × 20 km swath
Stewart and Kantrud (S&K) (1971) wetland classification system

Vegetation zone

er snowmelt or heavy rainfall. Wet meadow

ing season, dry by end of summer. Shallow wetland

the year, except in drought conditions. Deep wetland

Open water

a ~10 × 30 km adjacent to Calgary, Alberta; (c) West Chestermere; (d)
5 are shown as red in (c) and (d)
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images in ascending orbit, approximately equally spaced through the

vegetation growth season from April through August/September, are

used to derive surface water masks, with a nominal resolution of

2.8 × 2.8 m (Macdonald and Dettwiler and Associates Ltd, 2016).

Although the nominal resolution of the U77 mode SAR is

2.8 × 2.8 m, the SAR dataset was resampled to 5 × 5 m to match

the optical datasets spatial resolution (5 × 5 m) for validation purposes.

The SAR image from June 2015 had significant quality issues. There-

fore, to maintain consistent sample size (n = 6) for each year, an acqui-

sition from June 7, 2016, was substituted based on similar

environmental conditions (0 mm precipitation, Figure 6).

2.3 | Optical

RapidEye (Planet Labs) optical image data from May 8, 2014, and

Satellite Pour l'Observation de laTerre (SPOT) (Centre national d'études

spatiales) from July 15, 2015, and September 20, 2015, sampled at

5 × 5 m resolution were acquired on near‐coincident or coincident

days as some of the SAR data for validation purposes. All images were

atmospherically corrected. Surface water in all optical images was

classified using K‐means unsupervised classification (Burrough, Gaans,

& MacMillan, 2000; Burrough, Wilson, & van Gaans, 2001; Lane et al.,

2014).

2.4 | Lidar

Airborne Lidar data were collected by Airborne Imaging (Calgary,

Canada) in 2008 over the Shepard Slough area. Processing of a bare

earth 1 m × 1 m digital elevation model (DEM) was conducted follow-

ing the methods of Hopkinson et al. (2005). The Lidar DEM was used

for orthorectification of the SAR and optical data and provided

topographic validation for water surfaces within wetland basins while

illustrating the surface hydrologic flow pathways for the study area.

2.5 | Ground validation

Wetlands were chosen for the study from preexisting GoA stilling

wells and a series of optical images based on apparent riparian distur-

bance (Figures 2c–f). Of the four chosen study locations, two were

visited in the last week of July 2015 to determine surface water

extent and riparian habitat boundaries using a Global Navigation

Satellite System (Topcon HiPer SR (Livermore, CA, USA)) to

centimetre accuracy. Positions were differentially corrected to a static

base station using precise point positioning. Cross‐sectional transects
TABLE 2 Ultra‐Fine (U77) synthetic aperture radar acquisition dates
at Shepard Slough for 2013 to 2015 (2016)

2013 2014 2015

April 19 April 14 April 9

May 13 May 8 May 3

June 6 June 1 June 7 (2016)

June 30 June 25 —

July 24 July 19 July 14

August 17 August 12 August 31

— — September 24
were established extending perpendicularly away from the shorelines

and upwards from the wetlands to reflect vegetation zones and

changes in vegetation community composition. For each vegetation

band, the predominant plant species were identified, with abundance

ranking by estimated foliar cover. Common names, taxonomic treat-

ment, and life history characteristics are in accordance with

USDA‐Plants (United States Department of Agriculture, Natural

Resources Conservation Service; https://plants.usda.gov/java/), with

some wetland characteristics for a few species from Washington State

Department of Transportation lists (wsdot.wa.gov).
2.6 | Surface water extraction

A surface water threshold intensity/decibel (dB) extraction method

developed by White et al. (2014) was updated with current filter and

dB modules to extract surface water. Figure 3 presents a flow diagram

of the image processing, surface water extraction, and frequency anal-

ysis workflow. Images are calibrated to sigma naught (σo), converted

from linear to decibel, then filtered to reduce the amount of speckle

before applying a threshold value to the image, maintaining spatial res-

olution and edges (Schmitt & Brisco, 2013; White et al., 2014). The

FGAMMA (gamma) adaptive filter is used to preserve edges to main-

tain water extent (Toutin, 2011; Zhang et al., 2012). The FAV (averag-

ing mean filter) filter is used to reduce speckle and noise, and the FMO

filter is used to further reduce noise and has been found to help with

the orthorectification (White, Brisco, Dabboor, Schmitt, & Pratt, 2015).

