Answers to Exercise 2.1 Counting Subatomic Particles

1.

symbol	⁹⁶ Ru	$^{135}Ba^{2+}$	³⁷ Cl ⁻	⁶⁵ Cu ²⁺	⁶⁶ Zn
# protons	44	56	17	29	30
# neutrons	52	79	20	36	36
# electrons	44	54	18	27	30
overall charge	0	+2	-1	+2	0

2.

(c)

(a) ⁷⁹Br ⁷⁷Se has 34 protons and 43 neutrons ⁷⁹Br has 35 protons and 44 neutrons

> neither ³¹P has 15 protons and 16 neutrons ³²S has 16 protons and 16 neutrons

(b) ${}^{40}Ar$

⁴⁰Ca has 20 protons and 20 neutrons ⁴⁰Ar has 18 protons and 22 neutrons

3. 197

Look up the average atomic mass of gold on the periodic table. It is 196.97 u. If there is only one isotope of gold, it must be 197 Au (since 196.97 rounds to 197 and it is impossible for a mass number to be anything other than a whole number).

4.

(a) ¹⁸⁷**Re**

Its atomic mass is closer to the average atomic mass of Re (186.207 u).