Answers to Exercise 10.1 Hydrogen

1. D is ²H (hydrogen with an extra neutron in its nucleus)

The mass of D_2O is higher than the mass of H_2O ; however, since the extra mass is all in the nucleus, the two types of water have approximately the same volume-per-molecule. Since density is mass divided by volume, increasing mass without changing volume increases density.

2.

- (a) H^+ charge +1 $1s^0$ (no electrons)
- (b) H^- charge -1 $1s^2$ (same as helium)

3.

- (a) $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ At 900-1000 °C, we expect all four species to be in the gas phase. The name "steam reformation" also implies that the water is in the gas phase.
- (b) $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$ At 400-500 °C, we still expect all four species to be in the gas phase.
- (c) The first step is endothermic. The second step is exothermic.
 The fact that the second step is still heated suggests that there is a significant activation energy to be overcome for this reaction to proceed.

4.

- Ionic hydrides contain H^- anions with ionic bonds to cations of Group 1 or 2 metals e.g. NaH, KH, CaH₂, ...
- Covalent hydrogen compounds contain H atoms covalently bonded to other atoms e.g. H₂, H₂O, CH₄, NH₃, ...
- Metallic hydrides contain H atoms "dissolved" in metals (filling holes in the metal lattices) e.g. H₂ dissolved in Ni, Pd, Pt, ...