FGAMMA and FAV filters are applied independently in parallel, to

avoid the possibility of compounded loss of water edge detail, then

combined later in the routine (White et al., 2014).

Extraction of the threshold decibel (dB) ranges that represent sur-

face water was sampled over a consistent area polygon (70 ha in area

[28,000 pixels]) at Chestermere Lake, which is a controlled reservoir.

The threshold (dB) sampling routine (95th percentile) is presented as

a manual process in this study, and the values are scene specific due

to weather effects on the backscattering but can be automated based

on training data or other surface water inventories (Peiman, Husam,

Brisco, & Hopkinson, 2016). Pixels not selected as surface water after

the FAV filter and not in FGAMMA are then not included as open water

to again preserve edges (White et al., 2014). Orthorectification to the

2008 Lidar DEM was performed in using rational function and meta-

data ground control points.
2.7 | Hydroperiod Analysis

A measure of water permanence and hydroperiod throughout the

growing season is performed using an “equals frequency” routine

on the six‐binary surface water raster images for each year

(Figure 4a), calculating the number of times a pixel is identified as

water in the same geographic location (Figure 4b). Reference rasters

contain a numerical pixel value that corresponds to the water pixel

values in the input rasters. Input rasters are binary and contain only

“0” (land) and “1” (water) values (Figure 4b). Reference rasters were

created by mosaicing all input water mask rasters into a new mask

with only “1” (water) values of the maximum extent of all input water

mask rasters. All water masks were clipped to the reference raster to

https://plants.usda.gov/java
http://wa.gov


FIGURE 3 Flow diagram of intensity (dB) threshold routine to create binary water masks and hydroperiod classification. Grey rectangles indicate
inputs, white icons are intermediate processes, and blue parallelograms represent final outputs. Software functions are italicized. DEM = digital
elevation model; SAR = synthetic aperture radar
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avoid commission of land before executing the equals frequency

routine.

The output pixel frequency corresponds to the number of months

(n = 6) used in each year (Figure 4c) then reclassified from frequency

values (1 to 6) to hydroperiod (Figure 4d), where 1–2 months repre-

sents “temporary” (S&K Class II), 3–4 months is “seasonal” (S&K Class

III), and 5–6 months is “semipermanent/permanent” (S&K Classes IV

and V), based upon Stewart and Kantrud (1971) and Cowardin et al.

(1979; Table 1). Wetlands that exist year round were not differenti-

ated from semipermanent in this study because SAR cannot directly

detect water under winter snow and ice conditions, and thus, the cer-

tainty of a permanent (class V) wetland is uncertain. Consequently,

class V (permanent water bodies) constitute a subset of class IV wet-

lands in this study.
3 | RESULTS

3.1 | SAR binary water mask extraction

Results indicate that the intensity thresholding technique developed

by White et al. (2014) is effective for extracting surface water of large

and small wetlands in a dynamic prairie pothole marsh environment

(Figure 5). The average upper dB threshold limit was found to be

−14 dB, and the lower limit −31 dB, with dB ranges varying with

weather and ground conditions (Table 3 and Figure 6). May 13,

2013, and August 31, 2015, outputs were found to be of poor quality

for surface water extraction due to high backscatter from waves asso-

ciated with high winds (gusts up to 67 and 57 kph, respectively,

Table 3), resulting in similar dB ranges in water bodies as surrounding



FIGURE 4 Visual flow diagrams of (a) binary water mask stacking; (b) equals frequency routine; (c) unclassified pixel frequency output; and (d)
hydroperiod classification. Binary water masks and hydroperiod rasters overlay a lidar digital elevation model for visualization purposes.
SAR = synthetic aperture radar
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areas of known land. Notable change in surface water extent of larger

