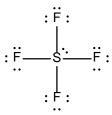
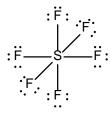

Answers to Exercise 11.1 Assigning Oxidation States

While there are multiple acceptable resonance structures for several of the molecules/ions, you get the same oxidation states regardless of which of the resonance structures you have drawn.

1.



oxidation state of H is +1 oxidation state of S is -2


oxidation state of F is -1

oxidation state of S is +2

(c)

(d)

oxidation state of F is -1

oxidation state of S is +4

oxidation state of F is -1

oxidation state of S is +6

(e)

$$\ddot{\mathbf{S}} = \ddot{\mathbf{S}} = \ddot{\mathbf{S}} \quad or \quad \ddot{\mathbf{S}} = \ddot{\ddot{\mathbf{S}}} = \ddot{\ddot{\mathbf{S}}}$$

)

oxidation state of O is -2

oxidation state of S is +4

oxidation state of O is -2

oxidation state of S is +6

2. The sulfur atom in H_2S has the most electron density. It is the only one with a negative oxidation state and therefore the only one with a partial negative charge.

The sulfur atoms in SF_6 and SO_3 have the least electron density. They have the most positive oxidation state and therefore the most positive charge (though not nearly as high as +6!).

3.

oxidation state of C1 is +3 oxidation state of O is -2

oxidation state of Cl is +1 oxidation state of O is -2

oxidation state of O is -1

(b)
$$\ddot{\Box}$$
 $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$ $\ddot{\Box}$

oxidation state of Cl is +5 oxidation state of O is -2

oxidation state of Cl is +3 oxidation state of O is -2

oxidation state of S is -2 oxidation state of C is +4 oxidation state of N is -3