Exercise 2.1
 Counting Subatomic Particles

1. Complete the table below (one column per isotope):

symbol	${ }^{96} \mathrm{Ru}$	${ }^{135} \mathrm{Ba}^{2+}$			
\# protons				29	
\# neutrons			20	36	36
\# electrons			18		30
overall charge			-1	+2	0

2. For each of the following pairs of atoms, indicate which (if either) has more neutrons.
(a) ${ }^{77} \mathrm{Se}$ or ${ }^{79} \mathrm{Br}$
(b) ${ }^{40} \mathrm{Ca}$ or ${ }^{40} \mathrm{Ar}$
(c) ${ }^{31} \mathrm{P}$ or ${ }^{32} \mathrm{~S}$
3. There is one naturally occurring isotope of gold (Au). What is its mass number?
4.

(a) Rhenium (Re) has two naturally occurring isotopes: ${ }^{185} \mathrm{Re}$ and ${ }^{187} \mathrm{Re}$ with isotopic masses of 184.95 u and 186.96 u respectively. Which of these two isotopes has the higher natural abundance? Explain your choice.
(b) How many protons, neutrons and electrons does a neutral atom of ${ }^{187} \mathrm{Re}$ contain?
\qquad protons \qquad neutrons \qquad electrons