wetland areas is seen in these images, compared with smaller

wetlands.
3.2 | SAR and optical validation

Ten optical mask classifications of RapidEye and SPOT images were

tested for classification accuracy based on training areas, with overall

optical classification accuracies ranging from 87% to 95%, and Kappa

values ranging 0.72 to 0.87. SAR and optical water masks were

compared using two sets of near‐coincident acquisitions (within

4 days) and one set of temporally coincident (May 8, 2014; Figure 7

), presenting positive correlations of 76.6% to 92.1% (Table 4).
3.3 | Field validation

Pumpjack and West Chestermere are wetlands that have minimal

agricultural disturbance from activities such as tilling, allowing for

riparian vegetation growth, validated from riparian vegetation
composition and abundance during field data collection (Figure 8b;

Tables 5 and 6). The RMSE of the riparian transects and water extent

observed in field validation data and optical data were between 0.2

and 0.7 m, less than 10% error between field and model, or approxi-

mately 0.5 m.

A mixture of native species and extensive occurrence of intro-

duced plants was observed at all sites, generally associated with the

prairie agricultural regions, with some weedy and invasive species

(Table 6). Indicator plant species include duckweed, cattail, sedges,

mannagrass, and reed canary grass, which characterize inundation

patterns and summer positions above the groundwater table, vegeta-

tion zones, and hydroperiod. Based on the vegetation species compo-

sition and zones observed at both wetlands, the habitat zones are

classified as follows: H5, aquatic open water; H4, deep marsh zone;

H3, shallow marsh zone emergent plants and obligate wetland species;

H2, wet meadow zone with facultative wetland species; and H1, low

prairie zone with facultative upland plants. These habitat zones corre-

spond to those found in a Classes IV or V marsh wetland described by

Stewart and Kantrud (1971; Figure 1). Five indicator ratings based on



FIGURE 5 Synthetic aperture radar derived surface water masks using the intensity (dB) thresholding approach for 2013 (top row), 2014
(middle), and 2015 (bottom). Images show the dynamic changes of wetland surface water over the growing season at Shepard Slough. Note
that quality issues with May 13, 2013; August 31, 2015; and that June 7, 2016 are substituted for June 2015
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Lichvar, Melvin, Butterwick, and Kirchner (2012) designate the prefer-

ence of a plant species' occurrence in a wetland environment, ranging

from “obligate wetland,” being the highest preference for wetland

environments, to “obligate upland,” being the lowest preference in

wetlands (Table 7). The entire range of indicator species is represented

in the vegetation zones observed at Pumpjack and West Chestermere

(Tables 5 and 6).

Some apparent unique vegetation banding was observed (duck-

weed communities at Pumpjack, transect two), but overlap of species

was observed across the sequential vegetation zones at each wetland

(foxtail barley and smooth brome). Reasonable consistency for multi-

ple transects within sites was observed, with some consistency of

indicator species across the two wetland sites (mannagrass and

sedges).
3.4 | Wetland hydroperiod frequency analysis

Wetland hydroperiod classification results and associated area of

each hydroperiod class in hectares are detailed for each year
(2013–2015) at the four study sites, presented in Figure 9. SAR

acquisition date, daily precipitation, and temperature information

from the Calgary International Airport weather station, the closest

weather station to the study area, are detailed in (Figure 6). Precipita-

tion over the study period (April–September) for each year is as

follows: 2013 = 384 mm, 2014 = 289 mm, and 2015 = 310 mm

(118 mm in late August), compared with an average of 346 mm over

the same months from 2007 to 2016. Notable rainfall events are seen

in May and June of 2013, as well as August and September of 2015.

