Answers to Exercise 2.2
 Isotopic Mass Calculations

1.

$M_{S r}=\left(\frac{0.56 \%}{100 \%} \times 83.9134 u\right)+\left(\frac{9.86 \%}{100 \%} \times 85.9093 u\right)+\left(\frac{7.00 \%}{100 \%} \times 86.9079 u\right)+\left(\frac{82.58 \%}{100 \%} \times 87.9056 u\right)$
$M_{S r}=0.47 u+8.47 u+6.08 u+72.59 u$
$M_{S r}=87.62 u$
Your answer should have 2 decimal places (see second line of calculation; all digits must be retained in the calculator until the final answer is obtained) therefore 4 significant figures.
This answer matches the mass on the periodic table and is similar to all of the isotopic masses, so it seems reasonable.
2. Step 1: Look up average atomic mass of rubidium (Rb) on periodic table
$M_{R b}=85.4678 u$
Step 2: Work out the percent abundance for each isotope
If the percent abundance of ${ }^{85} \mathrm{Rb}$ is 72.165% then the percent abundance of ${ }^{87} \mathrm{Rb}$ must be $100 \%-72.165 \%=27.835 \%$ (since the sum of the percent abundances must be 100\%).
Step 3: Calculate the isotopic mass of ${ }^{87} \mathbf{R b}$

$$
\begin{aligned}
& M_{R b}=\frac{\%_{R b-85}}{100 \%} M_{R b-85}+\frac{\%_{R b-87}}{100 \%} M_{R b-87} \\
& 85.4678 u=\left(\frac{72.165 \%}{100 \%} \times 84.9118 u\right)+\left(\frac{27.835 \%}{100 \%} \times M_{R b-87}\right) \\
& M_{R b-87}=\frac{(85.4678 u-61.277 u)}{0.27835}=86.909 u
\end{aligned}
$$

Step 4: Check your work
Does your answer seem reasonable? Are sig. fig. correct?
${ }^{87} \mathrm{Rb}$ should have a mass that is approximately 87 u .
3. Step 1: Look up average atomic mass of iridium (Ir) on periodic table

$$
M_{I r}=192.22 u
$$

Step 2: Set up equations relating percent abundances to average atomic mass and to each other

$$
M_{I r}=\frac{x}{100 \%} M_{I r-191}+\frac{y}{100 \%} M_{I r-193}
$$

There are only two naturally occurring isotopes, so $\mathrm{x}+\mathrm{y}=100 \%$
Step 3: Solve for one of the two percent abundance values (solving for \mathbf{x} is shown)

$$
\begin{aligned}
& M_{I r}=\frac{x}{100 \%} M_{I r-191}+\frac{100 \%-x}{100 \%} M_{I r-193} \\
& 192.22 u=\frac{x}{100 \%}(190.9606 u)+\frac{100 \%-x}{100 \%}(192.9629 u) \\
& 19222 \%=x(190.9609)+19296.29 \%-x(192.9629) \\
& 2.0022 x=74 \% \\
& x=37 \%
\end{aligned}
$$

Therefore, the natural abundance of ${ }^{191}$ Ir is 37%

Step 4: Solve for the other percent abundance value

The natural abundance of ${ }^{193} \mathrm{Ir}$ is $100 \%-37 \%=63 \%$

Step 5: Check your work

Does your answer seem reasonable? Are sig. fig. correct?
The average atomic mass of Ir is greater than 192 u (the "halfway point" between 191 and 193), so we expect the natural abundance of ${ }^{193}$ Ir to be greater than that of ${ }^{191}$ Ir.

