## Exercise 2.3

## Balancing Nuclear Reaction Equations

1. Balance the equations for the following series of nuclear reactions by filling in the blanks.
(a) ${ }_{92}^{238} U+\quad \rightarrow{ }_{92}^{239} U$
(b) ${ }_{92}^{239} U \rightarrow{ }_{93}^{239} N p+$
(c) $\quad{ }_{93}^{239} N p \rightarrow{ }_{94}^{239} \mathrm{Pu}+$
(d) ${ }_{94}^{239} \mathrm{Pu}+\quad \rightarrow{ }_{94}^{240} \mathrm{Pu}$
(e) $\quad{ }_{94}^{240} \mathrm{Pu} \rightarrow{ }_{92}^{236} U+$
2. $\quad{ }_{94}^{240} \mathrm{Pu}$ can also undergo spontaneous fission.
(a) If the fission products are ${ }_{40}^{100} \mathrm{Zr}$, one other nuclide and two neutrons, what is the second nuclide?
(b) What is unusual about this reaction?
3. Write a balanced equation for each of the following nuclear reactions.
(a) alpha emission by ${ }^{110} \mathrm{Te}$
(b) positron emission by ${ }^{23} \mathrm{Mg}$
(c) electron capture by ${ }^{59} \mathrm{Ni}$
(d) fusion of two ${ }^{12} \mathrm{C}$ nuclei to produce ${ }^{20} \mathrm{Ne}$ and one other product