For both well‐defined basin wetlands (Pumpjack and West

Chestermere), less open water is observed in 2013, which was the

year with the most precipitation (West Chestermere has 11.5 ha in

2013, compared with 13.9 ha in 2014, and 14.7 ha in 2015; Pumpjack

has 16.3 ha in 2013, 20.0 ha in 2014, and 17.8 ha in 2015), whereas

pothole area wetlands (Algae and Pothole), somewhat counterintui-

tively, do not follow the same trend, potentially due to differences

in riparian vegetation growth, and wetland shape and size (Figure 9),

or perhaps is a constraint of the Radarsat‐2 24‐day repeat imaging

interval.



TABLE 3 Confusion matrix of near‐coincident SAR and optical (RapidEye and SPOT) data from 2014 and 2015

Acquisition date
(yyyy‐mm‐dd)

Upper limit
(dB)

Lower limit
(dB)

dB range percentage (%)
of pixels used from
sample area

Wind/gust speed
(km/hr)

Daily precipitation
(mm)

2013‐04‐19 −16 −30 89 21/no data 1‐cm snow

2013‐05‐13 −18 −32 89 28/67 Trace rain

2013‐06‐06 −17 −30 90 23/43 Trace rain

2013‐06‐30 −15 −28 85 15/35 0

2013‐07‐24 −13 −30 85 14/31 0.8

2013‐08‐17 −18 −32 90 14/50 0.6

2014‐04‐14 −9 −25 89 20/37 0

2014‐05‐08 −15 −30 85 34/44 0

2014‐06‐01 −8 −28 94 13/46 5.4

2014‐06‐25 −14 −30 86 14/57 2.1

2014‐07‐19 −15 −32 90 17/31 No data

2014‐08‐12 −14 −32 90 27/48 0

2015‐04‐09 −15 −33 85 13/31 0

2015‐05‐03 −15 −32 92 5/35 Trace rain

2016‐06‐07 −15 −30 88 34/44 0

2015‐07‐14 −8 −31 90 19/52 0.4

2015‐08‐31 −10 −30 88 12/57 0

2015‐09‐24 −17 −33 88 16/35 0

Average −14 −31 89 19/44 —

Note. Results do not represent absolute accuracies, as optical water masks contain some uncertainty, and the two weaker comparison results represent
acquisitions from different days.

FIGURE 6 Meteorological data with monthly average temperature and daily precipitation for Shepard Slough recorded at the Calgary
International Airport. Note that total precipitation for June 7, 2016, was the same as June 7, 2015, at 0 mm. SAR = synthetic aperture radar
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Seasonal hydroperiod class fluctuations are identified in hydrope-

riod histograms detailing hydroperiod classes by year (Figure 10). The

seasonal hydroperiod is found to be more variable than temporary and

semipermanent in both “Algae” and “Pothole,” whereas the semiper-

manent/permanent hydroperiod is most variable in the defined basin

wetlands of Pumpjack and West Chestermere. This indicates isolated
pothole wetland hydroperiods are more spatially variable than deeper

wetlands in defined basins with surface hydrological connectivity or

downstream flow obstruction.

West Chestermere similarly to Pumpjack is contained in a well‐

defined moderate‐sized catch basin and has similar hydroperiod pat-

terns. One difference is the spike in seasonal hydroperiod in 2013,



FIGURE 7 Comparison of binary water masks for temporally coincident SAR (left) and RapidEye (middle) on May 8, 2014. Cloud (white) and
shadow (black) are shown in the RapidEye image. Correlation (right) shows areas of agreement in purple, SAR only as red, and RapidEye only
as blue. SAR = synthetic aperture radar

TABLE 4 SAR acquisition dates and surface water intensity decibel (dB) ranges, with associated pixel contributions

SAR date Optical date True positive False positive Misclassification rate Overall (%)

