Exercise 2.7 Kinetics of Nuclear Reactions

- 1. 210 Po is an alpha emitter with a decay constant of 0.00501 d⁻¹.
- (a) Write a balanced equation for the reaction in which 210 Po undergoes alpha decay.
- (b) Calculate the half-life of 210 Po.

(c) Calculate the radioactivity of a 1.00 g sample of ²¹⁰Po. $M_{Po-210} = 209.982 \ 874 \ g/mol$

(d) Calculate the radioactivity of the sample from part (c) of this question after 365 days have passed. (*The product of the alpha decay of ²¹⁰Po is stable, so you can assume that all radioactivity is due to ²¹⁰Po.*)

2. ^{99m}Tc is used as a tracer in diagnostic imaging because it emits gamma radiation with a similar energy to X rays. It is attached to a compound which transports it to the appropriate part of the body (brain, lungs, kidney, liver, etc.) then a detector generates an image based on the radiation released.

The "m" in ^{99m}Tc stands for "metastable". This means that this is not the most stable arrangement of protons and neutrons possible for ⁹⁹Tc. In fact, ⁹⁹Tc is the product generated when ^{99m}Tc decays, emitting gamma rays. As a result, ^{99m}Tc is relatively short-lived and must be generated as-needed from ⁹⁹Mo (which is, in turn, generated from ²³⁵U).

- (a) Write a balanced equation for the reaction in which 99 Mo decays to 99m Tc.
- (b) Write a balanced equation for the reaction in which 99m Tc decays to 99 Tc.
- (c) The half-life of ⁹⁹Mo is 2.75 days. The half-life of ⁹⁹mTc is 6.01 hours. The half-life of ⁹⁹Tc is 2.11×10^5 years.
 - i. Calculate the decay constant for each of these three nuclides.

- ii. Which of these three nuclides is the most stable?
- iii. Suggest one advantage of using a nuclide with a relatively short half-life in nuclear medicine.
- (d) If a patient is injected with 1 000 MBq ^{99m}Tc for a bone scan, how long will it take for the radiation emitted by ^{99m}Tc to drop to 1 MBq?
 This calculation does not account for any biological clearing of ^{99m}Tc.