Answers to Exercise 12.1
 Ligands

1.

(a)

C can co-ordinate to a transition metal via its lone pair (C^{-}is a better Lewis base than O^{+}) CO is a monodentate ligand
six CO are required to make an octahedral complex
(b)

one of the O can co-ordinate to a transition metal via one of its lone pairs (since CO_{2} is linear, both O cannot reach the same cation at the same time)
CO_{2} is a monodentate ligand six CO_{2} are required to make an octahedral complex
(c)

one of the terminal N can co-ordinate to a transition metal via one of its lone pairs (since N_{3}^{-}is linear, both N cannot reach the same cation at the same time)
N_{3}^{-}is a monodentate ligand
six N_{3}^{-}are required to make an octahedral complex
(d)

three different ways to co-ordinate to a single transition metal:

- one of the terminal O can co-ordinate to a transition metal via one of its lone pairs
- *both* terminal O can co-ordinate to a transition metal via one lone pair each (since NO_{2}^{-}is bent, both O can reach the same cation at the same time)
- the N can co-ordinate to a transition metal via its lone pair
NO_{2}^{-}can act as either a monodentate (first and third options in list above) *or* bidentate ligand (second option in list above)
six NO_{2}^{-}are required to make an octahedral complex when it acts as a monodentate ligand; three NO_{2}^{-}are required to make an octahedral complex when it acts as a bidentate ligand.
(e)

two O (one attached to each C) can co-ordinate to a transition metal via one lone pair each (the geometry of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ allows two O to reach the same cation at the same time)
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ usually acts as a bidentate ligand (as described above)
(given the geometry of this ligand, if one O is close enough to a transition metal cation to co-ordinate to it, one of the O attached to the other C will also be very close to the transition metal cation)
three $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ are required to make an octahedral complex
(f)

It's not the end of the world if your diagram doesn't look *exactly* like this.
What must be the same:

- connectivity (which atoms are attached to which),
- lone pairs on N,
- both C are tetrahedral (wedge and dashed wedge must be next to each other; if there is a line between them, that signifies square planar geometry)
- both N are trigonal pyramidal
- NO 90° angles!!!
both N can co-ordinate to a transition metal via one lone pair each
(the geometry of $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ allows both N to reach the same cation at the same time)
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ usually acts as a bidentate ligand (as described above)
(given the geometry of this ligand, if one N is close enough to a transition metal cation to co-ordinate to it, the other N can also rotate to be very close to the transition metal cation) three $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ are required to make an octahedral complex