2014/05/08 2014/05/08 92.1 0.5 0.3 95.2

2015/07/15 2015/07/14 76.5 1.2 4.7 88.7

2015/09/24 2015/09/20 84.8 2.9 1.4 96.1

Note. Wind (km/hr) and daily precipitation (mm) information from the Calgary, Alberta International Airport is also provided. SAR = synthetic aperture radar.
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resulting in more seasonal than semipermanent hydroperiod at over

5 ha, compared with 2–3 ha observed in 2014 and 2015. Higher var-

iation from the mean is seen in the semipermanent class at Pumpjack

and west Chestermere. Lower variation from the mean is seen in the

seasonal class at Algae and Pothole (Figure 9). Hydroperiod fluctua-

tions occur frequently and have inconsistent duration in “Algae” and

“Pothole” study areas where rain events (Figure 6) contribute

disproportionate temporary hydroperiod (Figure 10), even in a drought

year (2015) where many temporary hydroperiod pixels are found in

areas along roadways (ditches) and shallow depressions on the

landscape (Figure 9). This variability in per‐pixel hydroperiod class is

moderated in Pumpjack and West Chestermere, presumably because

of increased surrounding hydrological connectivity (West Chestermere)

or diminished opportunity for surface drainage (Pumpjack).
4 | DISCUSSION

4.1 | Riparian vegetation and hydroperiod variation

Wetlands with predominantly semipermanent hydroperiods may

contain fewer riparian vegetation species because of more consistent

surface water extents (Figure 10). This is mostly reflected in deep
wetland, and aquatic habitat zones because of reduced variation from

the semipermanent hydroperiod (Table 5). Semipermanent or perma-

nent marsh wetlands surrounded by temporary hydroperiods may pro-

mote greater ecological diversity, described in Stewart and Kantrud

(1971). Consistently similar ratios between the three hydroperiod

classes each year and presence of each hydroperiod observed at

Pumpjack indicate low class variability and stable conditions across

the 3 years studied (temporary, 3 to 4 ha; seasonal, 3 to 4.5 ha; semi-

permanent, 10 to 13 ha). The most noticeable difference in surface

water extent is seen in the northeast corner of “Pumpjack” (Figure 9),

which is dominated by common cattail (Typha latifolia). In images from

2013 and 2014, this band of cattail is easily identifiable, appearing

as elevated topography (1–2 m height) adjacent to the surface water.

In 2015, however, this area is inundated by temporary surface water.

This inundation would reduce the vigour and density of these cattails,

and this emergent plant is subject to seasonal die‐off as reported by

Brisco et al. (2017) in similar vegetated wetland environments.

Open water can be covered by varying extents of emergent and

floating aquatic vegetation during certain growth stages throughout

the year (Brisco et al., 2017). Significant rain events on May 23–24,

2013 (74 mm), and June 2–3 in 2013 (42 mm) likely promoted

riparian and emergent vegetation growth earlier in the growing



FIGURE 8 Wetland vegetation and water
extent field transects collected in July 2015
near‐coincident with SAR acquisition over: (a)
Pumpjack (Transect 3, Table 5) and (b) West
Chestermere (Transect 2, Table 5). Green
points indicate field points. RapidEye

vegetation zone colours have not been
reclassified to represent a particular zone,
therefore just indicate where general zones
transition along transects. SAR = synthetic
aperture radar

