Exercise 12.1 Ligands

- 1. For each of the ligands listed below:
 - Draw one valid Lewis diagram that shows the correct molecular geometry of all atoms in the ligand. This may require you to have a "draft" Lewis diagram which you redraw after you work out the geometry.

 Include any non-zero formal charges on the appropriate atoms.
 - Identify which atom(s) can co-ordinate to a transition metal cation simultaneously
 - Classify the ligand as monodentate, bidentate, tridentate, etc.
 - Indicate how many molecules/ions of that ligand are required to make an octahedral complex (if it is the only ligand used)
- (a) CO (b) CO_2
- (c) N_3^- (d) NO_2^- can co-ordinate to a transition metal cation in 3 different ways; can you think of them all?

- (e) $C_2O_4^{2-}$ (oxalate ion)

 commonly abbreviated as "ox";

 C are connected to each other and each C has two O attached
- (f) NH₂CH₂CH₂NH₂ (ethylenediamine) commonly abbreviated as "en"; C are connected to each other and each C has one N attached; each "larger" atom has two H attached