TABLE 5 Riparian vegetation species transects for Pumpjack and West Chestermere

Wetland Transect Habitat zone Plants sequenced by decreasing abundance

Pumpjack

1 H1 Foxtail, sowthistle, goosefoot, mannagrass, cattail

H2 Goosefoot, cattail

H3 Cattail, buttercup

2 H1 Foxtail, cattail

H2 Foxtail, goosefoot, sloughgrass, cattail, mannagrass

H3 Goosefoot, bur‐reed, dandelion

H4/5 Duckweed

H4/5 Duckweed

3 H1 Foxtail

H2 Foxtail, sloughgrass, sedges

H3 Buttercup, goosefoot, cattail, bulrush

H4 Lamb's quarter, dandelion, goosefoot, ranunculus

West Chestermere

1 1 Brome, rush, dandelion, sowthistle

2 Sedges, foxtail, quackgrass, rush

3 Mannagrass, foxtail

4 Foxtail, goosefoot, manna grass

2 1 Brome, reed, wheatgrass, wildrye

2 Foxtail, manna grass, sedges

3 Manna grass, spikerush, sedges

4 Sedges

3 1 Brome, reed canary grass, wheatgrass, wildrye

2 Foxtail, manna grass, sedges

3 Mannagrass, spikerush, sedges

4 Sedges

Note. Refer to Figure 2c,d for transect locations. Transect 3 is seen in Figure 8.
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season, resulting in less open water being identified by the threshold

routine, which does not recognize flooded vegetation as a clear

unobstructed open water surface (Brisco et al., 2017; White et al.,

2014). Wetland surface water extent was found to change dynami-

cally, corresponding to rainfall occurring seasonally or annually. This

effect is seen in both “Algae” and “Pothole” where an increase in

temporary hydroperiod is related to precipitation events in May–June

2013 and August–September 2015. In the year with the closest to

“normal” (2014) rainfall magnitude and frequency, a sharp increase
in seasonal hydroperiod of pothole wetlands (algae [2013 = 15 ha,

2014 = 32 ha, and 2015 = 12 ha] and pothole [2013 = 12 ha,

2014 = 18 ha, and 2015 = 2 ha]) is observed, suggesting these

wetlands experience an overall increase in water area, but also transi-

tion to a seasonal hydroperiod from either temporary or semiperma-

nent in comparatively dry or wet years.

Most notable is the variation from the mean of hydroperiod clas-

ses in the “Algae” semipermanent hydroperiod (Figure 11). In the 2013

wet year, there is 33% more semipermanent water compared with the



TABLE 6 Most common plant species around the Pumpjack and West Chestermere wetlands, sequenced by decreasing occurrence across
transect habitat zones

Rank
occurrence Common name* Scientific name

Native/
intro. Growth Wetland status Comment

1 (48%) Foxtail barley Hordeum jubatum L. N (hybrid) Graminoid Facultative Generalist – weed hybrid

2 (35%) Sedges, inc. beaked sedge Carex sp., including C. rostrata Stokes N Graminoid Obligate wetland Specialists, hydrophytic

3 (30%) Mapleleaf goosefoot Chenopodium simplex (Torr.)R N Forb Upland Disturbance promoted

4 (30%) American mannagrass Glyceria grandis S. Watson N Graminoid Obligate wetland Short/tall to 1.5 m

5 (26%) Broadleaf cattail Typha latifolia L. N Forb Obligate wetland Often emergent

6 (17%) Tall buttercup Ranunculus acris L. I Forb Facultative
wetland

Prolific weed

7 (13%) Common dandelion Taraxacum officinale F.H. Wigg. I Forb Facultative upland Widespread weed

8 (13) Smooth brome Bromus inermis. Leyss I Graminoid Obligate upland Weedy or invasive

9 (9%) Common sowthistle Sonchus oleraceus L. I Forb Facultative upland Noxious weed in Alberta

10 (9%) Reed canary grass Phalaris arundinacea N (hybrid) Graminoid Facultative
wetland

Concern for riparian zone

11 (9%) Sloughgrass Beckmannia syzigachne Stued. N Graminoid Obligate wetland Specialists, hydrophytic

12 (9%) Western wheatgrass Agropyron smithii (Rydb.) N Graminoid Facultative upland Upland regions

13 (9%) Canada wildrye gras Elymus sp. N/I Graminoid Facultative upland Upland regions

14 (9%) Wire rush Juncus arcticus Willd. N Graminoid Facultative
wetland

specialists, hydrophytic

15 (9%) Common duckweed Lemna minor L. N Forb/herb Obligate wetland Hydrophytic

16 (4%) Bur‐reed Sparganium L. N Forb/herd Obligate wetland Often emergent

17 (4%) Bulrush Schoenoplectus tabernaemontani
(Gmel.)

N Graminoid Obligate wetland Often emergent

18 (4%) Lamb's quarter Chenopodium album L. I Forb Facultative Disturbance promoted

19 (4%) Quackgrass Elymus repens (l.) G. I Graminoid Facultative Weedy or invasive

20 (4%) Common spikerush Eleocharis palustris (L) R&S N Graminoid Obligate Seasonally flooded areas

TABLE 7 Wetland indicator statuses used to designate plant species preference for occurrence in wetland or upland (Lichvar et al., 2012)

Indicator Species Comment

Obligate wetland Always occur in wetlands

Facultative wetland Usually occur in wetlands, but may occur in non‐wetlands

Facultative Occur in wetlands and non‐wetlands

Facultative upland Usually occur in non‐wetlands, but may occur in wetland

Obligate upland Almost never occur in wetlands
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3‐year mean, whereas in the dry 2015 year, there is 34% less semiper-

manent water compared with the mean. In 2014, there is only a 0.5%

change from the mean over the 3‐year study period, suggesting an

increase or decrease in overall precipitation in the early growing

season (April–June) with inversely related effects on the semiperma-

nent hydroperiod when comparing each year. This trend comparison

has potential to be a more widely applicable tool for monitoring that

moves away from detailed measurements of local regions and time

periods, into a more general measure of variation that provides an

index of wetland ecosystem state and function.
4.2 | Data limitations, uncertainties, and future
directions

The major limitation of the study relates to temporal image frequency.

Because prairie wetlands are hydrologically dynamic (Figures 10 and

11) and heavily influenced by precipitation events (Figure 6), there is

a need for increased temporal resolution to better represent short‐
term variations in hydroperiod. SAR beam modes other than ultra‐fine

(U77) such as standard quad (SQ1) could be used to increase the

frequency of data collection to enhance the temporal resolution, but

each mode has different incidence angles and orbits when collecting

data. This results in different backscattering and decibel values

between modes due to unique look angles that increases uncertainty

of surface water extents. HH polarization of quad or dual polarization

data could also be used to extract surface water or emergent vegeta-

tion with a trade‐off for spatial resolution. Because this study focused

on high‐resolution monitoring of surface water extents on a per pixel

basis, the uncertainties associated with using multiple modes to

increase the temporal resolution was considered too great. The

C‐Band RADARSAT Constellation Mission (RCM) planned for launch

in 2018 will offer advanced capabilities for monitoring surface water

with high spatial resolution modes (1–3 m), providing enhanced

monitoring of smaller wetlands (Canadian Space Agency, 2016). The

revisit time of RCM is 4 days (compared with 24 days for

RADARSAT‐2), allowing for more frequent monitoring and over larger



FIGURE 9 Hydroperiod results for Pumpjack, West Chestermere, Algae, and Pothole study areas with associated area in hectares of each
hydroperiod. Hydroperiods are shown as yellow for temporary (1–2 months), green for seasonal (3–4 months), and blue for semipermanent/
permanent (5–6 months). A lidar digital elevation model is used as the background to illustrate surrounding terrain
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areas. Increased temporal resolution has several implications for

wetland hydroperiod classification: (a) precipitation events and subse-

quent local surface water changes will be better represented; (b)

weekly hydroperiod comparisons can be made instead of monthly;

and (c) increased acquisition frequency will make it easier to find

coincident date optical data for comparative validation and data

product improvement. This is important for understanding water

resources and hydrological variations, especially in ungauged basins.

When a SAR image is acquired in conditions with little wind or

surface water roughness, HH has been shown to be the best suited

to mapping surface water (White et al., 2014). Although the majority

of HH polarization images were found to be of adequate quality for

the analysis (Table 3 and Figure 5), some of the images did show

significant surface roughness from wind and were therefore unusable

for surface water extraction. Although dual polarization data (HH, HV)
was not used, or tested in this study, we see the influence of wind

effects in some images (May 3, 2013, and October 31, 2015) that

could be mitigated using dual polarization data (White et al., 2014)

or, instead, texture‐based analysis that works well over some rough

water environments (Li & Wang, 2017). Although the consistent

sample area polygon reduces the amount of error introduced in the

thresholding approach through user selection, uncertainty can still be

introduced to the routine when choosing the threshold range from

the output dB histogram.
4.3 | Implications of wetland hydroperiod time series

The SAR‐derived binary water mask hydroperiod classification

described in this study differs from other classification routines, as it

combines a series of images into a dynamic surface water hydroperiod



FIGURE 10 Hydroperiod classes grouped by year for each study wetland, showing average and variation of hydroperiod from the mean (orange)
for each wetland study site

FIGURE 11 Interannual variation (%) of each wetland hydroperiod class from the mean (“0” representing the mean) of each hydroperiod class for
each wetland study area from 2013 to 2015
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product over the growing season of wetlands, rather than evaluating

hydroperiod based on single snapshots in time. The performance and

results of the hydroperiod classification may require further evaluation

with the greater temporal resolution attained from RCM, in order to

perform more rigorous validation. However, the hydroperiod analysis

and methodology presented in this study provides a framework for

long‐term, high‐resolution water resource monitoring describing more

than just water extent of wetlands, allowing for enhanced characteri-

zation and classification of wetlands in accordance with Alberta's

provincial wetland classification criteria. It should be noted that the

frequency routine could be carried out on any type of data that can

produce binary water mask rasters (i.e., optical, Lidar).
5 | CONCLUSION

This study details a framework for a new time‐series classification

approach based on hydroperiod and hydro‐climatic conditions. The

frequency analysis and classification based on Stewart and Kantrud

(1971) provide a novel method of classifying dynamic marsh environ-

ments using temporal SAR data that can be largely automated. Results

suggest water mask frequency analysis can be used to determine

hydroperiod and permanency of wetlands in the PPR and can poten-

tially be adapted to other environments.

Hydroperiod, variation from the mean and surface water extent of

the wetlands, was found to be heavily influenced by short‐term rainfall

events observed in both abnormally wet and dry years, where

staggered and persistent rainfall yielded the highest water surface

area. Furthermore, the seasonal hydroperiod in many wetlands was

found to be highly variable at sites when there is a decrease in either

the temporary or semipermanent class. Temporary hydroperiod class

was observed in higher ratios at times following extreme rain events

compared with both seasonal and semipermanent.

Future research on the use of SAR for wetland hydroperiod

classification would benefit from higher temporal resolution data to

increase class reliability. The strength of the study is the ability to

construct and examine meaningful hydroperiods of wetlands on large

temporal and spatial scales that provide defining characteristics rele-

vant to the current Alberta Environment and Sustainable Resource

Development (ESRD) (2015) criteria, and better understanding the

response of ungauged wetlands to precipitation events and evapo-

transpiration. This is of relevance to decision or policy makers requir-

ing accurate and temporally representative analysis of wetlands being

impacted by infrastructure, agriculture, or climate change. In addition,

it will help hydrology models, as there is currently few prairie pothole

wetland inventories. With the existing SAR satellites and inventory,

such as RADARSAT‐2, Sentinel, TerraSAR X, and the upcoming

RCM, temporal resolution of many environmental monitoring

processes involving the stacking of data can be greatly enhanced

and applied to the hydroperiod methodology presented in this paper

for monitoring wetlands.

The work presented is well suited to a systematic monitoring

regime, as with the addition of new SAR data, the hydroperiod classi-

fication increases in accuracy and can be constantly updated, combin-

ing both monitoring and classification into a single framework. With
the fusion of optical and/or lidar data describing riparian vegetation

communities, the hydroperiod analysis could be the basis for a more

comprehensive wetland classification and monitoring framework. It

also provides a valuable platform for land use permitting and regula-

tion in heavily disturbed prairie or agri/urban landscapes, benefiting

ecosystem service and function appreciations.
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